
Scheduling Divisible Loads on Heterogeneous

Desktop Systems with Limited Memory

Aleksandar Ilic and Leonel Sousa

INESC-ID, IST/UTLisbon,
Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
{Aleksandar.Ilic,Leonel.Sousa}@inesc-id.pt

Abstract. This paper addresses the problem of scheduling discretely
divisible applications in heterogeneous desktop systems with limited
memory by relying on realistic performance models for computation
and communication, through bidirectional asymmetric full-duplex buses.
We propose an algorithm for multi-installment processing with multi-
distributions that allows to efficiently overlap computation and commu-
nication at the device level in respect to the supported concurrency. The
presented approach was experimentally evaluated for a real application;
2D FFT batch collaboratively executed on a Graphic Processing Unit
and a multi-core CPU. The experimental results obtained show the abil-
ity of the proposed approach to outperform the optimal implementation
for about 4 times, whereas it is not possible with the current state of the
art approaches to determine a load balanced distribution.

Keywords: Scheduling, divisible loads, heterogeneous desktop systems,
multiple installments, memory constraints.

1 Introduction

Modern desktop systems are already true heterogeneous platforms capable of
sustaining remarkable computation power by coalescing the execution space of
multi-core CPUs and programmable accelerators, such as Graphics Processing
Units (GPUs) [9]. In this paper, we consider the problem of scheduling discretely
divisible load (DL) applications on heterogeneous desktop platforms, from the
perspective of employing all the available computing devices. The DL model [12]
represents parallel computations that can be divided into pieces of arbitrary
sizes, where these load fractions can be processed independently with no prece-
dence constraints. In recent years, divisible load theory (DLT) has been widely
studied for a wide range of applications in heterogeneous computing, such as
image and signal processing, database applications and linear algebra [11,12].

The problem of scheduling DL applications can generally be viewed as two-
fold. Firstly, it is decided how many “load units” has to be sent to each device to
achieve a balanced load distribution. Secondly, in order to reduce the impact of
inevitable delays when distributing and retrieving the load, each individual load
(assigned to a device) needs to be sub-partitioned into many smaller chunks,

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 491–501, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

492 A. Ilic and L. Sousa

in order to: (i) overlap computation and communication; (ii) efficiently use the
communication links in desktop systems typically with bidirectional asymmet-
ric bandwidth; (iii) respect the amount of supported concurrency, and (iv) fit
into the limited device memory. In DLT, this organization is usually referred as
multi-installment (multi-round) processing [12].

Although several authors have already studied multi-installment divisible load
scheduling (DLS) in heterogeneous star networks [2], with limited memory [3,5],
and results collection [7], we show in this paper that the considered restrictions
and assumptions may be realistic for some particular applications, but certainly
not for all of them. These studies considered: an one-port communication model
with symmetric bandwidth; when dealing with limited memory, the main focus is
on fitting the input load into the finite memory size; they derive the closed-form
solutions or optimal DLS algorithms by modeling computation and communica-
tion times by linear or affine functions of the number of chunks.

We naturally target a heterogeneous star (master-worker) networks, due to
the basic architectural principle of desktop systems, which positions the CPU
(host, master) to be responsible for controlling and orchestrating the operation
of all the processing devices (workers), namely GPUs. The system heterogene-
ity is described with different processing speeds for each worker, and different
bandwidths of master-worker communication links. Precisely, each link is mod-
eled as an asynchronous bidirectional full-duplex communication channel with
asymmetric bandwidth in different transfer directions. In contrast to the previ-
ous works dealing with limited memory [3,5], we consider the real application
behavior, that generally requires additional memory space to be allocated dur-
ing the processing. Moreover, we do not make any assumptions, but we rather
model computation and communication via continuous functions of the number
of chunks, constructed from the real application execution. The works presented
in [4,10] also model computation through continuous functions, but do not con-
sider either communication or multi-installment scheduling. To the best of our
knowledge there is only one publication dealing with DLS problems in desktop
systems [1], but for a specific application and based on affine cost models.

