Parallel Sparse Linear Solver GMRES for GPU
Clusters with Compression of Exchanged Data*

Jacques M. Bahi, Raphaél Couturier, and Lilia Ziane Khodja

University of Franche-Comte, LIFC laboratory,
Rue Engel-Gros, BP 527, 90016 Belfort Cedex, France
{jacques.bahi,raphael.couturier,lilia.ziane_khoja}@univ-fcomte.fr

Abstract. GPU clusters have become attractive parallel platforms for
high performance computing due to their ability to compute faster than
the CPU clusters. We use this architecture to accelerate the mathemat-
ical operations of the GMRES method for solving large sparse linear
systems. However the parallel sparse matrix-vector product of GMRES
causes overheads in CPU/CPU and GPU/CPU communications when
exchanging large shared vectors of unknowns between GPUs of the clus-
ter. Since a sparse matrix-vector product does not often need all the
unknowns of the vector, we propose to use data compression and decom-
pression operations on the shared vectors, in order to exchange only the
needed unknowns. In this paper we present a new parallel GMRES al-
gorithm for GPU clusters, using compression vectors. Our experimental
results show that the GMRES solver is more efficient when using the
data compression technique on large shared vectors.

Keywords: GMRES, GPU cluster, CUDA, MPI, data compression.

1 Introduction

Iterative linear solvers are often more suited than direct ones for solving large
sparse linear systems. In fact, an iterative method computes a sequence of ap-
proximate solutions converging to the exact solution. In contrast, a direct method
determines the exact solution after a finite number of operations which may lead
to an expensive consumption in both computation time and memory space, and
thus, it is not very well suited for large linear systems. GMRES (Generalized Min-
imal REsidual method) is one of the most widly used iterative solvers chosen to
deal with the sparsity and the large order of linear systems. It was initially devel-
oped by Saad and al. [I] to deal with nonsymmetric and non-Hermitian problems,
and indefinite symmetric problems too. The convergence of the restarted GM-
RES with preconditioning is faster and more stable than those of some other
iterative solvers. Furthermore, the GMRES algorithm is mainly based on math-
ematical matrix/vector operations that are easily parallelizable, and therefore,
they allow us to exploit the computing power of parallel platforms.

* This work was supported by Région de Franche-Comté.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 471 2012.
© Springer-Verlag Berlin Heidelberg 2012

472 J.M. Bahi, R. Couturier, and L.Z. Khodja

For the past few years, GPUs (Graphic Processing Units) have proved their
ability to provide better performance than CPUs for many parallel applications,
including solving linear systems [2]. They have become high performance accel-
erators for data-parallel tasks and intensive arithmetic computations. Therefore,
several works have proposed the efficient GMRES algorithms using the comput-
ing power of GPUs [3][4].

Nowadays, the parallel platforms exploiting the high performances of this
architecture are GPU clusters. They are very attractive for high performance
computing, given their low cost compared to their computational power and
their abilities to compute faster and to consume less energy than their pure
CPU counterparts [5].

We have already used GPU clusters to accelerate numerical computations of
GMRES method for solving large sparse linear systems [6]. We have tested our
parallel GMRES solver on linear systems with banded sparse matrices. We have
noticed that GPU clusters are less efficient in case of large matrix bandwidths.
Indeed a matrix bandwidth defines the size of the shared vectors that must be
exchanged between GPUs in order to perform the full matrix-vector products
of the GMRES method. So a large matrix bandwidth leads to the transfer of
large vectors between a CPU core and its GPU, whereas a GPU/CPU data
transfer is the slowest communication in GPU cluster and it affects greatly the
performances of sparse linear system solutions.

In this paper, we propose a new parallel GMRES solver with some improve-
ments to reduce the communication overheads. We use the compression and
the decompression operations on the shared vectors. This technique has already
used to speed-up the data transfers between the computing nodes of a clus-
ter. In [7], the author has proposed a dynamic algorithm with the compres-
sion/communication overlap which is suited for any data transfer whatever the
speed of the network. In our case, this technique allows a GPU to communicate
only the shared unknowns required by other GPUs to its CPU core. This paper
is organized as follows. In section [2] a general overview of the GPU architec-
ture is given. In section Bl the main key points of our improved parallel GMRES
solver for GPU clusters are presented. Section [is devoted to the performance
evaluation of our solver. Section [f] concludes this paper.

2 GPU Architecture

A GPU architecture is composed of hundreds of processors organized in several
streaming multiprocessors. It is also equipped with a memory hierarchy. It has
a private read-write local memory per processor, a fast shared memory and read-
only constant and texture caches per multiprocessor, and a read-write global
memory shared by all its processors. To exploit the computing power of this ar-
chitecture, Nvidia has released the CUDA programming language (Compute Uni-
fied Device Architecture) [§] allowing us to program GPUs for general purpose
computations of graphic and non-graphic applications. In CUDA programming
environment, the GPU is viewed as a co-processor to the CPU. All data-parallel

Parallel Sparse Linear Solver GMRES for GPU Clusters 473

operations of a CUDA application running on the CPU are off-loaded onto the
GPU. CUDA is C programming language with a minimal set of extensions to
define the parallel functions to be executed by the GPU as kernels.

