
M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 96–105, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Influences between Performance Based Scheduling
and Service Level Agreements

Antonella Galizia1, Alfonso Quarati1, Michael Schiffers2,4, and Mark Yampolskiy3,4

1 Institute for Applied Mathematics and Information Technologies,
National Research Council of Italy, Genoa, Italy

{antonella.galizia,alfonso.quarati}@ge.imati.cnr.it
2 Ludwig-Maximilians-Universität München, Germany

schiffer@nm.ifi.lmu.de
3 Leibniz Supercomputing Centre, Garching, Germany

Mark.Yampolskiy@lrz.de
4 Munich Network Management (MNM) Team

Abstract. The allocation of resources to jobs running on e-Science infrastruc-
tures is a key issue for scientific communities. In order to provide a better effi-
ciency of computational jobs we propose an SLA-aware architecture. The core
of this architecture is a scheduler relying on resource performance information.
For performance characterization we propose a two-level benchmark that in-
cludes tests corresponding to specific e-Science applications. In order to eva-
luate the proposal we present simulation results for the proposed architecture.

Keywords: resource allocation, benchmarks, scheduling, SLA.

1 Introduction

A proper resource-to-job matching is of paramount importance for a better
exploitation of e-Science environments where heterogeneous resources are shared for
coordinated problem solving in multi-institutional virtual organizations [1]. In
addition, specific requirements are often associated with compute intensive scientific
jobs, e.g., weather prediction WRF1, or molecular dynamics GROMACS2, which may
lead to further efficiency issues. In such computation intensive applications, a better
resources-to-job matching can lead to significant improvements in the computation
speed [2]. A performance aware job execution can be realized if there is adequate
information available regarding the resource capabilities and the qualities of the
services provided over the resources. A generally accepted method to evaluate and
compare the performance of computer platforms is through benchmarking and
benchmarks based metrics [3] [4].

1 http://www.wrf-model.org/
2 http://www.gromacs.org/

 Influences between Performance Based Scheduling and SLA 97

It is common practice to express service quality expectations in Service Level
Agreements (SLA). SLAs are negotiated between customers of a service and service
providers. This practice has proven to be an effective means not only for enforcing
providers to the desired quality but also to reorganize the complete service provision-
ing in order to use available resources more efficiently. In this context is the optimal
exploitation and semantics definition of supported quality ranks, e.g., gold, silver,
bronze, still an unsolved problem.

We focus here on performance as a single quality parameter. In our research we
consider SLAs as a description of performance objectives to be achieved and main-
tained during the job execution. The main idea is to apply the congruent policy, where
resources are characterized by considering several performance ranks and jobs are
allocated to the most suitable resource according to the performance rank specified
for in the their submission. To enable the description of both jobs and resources, a
proposal for Grid environments has been presented [5].

In this paper, we abstain from discussions about SLA negotiation and how parame-
ters can be specified in an SLA or a Service Level Specification (SLS). Instead, in
Section 2 we propose an SLA-aware architecture incorporating a novel scheduling
mechanism which takes into account fine grained knowledge about resource capabili-
ties, information about job preferences, knowledge about the load of involved re-
sources, and requirements specified in the SLA. In Section 3 we present the bench-
marks used to rank resources with respect to specific metrics. In Section 4 we simu-
late the behavior of the proposed job allocation policy based on performance aware
SLAs. In Section 5 we conclude the paper and discuss future plans.

2 An SLA Aware Job Allocation Architecture

A Service Level Agreement (SLA) is a contract between customers of a service and
its provider. This contract specifies all service related commitments, i.e., with which
quality the particular service will be provided to the customer and how this quality
can be measured in order to verify the fulfillment of the contract. In some cases SLAs
also specify penalties which will be due in case the committed service quality cannot
be achieved. Further, since the quality parameters committed to the customer cannot
always be measured directly on the infrastructure, the provider usually associates an
SLS with an SLA. The purpose of an SLS is to specify how the provider’s infrastruc-
ture is monitored and how the monitored parameters are used in order to calculate
quality parameters committed to the customer.