2 System Model and Problem Formulation

Let D = (A,H, ψt, ψw, σι, σo, μι, μw, μo) be a DLS system, where the divisi-
ble load A is to be distributed and processed on a heterogeneous star network
H = (P,B,E). Due to employment of master cores for execution, a set of k+m
processing devices is defined as P = PM ∪ PW , where PM = {p1, ..., pk} is a
set of k cores on the CPU master (positioned at the center of the star), and
PW = {pk+1, ..., pm+k} is a set of m ‘distant workers”. Unless stated otherwise,
we will use the term “distant worker” to designate a processing device, such as
GPU, connected to the master via a communication link. E = {ek+1, ..., em+k}
is a set of m links that connect the master to the PW distant workers (locally, to
perform load execution on the master cores PM no extra communication costs
are considered). B = {bk+1, ..., bm+k} is the set of parameters describing the
available memory at each distant worker.

Scheduling Divisible Loads on Heterogeneous Desktop Systems 493

Initially, the total load N of the application A is stored at the master, which
can be split into load fractions of an arbitrary size x. In contrast to the usual
DLT practice to model computation/communication time with linear or affine
functions of the load size x, we describe these relations with performance func-
tions dynamically built during the application execution. In detail, for each load
fraction x processed on a device or communicated over a link for a certain time
t, we calculate its relative performance x/t in order to construct the function
f : N → R+ which is continuously extended by piece-wise linear approxima-
tion to a performance function g : R+ → R+ (f(x) = g(x), ∀x ∈ N), such as
in [4]. Therefore, those performance models are much more realistic in capturing
the behavior of applications and the characteristics of complex heterogeneous
systems [10]. Hence, ψw(x) models relative computation performance of each
P device as a function of the load size x. Bidirectional full-duplex asymmet-
ric bandwidth of each link from E is modeled with σι(x) and σo(x) functions
(where index ι reflects the communication direction from the master to a dis-
tant worker, and index o from a distant worker to the master). Dedicated links
for each master-distant worker pair allow modeling of total relative performance
with ψt(x) function, calculated as ratio between the load size x and the total
time taken to distribute and process the load and to return the results.

Current research in limited memory DLS [3,5] mainly focuses on fitting the in-
put load into the worker’s memory (or input buffer) without considering the addi-
tional memory allocated during processing. Although for traditional distributed
systems (with CPUs) this requirement is usually neglected, due to possible allo-
cation in virtual memory address space, this can not be assumed for accelerators
in desktop systems, such as GPUs. Therefore, we characterize the application by
input, output and execution memory requirement functions, μι(x), μo(x), and
μw(x, P), respectively. We define the execution memory requirement μw(x, P)
as a function of load size x and device type P , to express the high level of het-
erogeneity in modern desktop systems where different implementations of the
same problem might have different memory requirements.

The first part of the problem is how to divide the total load N into frac-
tions α = {α1, ..., αk, αk+1, ...αm+k} to be simultaneously processed on each
master core and distant worker p1, ..., pk, pk+1, ..., pk+m, such that the load dis-
tribution α is as balanced as possible. We adopt herein the results of the re-
search conducted in [10] for the case without any communication modeling, to
our communication-aware total performance functions ψt(x). Hence, the opti-
mal load distribution lies on a straight line that passes through the origin of the
coordinating system and intersects ψt(x) performance functions, such that:

α1

ψt1(α1)
= · · · = αk

ψtk(αk)
= · · · = αm+k

ψtm+k(αm+k)
;
m+k∑

i=1

αi = N (1)

We tackle herein the second part of the DLS problem: how to sub-partition a
given load fraction {αi}m+k

i=k+1 in terms of number of chunks and number of sub-
load distributions at the distant worker pi according to: (i) relative performance

494 A. Ilic and L. Sousa

βj1

βj2

βj3

tι(βj1) tw(βj1) to(βj1)

tw(βj2)tι(βj2) to(βj2)

tι(βj3) tw(βj3) to(βj3)

tι(βj4) tw(βj4)

...

(a) Overlap of a single communication with computation at the time.

βj1

βj2

βj3

tι(βj1) tw(βj1) to(βj1)

tw(βj2)tι(βj2) to(βj2)

tι(βj3) tw(βj3) to(βj3)

tι(βj4) tw(βj4)

...