At the GPU level, the same kernel is executed by a high number of parallel
CUDA threads grouped together as a grid of thread blocks. Each multiproces-
sor of the GPU executes one or more thread blocks in SIMD fashion (Single
Instruction, Multiple Data) and in turn each processor of a GPU multiprocessor
runs one or more threads within a block in SIMT fashion (Single Instruction,
Multiple threads). In order to avoid the execution dependencies between thread
blocks, the number of CUDA threads involved in a kernel execution is computed
according to the size of the problem to be solved. In contrast, the block size is
restricted by the limited memory resources of a processor. On current GPUs, a
thread block may contain up to 1024 concurrent threads.

GPUs only work on data filled in their global memories and the final results
of their kernel executions must be communicated to their hosts (CPUs). Hence,
the data must be transferred in and out of the GPU. However, the speed of
memory copy between the GPU and the CPU is slower than the memory copy
speed of the GPUs. Accordingly, it is necessary to limit data transfers between
the GPU and its host during the computations.

3 GMRES Implementation on GPU Clusters

3.1 Parallel GMRES Algorithm for GPU Clusters

Algorithm [shows the key points of the parallel GMRES algorithm for GPU
clusters that we developed in our previous work [6]. It must be executed in
parallel by each pair (CPU core, GPU) of the cluster, such that each CPU
core holds one MPI process managing one GPU. GMRES is mainly based on
matrix/vector operations: sparse matrix-vector products denoted in Algorithm
@ by SpMV (), dot products (line 15), scalar-vector products (lines 8 and 19),
Euclidean norms (lines 7, 18 and 27) and AXPT operations (line 16). All parallel
and mathematical functions inside the main loop of GMRES are executed as
kernels by the GPU. The superscripts local and shared over solution vector x
and vector v respectively denote the local vector and the shared vectors with
neighbor processes, required to perform full sparse matrix-vector products.
Besides these local computations, synchronizations between GPUs must be
performed to ensure the solving of the complete sparse linear system. Before
computing an SpMV product, it is mandatory to construct the global vector
x (or vj) required for the full product. First each GPU copies the entries of
vector z!°“* (resp. v!°*!) to its host vector h tmp'“* (lines 3, 10 and 24),
then all MPI processes in the cluster exchange their shared entries of vector
h tmp'oce! (lines 4, 11 and 25) using an M PI Alltoallv() function and, finally
each MPI process copies entries of the computed shared vector h tmpshered to
its GPU vector z5"m¢d (resp. vjs-h‘”’ed) (lines 5, 12 and 26). After each vector
operation, as Euclidean norms and dot products, the MPI processes must per-
form a reduction operation on local scalars computed by their GPUs, by using

474 J.M. Bahi, R. Couturier, and L.Z. Khodja

Algorithm 1. Left-Preconditioned GMRES with Restarts for GPU Clusters

1: Set € the tolerance for the residual norm r, convergence = false and xg

2: while !convergence do
local

3: gpu to cpu(ze h tmp'ocet)

4: DataEa:change(h tmp'oc®! h tmpshared)

5: cpu to gpu(h tmpshared xshared

6: ro M7t x (b— SpMV (A, mlocal m@hared))
7 B lroll,

8 w1 « r0/Sqrt(AllReduceSum(3?))

9: for j=1tomdo

10: gpu to Cpu(v;ocal’ h tmp“’c‘”)

11: DataEzxchange(h tmp'oc h tmpshaTed)
12: cpu to gpu(h tmphered, ;hared

13: w; — M7 X SpMV(A’Uéocal’ U.Jshared))
14: for :=1to j do

15: hi,j — (wﬂviocal)

16: wj + w; — AllReduceSum/(h; ;) - plocal
17: end for

18: hjt1,j < ||w]||2

19: é?kc{” + wj/Sqrt(AllReduceSum(h J+1,j))
20: end for
21: Set Vi, = [viocal7 o ,vi,‘ic‘”] and Hyn = (hi)
22: Solve: minyerm ||Be1 — HmyH2

23: zlecal gl LV ym,

24: gpu to cpu(zle® b tmp'oce!)

25: DataExzchange(h tmp'©°®, h tmpshored)

26: cpu to gpu(h tmpshared xshared

27§ ||M" x (b= SpMV (A, zipc®, aihered))||

28: if Sqrt(AllReduceSum(5%)) < € then

2

29: convergence < true
30: end if
31: local — mlocal

32: end while

MPI Allreduce() function. In Algorithm[I] the function calls written with bold
fonts denote the functions to be executed by the MPI process. DataExchange()
denotes the M PI Alltoallv() function to build the global vectors, AllReduce-
Sum() denotes the M PI Allreduce() function using the summation operation
and, Sqrt() denotes the square root operation. For more details about our par-
allel GMRES algorithm, please refer to [6].