In this paper we do not discuss the SLA negotiation process and issues related to
the specification of parameters SLAs or SLSs. Instead, we are interested in architec-
tural considerations necessary for predicting a job’s quality and for scheduling of jobs
to resources the performance of which is sufficient for the fulfillment of commit-
ments. In this work, we consider SLAs as a source for the end users specific require-
ments which should be fulfilled. For instance, a user could specify in SLA that his
submitted application should be scheduled to be executed in the next half hour and the
job processing should not take longer than two hours.

98 A. Galizia et al.

Figure 1 shows the general principle of job submissions in the context addressed
here (see also [1]). The job submitted by a customer/user is placed in the queue of a
global scheduler. The main goal of the global scheduler is to decide on which infra-
structure component this job should be computed. As of now, this is often done taking
into account only the current filling state of local queues of all available resources and
the very coarse grained classification of these resources, e.g., CPU- or GPU-based
computation unit. After the decision is taken, the job is moved from the global queue
to the local queue of the selected computation unit.

Job

Global scheduler

Job Job Job

G
lo

ba
l q

ue
ue

Job
Job

Job

Job
Job

Job
Job Job

Lo
ca

l q
ue

ue

Co
m

pu
te

rs

Fig. 1. Two-layer job scheduling

In order to better support performance-aware SLA requirements, we see the neces-
sity to extend this model significantly. This is in particularly useful in Grid environ-
ments where most of the existing meta-schedulers, as Maui/Moab scheduling suite
[6], Condor-G [7], and GridWay [8], mainly focus on resource requirements, queue
policies, and average load. By the way, we argue that for this purpose the global
scheduler should incorporate two complex components: 1) a fine grained analysis of
the performance of the available resources based on an evaluation of different (artifi-
cial) computational tasks; and 2) a scheduling mechanism which takes into account
fine grained knowledge about resource capabilities, information about job prefe-
rences, knowledge about the load of involved resources, and requirements specified in
SLAs.

We propose using benchmarks as an approved and broadly accepted technique for
such a fine grained assessment of resource qualities. Figure 2.a) outlines this strategy.
A set of well-prepared benchmarks can be defined in advance and stored as a part of
this unit. Generally, two benchmark scheduling strategies can be used. First, bench-
marks can be scheduled event-based, e.g., if some hardware/software change events

 Influences between Performance Based Scheduling and SLA 99

were encountered. However, this will require either a notification system or the
benchmarks must be started manually. An alternative strategy is to start the bench-
marks periodically. This eliminates the necessity of an event messaging system, but it
bears the risk of possible interferences with productive jobs. Therefore, this strategy is
often combined with additionally defined policies, e.g., to schedule benchmarks only
in the case of empty local queues. For our work, both approaches could be adopted
and we abstain from recommendations and further discussions of this topic.

Fig. 2. – a) Fine grained resources evaluation – b) Benchmark driven job allocation

The extended scheduling engine is outlined in Figure 2.b). The result prediction
component is the core of the engine. In the first place, it takes into account the infor-
mation about fine grained resource performance, the states of the local queues, and
the job description. During submission phase, job requests have to specify; the job
description should include a specification to which class of computations this particu-
lar job belongs. This information is needed in order to perform a better match with the
benchmark tests used for the resource ranking. Based on the information and schedul-
ing policies the device for executing the job is selected. After the job is scheduled the
performance evaluator component is in charge of qualitatively monitoring the job
execution. This information can be used for the verification of performance goals as
stated in SLA. Further, the evaluation of the job execution performance – together
with the previous predictions – should be used in the prediction verification compo-
nent. The purpose of this component is to determine the deviation of the results from
their predictions. The deviation in turn can be used in the result prediction component
to reduce the prediction error before signing any SLA.

Therefore, in order to fulfill the end-user requirements specified in SLA, it is ne-
cessary to take into account two main information: estimated execution time at differ-
ent available resources and the estimated waiting time of the related queues. For both

100 A. Galizia et al.

estimations we consider the results provided by the prediction component, which in
turn is based on use of benchmarks.