(b) Complete concurrency between communication and computation.

Fig. 1. Examples of different amounts of overlapping concurrency

models of computation, ψwi , and asymmetric full-duplex network links, σιi , σoi ;
(ii) amount of concurrency supported by the pi; and (iii) limited worker’s mem-
ory bi, such that the processing is finished in the shortest time.

3 Algorithm for Device-Level Multi-installment with
Multi-distributions

As referred in the previous section, current multi-installment DLS studies [3,5]
consider the one-port communication model, where the load fractions are sub-
partitioned into smaller chunks to allow earlier activation of workers. Thus, the
problem is how to interleave those chunks (in rounds) between the workers to
reduce the total application processing time by overlapping computation at one
worker with communication between the master and the next worker. In this pa-
per, we consider asymmetric full-duplex model which allows the master to simul-
taneously communicate with distant workers. Hence, the problem investigated
herein is how to sub-partition the given load αi to reduce the processing time at
a single distant worker level by overlapping worker’s sub-partitions. We allow the
load αi to be partitioned into sub-load distributions β = {βj}, 1 ≤ j ≤ |β|, each
of them consisting of sub-load fractions βj = {βj,l}, 1 ≤ l ≤ |βj |, such that the
total sum of load fractions is equal to αi. The DLS procedure requires in-order
scheduling of βj distributions, and overlapped execution of βj,l fractions in each
of them, which means we define a single device multi-installment execution space
with multi-distributions. For limited memory systems, each βj distribution must
satisfy an additional requirement that the sum of input, output and execution
memory requirements of each sub-fraction βj,l must fit into the available mem-
ory size bi of the distant worker pi. In fact, each sub-distribution may consume
the whole amount of available memory, which is released between consecutive
and independent βj distributions.

Fig. 1 depicts the optimal overlap of three load fractions in a single load
distribution for examples with different amounts of concurrency. The linear pro-
gramming formulation of the problem in Fig. 1(a) states the necessary conditions

Scheduling Divisible Loads on Heterogeneous Desktop Systems 495

for optimal overlap between subsequent load fractions in a βj sub-distribution,
where tδ(βj) represents the total processing time of βj . We define the sub-
distribution maximum relative performance, ψδ(βj), as the optimality criterion,
due to ability not only to select the distribution that efficiently uses both com-
putation power of the distant worker pi, ψwi , and asymmetric bandwidth of the
ei network link, σιi and σoi , but also to minimize the impact of the intrinsic
communication overhead in the first, βj,1/σιi(βj,1), and the last load fraction,
βj,|βj|/σoi(βj,|βj |), to the overall βj execution time.

Maximize ψδ(βj)=

∑|βj |
l=1

βj,l
tδ(βj)

subject to:

∑|βj|
l=1 βj,l ≤ αi;

∑|βj |
l=1 (μι(βj,l) + μw(βj,l, pi) + μo(βj,l)) ≤ bi (2)

βj,1
ψwi

(βj,1)
≥ βj,2

σιi (βj,2)
;

βj,3
ψwi

(βj,3)
≥ βj,2

σoi (βj,2)
(3)

βj,2
ψwi

(βj,2)
≥ βj,1

σoi (βj,1)
+

βj,3
σιi (βj,3)

(4)

βj,l
σιi (βj,l)

≤ βj,l−1

ψwi
(βj,l−1)

− βj,l−2

σoi (βj,l−2)
;

βj,l
ψwi

(βj,l)
≥ βj,l−1

σoi (βj,l−1)
; ∀l ∈ {4, |βj |} (5)

It can be observed that the number of sub-distributions and load fractions de-
pend not only on the system capabilities and concurrency amount, but also on
the application’s computation and communication characteristics. In the general
case, it may not even be possible to satisfy all the above-mentioned conditions.
Hence, we propose herein an algorithm that finds a sub-optimal β distribu-

tion from a closed set β∗={β(n)}|β∗|
n=1, where

∑|β(n)|
j=1

∑|β(n)
j

|
l=1 β

(n)
j,l =αi,∀n∈{1,|β∗|}, and

∑|β(n)
j

|
l=1 (μι(β

(n)
j,l)+μw(β

(n)
j,l ,pi)+μo(β

(n)
j,l))≤bi,∀n,j, such that:

β = β(r); ψτ (β
(r)) = max{ψτ (β(n))}|β∗|

n=1; ψτ (β
(n)) = αi/tτ (β

(n)), (6)

where tτ (β
(n)) is the total processing time of a β(n) distribution on the distant

worker, and ψτ (β
(n)) its total relative performance. Therefore, in order to con-

struct the set β∗, we firstly determine the initial optimal load distribution with
three load fractions satisfying (2) and (4). Due to the space limitations, only the
main algorithm steps are present herein, more details can be found in [8].

Step 1. Determination of the initial optimal distribution with three load
fractions. The algorithm firstly determines the optimal solution search space

limits by finding minimum and maximum for β
(1)
1,1 , β

(1)
1,2 , and β

(1)
1,3 [8]. In case

of Fig. 1(a), the process of finding the optimal initial solution requires to build
interpolated curves from discreet values: (i) σ(x1)

ιi
from σιi and x1∈[β

(1)
1,1min

,β
(1)
1,1max

];
(ii) σ(x3)

oi
from σoi and x3∈[β

(1)
1,3min

,β
(1)
1,3max

]. Then, the optimal solution is the max-
imum relative performance, ψδ, solution that satisfies (2) and (4) and lies on a
straight line passing through the coordinate system origin, such that:

β
(1)
1,1+β

(1)
1,3

σ
(x1)
ιi

(
β
(1)
1,1+β

(1)
1,3

) =
β
(1)
1,2

ψwi

(
β
(1)
1,2

) ,
β
(1)
1,1+β

(1)
1,3

σ
(x3)
oi

(
β
(1)
1,1+β

(1)
1,3

) =
β
(1)
1,2

ψwi

(
β
(1)
1,2

) . (7)

If no optimal initial distribution is found, the algorithm continues with Step 5.

496 A. Ilic and L. Sousa

Step 2. Generate additional three-fraction distributions. In order to satisfy (3),
at maximum three additional distributions are created with the optimal initial
distribution, if permitted by the application characteristics and (2). Initially,

{β(n)
1,2 }4n=2 = β

(1)
1,2 (β

(2)
1,3 = β

(1)
1,3 , β

(3)
1,1 = β

(1)
1,1) values are assigned, and the remain-

ing loads are determined to completely overlap their computation and commu-

nication in {β(n)
1,2 }4n=2. Namely, the values lie on a straight line passing through

the coordinate system origin, such that (2), (3), and:

β
(2)
1,1

ψwi

(
β
(2)
1,1

) =
β
(1)
1,2

σιi

(
β
(1)
1,2

) , β
(2)
1,1 = β

(4)
1,1 ;

β
(3)
1,3

ψwi

(
β
(3)
1,3

) =
β
(1)
1,2

σoi

(
β
(1)
1,2

) , β
(3)
1,3 = β

(4)
1,3 . (8)

Step 3. Insert additional load fractions into existing sub-distributions. Each

{β(n)

|β(n)|}
|β∗|
n=1 sub-distribution is evaluated using the procedure from [8] to de-

termine the possibilities to insert another load fraction into the current sub-
distribution schedule, in respect to the amount of supported concurrency. Namely,
each sub-distribution is assigned with two real values representing the maximum
available time frames that can be allocated to the additional load fraction, i.e.,

t
(n)
aι and t

(n)
aw (a=|β(n)

|β(n)|
|+1), where t

(n)
aι and t

(n)
aw reassemble the notions from (5).

Correspondingly, the next load fractions β
(n)

|β(n)|,a
lie on a straight line passing

through the origin of the coordinate system, such that (2), (5), and:

β
(n)

|β(n)|,a
ψwi

(β
(n)

|β(n)|,a
)
= t

(n)
aw or

β
(n)

|β(n)|,a
σιi (β

(n)

|β(n)|,a
)
= t

(n)
aι . (9)

The obtained values are inserted as the last load-fractions for current sub-
distribution and an additionally created sub-distribution by duplicating current
β(n) schedule. In the case that the calculated load fraction does not satisfy (2),
the sub-distribution is marked as examined. This procedure is iterative, until all
{β(n)

|β(n)|
}|β∗|
n=1 sub-distributions are examined.