The remainder of this paper focuses on the benchmark part of the proposed archi-
tecture, the core components of the proposed architecture as depicted in Figure 2b. In
order to explain the principles of the component we abstain from a discussion of the
job allocation in its full extend. Instead, we simulate the benchmark driven job alloca-
tion without the feedback loop including prediction and verification components.

3 Benchmarks Characterizing Resource Performance

The rank of resources on a performance basis may be obtained by expanding the
description of computational resources with some indicator that characterizes their
reaction under different workloads, [5].

To this aim, we integrate two complementary approaches: 1) the use of micro-
benchmarks, to supply basic information derived from low-level performance metrics;
2) the exploitation of application-driven benchmarks, to get a closer insight into the
behaviour of resources for a class of applications under more realistic conditions. In
particular, we considered the following tools for micro-benchmarks: I) Flops [9] re-
turns Million of Floating-point Operations Per Second (MFLOPS) to measure CPU
performance, II) STREAM [10] and CacheBench [11] measure the bandwidth re-
quired for writing and reading operations, expressed as Bytes per second, to evaluate
respectively main memory and cache, III) MPPTest [12] measures the Latency and
Bandwidth to evaluate machine’s interconnection, and IV) b_eff_io [13] returns
Bandwidth to estimate I/O systems. These metrics are well established and generally
used to evaluate resource performance capacities; moreover we use freely available
tools that could be widely deployed and run [14]. Application-driven benchmarks are
more suitable to mimic the real job workload because of their proximity with the ap-
plication at hand. In the following we consider, as case studies, two applications of
our interest, i.e., linear algebra and isosurface extraction. For the first class of applica-
tions, we selected the well-known High Performance Linpack (HPL) benchmark [15].
For the second, we realised a lightweight version of the application [16], character-
ized by a reduced computational cost, but still capable to maintain a representative
run of the real application (ISO). A deep discussion about the definition and effec-
tiveness of a two-level benchmark methodology has been presented in [17].

4 Evaluation of a Performance-Based Job Allocation

To evaluate the effectiveness of our architecture we simulated the job allocation
policy based on performance SLAs and supported by benchmark results. We
considered different application scheduling scenarios to appreciate the actual impact
on SLA commitments. In particular, we compared the performance-based SLAs, i.e.,
taking into account the congruent policy, with a general global scheduler, depicted in

 Influences between Performance Based Scheduling and SLA 101

Figure 1. It is reasonable to base the job allocation strategy on the classical round-
robin procedure. We further considered the rank of the resources based on an
established application benchmark, i.e., ISO and HPL ranks.

To test the two components added to the global scheduler, we collected perform-
ance values of five resources under our domain/access, considering both level of
benchmarks. To simulate the chosen scenarios and to compare the scheduling strate-
gies we employed the Java Modelling Tools [18], an open source tool for perform-
ance evaluation and workload characterization of computer and communication sys-
tems based on queuing networks. In the reminder of this section, we present the re-
sources and experimental results. Please note that in order to focus on the evaluation
of the overall concept we simplify the job allocation component via removing the
feedback loop consisting of prediction and verification components.

4.1 Characterizing the Test Bed

We collected the performance information of five resources under our domain/access.
The aim is to consider different architectures to test the effectiveness of the first com-
ponent added to the global scheduler, i.e., the fine grained analysis of the perfor-
mance, and the improvement we achieved because of the second component, i.e., the
benchmark driven job allocation. Resources are described in Table 1; it actually high-
lights the architectural heterogeneity of our test bed, especially regarding the compu-
ting power (number of CPUs), the type of interconnection and the memory size.

Table 1. Test bed infrastructure

 Proc. Type N° Core Network RAM

Ibm
2 Quad Core Xeon 2.5

GHz
32 Infiniband 64 GB

michelangelo
2 AMD Opteron 275

2,2GHz dual core
64

Gigabit
Ethernet

424 GB

SC1458 Proprietary 372 proprietary 1.9 TB

Paperoga dual 3 GHz Intel Xeon 8
Gigabit
Ethernet

16 GB

Cluster1 2.66 GHz Pentium IV 16
Gigabit
Ethernet

16 GB

The double-level benchmark was run to gain a precise description of the actual per-

formance offered by the computational systems along different metrics axes. Figures
3 and 4 depict the performance values of the respective micro and application bench-
marks, we briefly discuss them in the following.

As Figure 3 outlines, the resources provide different performances with respect to
the considered benchmarks. For example, SC1458 achieves almost the best ranks for
the aggregated values and interconnection performance but performs poorly consider-
ing the ranks of the single cores. For the benchmarks michelangelo and ibm performs
better.

102 A. Galizia et al.

Fig. 3. Ranking of resources based on micro-benchmarks

Figure 4 reports the relative performance of ISO and HPL, each resource is tagged
with a value in the range [1,…,5], where greater values correspond to worse perform-
ance (e.g., ibm and SC1458 rank first according to ISO and HPL respectively). The
ranking was based on the execution Wall Clock Time (WCT).

Fig. 4. Test bed ranking according to HPL and ISO benchmarks

Figures 3 and 4 show that, as expected, none of the resources is the best in all
cases, therefore the importance of an accurately designed performance-aware schedul-
ing of the jobs is essential for fulfilling the SLA.

 Influences between Performance Based Scheduling and SLA 103

4.2 Simulating the Architecture

In order to the compare the performance of a fine grained description of available
resources regarding different computation tasks, and information about job prefe-
rences, we model our systems as a queuing network composed of 5 nodes, corres-
ponding to our heterogeneous test bed, plus a scheduler which dispatches arriving
jobs to the resources. In the global scheduler depicted in Figure 1, different schedul-
ing strategies can be used, e.g., a round robin job allocation. However, for the perfor-
mance-based SLA architecture we favor the usage of the Congruent Policy job alloca-
tion, which takes into account the appropriate resource properties. Moreover, we con-
sidered two more job allocation strategies based on information derived using the
established ISO and HPL benchmarks respectively. Our objective is to minimize the
Response Time of the system, that takes into account the time that a job takes to be
executed (service time) plus the time spent in queue (waiting to be executed).

In the simulation we considered a workload composed of two parallel applications
(linear algebra and isosurface extraction) that have been modelled as two open classes
with exponentially distributed inter-arrival and service times [19]. Service times are
obtained through a real experimentation on the base of the benchmark values as re-
ported in Table 2. They can be considered as the results of the prediction component.

Table 2. Mean service times of each application class
(in parentheses the number of processors spawned for each resource)

IBM
(32)

Michelangelo
(32)

SC1458
(128)

Paperoga
(8)

Cluster1
(16)

ISO 2.4 3 35 13 7

HPL 33 25 4.5 55 62

Fig. 5. Response times according to different scheduling strategies at increased workload

104 A. Galizia et al.

In Figure 5 the response times of each strategy at increasing workloads are shown.
It is immediately clear that the proposed performance-based SLA outperforms the
other schedulers. This is not surprising since each resource is exploited as its best
respect to the incoming workloads, i.e. each application is allocated to the resources
that execute the code in the most efficient way, in our analysis with minor execution
time. It leads to faster execution and lower waiting time. Both parameters impact (in
this case positively) on the response time. An increase of computation intensive work-
loads also influences our scheduling mechanism, however the growth of response
time is moderate compared with other tested strategies.

5 Conclusion

In this paper we proposed a performance-based SLA-aware architecture. The main
idea is to characterize resources on the base of specific benchmarks in order to allow
suitable job allocations. We have demonstrated simulation results which show clear
benefits and which give an indication of what can be expected if our proposed archi-
tecture will be implemented for the job scheduling.

In particular, we have analyzed and tested just a first part of the proposed architec-
tural concept. We plan to spend further efforts in the elaboration and analysis of the
performance prediction and evaluation components. This will include an evaluation of
different methods for the prediction of expected job execution performance as well as
for the correction based on the deviation between expected and measured results.

Acknowledgements. The authors would like to thank the members of the Munich
Network Management (MNM) Team for their support and many useful discussions.
As a group of researchers from the Ludwig-Maximilians-Universität München, the
Technische Universität München, the University of the German Federal Armed
Forces, and the Leibniz Supercomputing Centre of the Bavarian Academy of Science
and Humanities, the MNM Team focuses on computer networks, IT management,
High Performance Computing, and inter-organizational distributed systems. The team
is directed by Prof. Dr. Dieter Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering. For
more information please visit http://www.mnm-team.org.