Step 4. Generate new sub-distributions by restarting. After the insertion, in each

{β(n)}|β∗|
n=1 schedule the new sub-distribution is added on which the complete

procedure is repeated (from Step 1) for the remaining unscheduled load:

αi −∑|β(n)|
j=1

∑|β(n)
j |

l=1 β
(n)
j,l ,∀n ∈ {1, |β∗|} (10)

In case that the amount of remaining load is insufficient to produce the optimal
three-fraction sub-distribution, the algorithm proceeds with Step 5.

Step 5. Expand all sub-distributions. In this step, each schedule {β(n)}|β∗|
n=1 is

expanded with a single sub-distribution containing a single load fraction of the
size obtained by (10) in case that (2) is satisfied, or with multiple single-fraction
distributions which are iteratively assigned to meet the condition from (2).

Scheduling Divisible Loads on Heterogeneous Desktop Systems 497

Step 6. Select the schedule with maximum relative performance. As previously
referred, the final schedule β is selected from the β∗ set according to (6).

4 Iterative Procedure for Partial Performance Modeling

The proposed approach relies on relative performance models of system re-
sources, which are usually not known a priori. Hence, we propose an iterative
procedure with two main phases (initialization and iterative phase), based on
the algorithm presented in Section 3 that, at the same time, builds the models
and makes scheduling decisions according to their current partial estimations.

Initialization phase begins by assigning αi = N/(m+k) load fractions to each
pi device. For each distant worker {pi}m+k

i=k+1, the initial αi load is iteratively split
into sub-fractions by applying a factoring-by-two strategy. In general, this results
in a single sub-distribution βi1 with sub-fractions calculated as:

βi1,l =

[(
1

2

)l
αi

]
(11)

For systems with limited memory, we propose a recursive procedure that sub-
partitions load-fractions from the original sub-distribution into additional sub-
distributions by applying the factoring-by-two strategy, until βi satisfies (2).
After βi schedule is processed, the initial performance models are built via piece-
wise linear approximations on the real execution values [4]. Namely, ψwi , σιi , σoi
and ψti models are constructed from the values obtained from each load-fraction,
and ψti is further extended with the values from each sub-distribution execution.

In the iterative phase, the new load distribution α is calculated for each pi
device by applying (1) to the total performance models, ψt. For each distant
worker, sub-distributions and sub-load fractions are further calculated with the
algorithm presented in Section 3 by relying on partial estimations of performance
models. After load processing, the device execution times are compared and if the
relative differences satisfy the given accuracy, the procedure stops by marking
α as the load balanced distribution. If not, the performance model estimations
are updated with the newly obtained values, and the procedure restarts with the
iterative phase, until the load balanced distribution is found.

5 Experimental Results

The proposed approach was evaluated in a real heterogeneous desktop system
consisting of an Intel Core 2 Quad Q9550@2.83 GHz CPU with 12 MB L2 cache
and 4 GB of DDR2 RAM, and an NVIDIA GeForce 285 GTX@1.476 GHz GPU
with 1 GB of global memory. The GPU is connected to the CPU with PCI Ex-
press 2.0 x16 bus, where only a single transfer can be successfully overlapped with
computation at the time. It is considered that the relative performance models
were not a priori known, thus the iterative procedure was applied to the collab-
orative (GPU + 3 CPU Cores) execution of a real DL application performing two

498 A. Ilic and L. Sousa

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Fig. 2. Total performance models ψt obtained for two forward and inverse double
complex 2D batch CUFFT kernels of size x× 512× 512

forward and inverse 2D batch double floating complex Fast Fourier Transforms
(FFT) of size 256 times 512× 512, divisible in the first dimension. We used the
optimal vendor-provided FFT implementations, i.e., NVIDIA’s CUFFT 3.2 for
the GPU and Intel MKL 10.3 for the CPU, on Linux OpenSuse 11.3 system.