This work has partially been funded by the Seventh Framework Program of the
European Commission (Grants 246703 (DRIHMS) and 261507 (MAPPER)), and by
the project REsource brokering for HIgh performance, Networked and Knowledge
based applications (RE-THINK), P.O.R. Liguria FESR 2007-2013.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, 2nd
edn. Elsevier (2004)

2. Distributed European Infrastructure for Supercomputing Applications (May 10, 2011),
http://www.deisa.eu/science/benchmarking

 Influences between Performance Based Scheduling and SLA 105

3. Hockney, R.W.: The science of computer benchmarking. Software, environments, tools.
SIAM, Philadelphia (1996)

4. Simmhan, Y., Ramakrishnan, L.: Comparison of Resource Platform Selection Approaches
for Scientific Workflows. In: 19th ACM International Symposium on High Performance
Distributed Computing, HPDC 2010, pp. 445–450 (2010), doi:10.1145/1851476.1851541

5. Clematis, A., Corana, A., D’Agostino, D., Galizia, A., Quarati, A.: Job–resource mat-
chmaking on Grid through two-level benchmarking. Future Generation Computer Sys-
tems 26(8), 1165–1179 (2010)

6. Bode, B., et al.: The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters.
In: 4th Annual Linux Showcase and Conference, Atlanta, USA (2000)

7. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Cluster Computing 5(3), 237–246 (2002)

8. Huedo, E., Montero, R., Llorente, I.: A framework for adaptive execution in grids. Soft-
ware Practice and Experience 34(7), 631–651 (2004)

9. Flops Benchmark (May 10, 2011),
http://home.iae.nl/users/mhx/flops.html

10. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Performance
Computers. In: IEEE Technical Committee on Computer Architecture (TCCA) Newsletter
(1995)

11. Mucci, P.J., London, K., Thurman, J.: The CacheBench Report, University of Tennessee
(Cachebench Home Page) (May 10, 2011),
http://icl.cs.utk.edu/projects/llcbench/cachebench.html

12. Gropp, W., Lusk, E.: Reproducible Measurements of MPI Performance Characteristics. In:
Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999. LNCS, vol. 1697, pp. 11–18.
Springer, Heidelberg (1999), http://www-unix.mcs.anl.gov/mpi/mpptest/

13. Rabenseifner, R., Koniges, A.E.: Effective File-I/O Bandwidth Benchmark. In: Bode, A.,
Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 1273–
1283. Springer, Heidelberg (2000)

14. Tsouloupas, G., Dikaiakos, M.: GridBench: A Tool for the Interactive Performance Explo-
ration of Grid Infrastructures. Journal of Parallel and Distributed Computing 67, 1029–
1045 (2007)

15. The High Performance LINPACK Benchmark (May 10, 2011)
http://www.netlib.org/benchmark/hpl/

16. D’Agostino, D., Clematis, A., Gianuzzi, V.: Parallel Isosurface Extraction for 3D Data
Analysis Workflows. Distributed Environments, Concurrency and Computation: Practice
and Experience (2011), doi:10.1002/cpe.1710

17. Clematis, A., D’Agostino, D., Galizia, A., Quarati, A.: Profiling e-Science Infrastructures
with Kernel and Application Benchmarks. Submitted for the publication in Journal of
Computer Systems Science and Engineering

18. Casale, G., Serazzi, G.: Quantitative System Evaluation with Java Modeling Tools. In:
ICPE 2011, Karlsruhe, Germany, March 14-16 (2011)

19. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.: Quantitative System Per-
formance - Computer System Analysis Using Queuing Network Models. Prentice-Hall,
Inc. (1984)

	Influences between Performance Based Scheduling and Service Level Agreements
	Introduction
	An SLA Aware Job Allocation Architecture
	Benchmarks Characterizing Resource Performance
	Evaluation of a Performance-Based Job Allocation
	Characterizing the Test Bed
	Simulating the Architecture

	Conclusion
	References