By applying the proposed algorithm, we achieved the load balanced execution
in only 4 iterations, and the obtained relative per-device performance models (af-
ter each iteration) are presented in Fig. 2. In the first iteration, the total load is
equally partitioned among devices, i.e., α = {αi = 64}4i=1. The GPU load is fur-
ther sub-partitioned with the factoring-by-two strategy resulting in
β1 = {32, 16, 8, 4, 2, 1, 1} distribution, which load fractions are executed in over-
lapped fashion. As shown in Fig. 2(a), wemodel the GPU total performance with 7
points after a single application run, i.e., 6 points are obtained at the level of each
load-faction, and the final point is the performance of a complete β1 schedule.
Repeated load fractions or sub-distributions are considered as accuracy points,
which do not contribute to the overall number of points, but improve the model
accuracy (in this case, one accuracy point is obtained for the load fraction size of
1). By applying factoring-by-two strategy, we obtained the speed up of about 1.4
comparing to a single-fraction non-overlapped execution of the αi = 64 load.

According to the current ψt models, the load distribution for the second inte-
gration is calculated as α = {181(GPU), 29(Core 1), 23(Core 2), 23(Core 3)}. The
GPU load is sub-fractioned according to the algorithm presented in Section 3, by

Scheduling Divisible Loads on Heterogeneous Desktop Systems 499

Fig. 3. Comparison of obtained performance models and relative performance

relying onto the initial partial estimations of ψw, σi and σo, resulting in the dis-
tribution vector: β = {β1 = {8, 14, 18, 20, 9, 1}, β2 = {8, 14, 18, 20, 21, 21, 9}}. Af-
ter the second iteration, we model the GPU performance with 15 approximation
points (see Fig. 2(b)), including 3 points obtained for β1 and β2 sub-distributions
and the overallβ schedule. In terms of performance, with our algorithmwe outper-
formed the optimal single load CUFFT execution for about 4.6 times in this itera-
tion. The calculated distributions for the third iteration are:α = {199, 23, 17, 17},
and β = {{14, 26, 36, 16, 7, 3}, {14, 26, 36, 16, 5}} for the GPU. As presented in
Fig. 2(c), the GPUperformance is modeled with 23 points after the third iteration,
resulting in 4.5 speed-up comparing to the CUFFT single load execution. Finally,
with the obtained distribution for the fourth iteration (α = {205, 21, 15, 15}, and
β = {{14, 26, 36, 16, 7, 3}, {14, 26, 36, 16, 7, 3, 1}} the load balancing is achieved
across all 4 devices, outperforming the single load non-overlapped CUFFT execu-
tion for about 4.3 times.

In total, by using the proposed approach, the GPU performance is modeled
with 53 points in only 4 application runs, i.e., 25 approximation points (see
Fig 2(d) and 28 accuracy points. In average, we obtain the speed up of about
4.5 comparing to the direct use of the optimal CUFFT library.

5.1 Comparison with the State of the Art Approaches

In order to provide a better insight on the efficiency of the proposed algorithm,
we conducted the comparison with two iterative approaches to achieve load bal-
ancing that rely on the functional performance models, [6] and [10]. Albeit those
approaches are developed without any communication awareness, they can be
straightforwardly applied to our communication-aware total performance curves
ψt. The performance models in [6] are represented as constants obtained from
the last application run, whereas the algorithm from [10] deals with the com-
plete functional performance curves when deciding on load balancing. Figure 3
presents the comparison of obtained ψt total GPU performance models when
executing the above-mentioned DL application for a situation when the load
balancing is achieved (if possible). By using the approach in [10], it takes 10

500 A. Ilic and L. Sousa

iterations to converge to a steady load distribution, but even then the obtained
distribution is not load balanced, due to the refinement procedure applied to the
performance curve with instantaneous change in the relative performance. On
the other hand, the algorithm presented in [6] will neither achieve load balancing
nor converge to the final distribution, as after 8 iterations it arrives to a state
referred as “ping-pong” effect [4], due to its unawareness of a complete shape of
the performance curve.

For both approaches, the total number of approximation points obtained for
GPU performance is equal to the number of iterations, i.e., 10 for approach
in [10], and 8 for approach in [6] (where 6 points are actually contributing, and
the last two are repeated), comparing to 53 points obtained with our approach.
Considering the time taken to completely perform the iterative procedure, the
approach in [10] requires 4.3 times more time to determine the steady state
distribution, whereas the algorithm from [6] takes about 3.2 times more time
to arrive to a “ping-pong” state. In terms of performance, in the final iteration,
our load balanced distribution is capable of achieving more than 2 times better
performance comparing to a steady state distribution from [10] (when executing
the complete problem in the same execution environment), and about 2.2 times
better performance than the best distribution found with [6].

6 Conclusions

This paper proposes, for the first time, an algorithm for scheduling discretely
divisible applications in heterogeneous desktop systems with limited memory by
considering realistic performance models of computation and bidirectional asym-
metric full-duplex communication links. This algorithm achieves device level
multi-installment processing with multi-distributions to allow efficient overlap
of computation and communication. The presented approach was experimen-
tally evaluated for an FFT computation using optimized libraries on a GPU
and 3 CPU cores. The obtained results show its capability to outperform what
is thought to be the optimal implementation for about 4 times, whereas the
current state of the art approaches were incapable of determining the load bal-
anced distribution. Moreover, by employing the proposed algorithm not only
more accurate performance models are constructed significantly faster, but also
the overall application performance is improved.

Acknowledgments. This work was supported by FCT (INESC-ID multiannual
funding) through the PIDDAC Program funds and a fellowship SFRH/BD/
44568/2008.

References

1. Barlas, G.D., Hassan, A., Jundi, Y.A.: An Analytical Approach to the Design of
Parallel Block Cipher Encryption/Decryption: A CPU/GPU Case Study. In: PDP,
pp. 247–251 (2011)

Scheduling Divisible Loads on Heterogeneous Desktop Systems 501

2. Beaumont, O., et al.: Scheduling divisible loads on star and tree networks: results
and open problems. IEEE Trans. Parallel Distributed Systems 16, 2005 (2003)

3. Berlińska, J., Drozdowski, M.: Heuristics for multi-round divisible loads scheduling
with limited memory. Parallel Comput. 36, 199–211 (2010)

4. Clarke, D., Lastovetsky, A., Rychkov, V.: Dynamic load balancing of parallel
computational iterative routines on platforms with memory heterogeneity. In:
HeteroPar 2010 (2010)

5. Drozdowski, M., Lawenda, M.: A New Model of Multi-installment Divisible Loads
Processing in Systems with Limited Memory. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1009–1018.
Springer, Heidelberg (2008)

6. Galindo, I., Almeida, F., Bad́ıa-Contelles, J.M.: Dynamic Load Balancing on Dedi-
cated Heterogeneous Systems. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 64–74. Springer, Heidelberg (2008)

7. Ghatpande, A., Nakazato, H., Watanabe, H., Beaumont, O.: Divisible load schedul-
ing with result collection on heterogeneous systems. In: IPDPS, pp. 1–8 (2008)

8. Ilic, A., Sousa, L.: Algorithm for divisible load scheduling on heterogeneous systems
with realistic performance models. Tech. rep., INESC-ID (May 2011)

9. Ilic, A., Sousa, L.: Collaborative execution environment for heterogeneous parallel
systems. In: APDCM/IPDPS 2010 (2010)

10. Lastovetsky, A., Reddy, R.: Data partitioning with a functional performance model
of heterogeneous processors. Int. J. High Perform. Comput. Appl. 21, 76–90 (2007)

11. Shokripour, A., Othman, M.: Survey on divisible load theory and its applications.
In: ICIME 2009, pp. 300–304 (2009)

12. Veeravalli, B., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm
for load scheduling in distributed systems. Cluster Computing 6, 7–17 (2003)

	Scheduling Divisible Loads on Heterogeneous Desktop Systems with Limited Memory
	Introduction
	System Model and Problem Formulation
	Algorithm for Device-Level Multi-installment with Multi-distributions
	Iterative Procedure for Partial Performance Modeling
	Experimental Results
	Comparison with the State of the Art Approaches

	Conclusions
	References