3.2 Minimizing Communication Overheads

As we can see from Algorithm [II our parallel GMRES solver requires data
transfers between the different components of the GPU cluster. Indeed before
any computing of the SpMV product, we must construct the global vector of
unknowns z required for this operation by using the following data transfers:

Parallel Sparse Linear Solver GMRES for GPU Clusters 475

(1) a memory copy of the local vector from the GPU memory to the host mem-
ory, (2) a data exchange of the shared vectors between all MPI processes and, (3)
a memory copy of the shared vector from the host memory to the GPU memory.

However, as we mentioned in Section [2 data transfers from or to the GPU
memory are the slowest communications in a GPU cluster. Hence, the GPU/CPU
data transfers of large local and/or shared vectors can dramatically reduce the
performances of solving sparse linear systems. Nevertheless the sparse matrix-
vector products do not often need all the values of the shared vector. So in order
to reduce the GPU/CPU and CPU/CPU communication overheads, we propose
to perform compression and decompression operations on the shared vectors of
unknowns.

X
X X X Portion of sparse matrix Ak
X X
,,,,, X X [
77777 1 2 3 4 5 6 7 8 9 10
XXX XA XX X Portion of shared vector x of pk
,,,,, & S R
Decompres‘:s
' i Compression of the shared vector
(gather only the required values by pk)
Compress -~ 1 3 4 6 10
fffff ‘X ‘ ‘ X ‘ X ‘ ‘ X ‘ ‘ ‘ ‘ X ‘ Shared vector between pl and pk

—————— (Portion of local vector x of pl needed for pk)

1 2 3 4 5 6 7 8 9 10

Fig. 1. Compression/decompression of shared vector x between processes py and p;

After the data partitioning, each process pi sends to its neighbors the indices
of global vector of unknowns xj needed for its full SpMV products. As shown in
Figure [l process px needs unknowns corresponding to indices 1, 3, 4, 6 and 10
in the local vector of process p;. So before the GPU—CPU data transfer of local
vector xfocal, neighbor process p; uses these indices (1, 3, 4, 6 and 10) to compress
xf"cal. The compression operation allows process p; to build a small shared vector
z°°™P from its local vector z4°¢?! | consisting of only the shared unknowns needed
by process py (vector elements drawn with bold fonts X). The CPU+CPU data
exchanges of these shared compressed vectors must be performed between all
processes on the cluster. Once the GPU«+CPU data transfer of vector x™P is
held, process py decompresses shared vector z°°™P received from its neighbor p;
such that each value of P is copied to the corresponding index of its shared
vector x‘fchwed.

In order to accelerate the computations, the compression/decompression op-
erations must be performed by GPUs. We developed in CUDA two kernels to
compress and decompress the exchanged shared vectors of unknowns before

476 J.M. Bahi, R. Couturier, and L.Z. Khodja

gpu to cpu() and after cpu to gpu() communications. These operations allow the
transfer of small vectors between the MPI processes and between an MPI process
and its GPU. Hence they minimize the GPU/CPU and CPU/CPU communica-
tion overheads.

4 Performance Evaluation

4.1 Owur GPU Cluster

Our GPU cluster is an Infiniband cluster having six Xeon E5530 CPUs. Each
CPU is a Quad-Core processor running at 2.4GHz. It provides a RAM memory of
12GB with a memory bandwidth of 25.6GB/s, and it is equipped with two Nvidia
Tesla C1060 GPUs. In turn, each GPU contains in total 240 processors running
at 1.3GHz. It provides 4GB of global memory with a memory bandwidth of
102GB/s, accessible by all its processors and also by the CPU through the PCI-
Express 16x Gen 2.0 interface with a throughput of 8GB/s. Hence, the memory
copy operations between the GPU and the CPU is about 12 times slower than
those of the Tesla GPU memory.

Linux cluster version 2.6.18 OS is installed on CPUs. C programming language
is used for coding the GMRES algorithm on both GPU cluster and CPU cluster.
CUDA version 3.1.1 [§] is used for programming GPUs, using CUBLAS 3.1 [9]
to deal with vector operations and CUSP library [I0] to perform a HYB SpMV
product in GPUs, and finally MPT functions of OpenMPI 1.3.3 are used to carry
out communications between CPU cores.

4.2 Sparse Matrices of Tests

We chose to work on linear systems having banded sparse matrices, since they
arise in many numerical computations, and large sizes exceeding 10 million of
unknowns. For that, we developed in C a generator of large sparse matrices
which takes one real matrix of the Davis collection [IT] as an initial matrix to
build large banded matrices. This generator must be executed in parallel by all
MPI processes before starting the resolution of the linear system.

In addition to the matrix generation, the generator performs the data parti-
tioning of the generated matrix among all pairs of (MPI process, GPU). Accord-
ing to the desired matrix size n of the sparse linear system and the number of
the pairs (MPI process, GPU) p in the cluster, each MPI process k computes the
size of its sub-matrix sizeloc, and its of fsety in the global generated matrix,
such that:

n
sizeloc, = . 1
) (1)

(2)

The offsets and the sizes of the sub-matrices on the cluster allow a process to
determine which processes own the needed unknown values.

offsetk—{o ifk=0

of fsety_1 + sizeloc,—1 otherwise

Parallel Sparse Linear Solver GMRES for GPU Clusters 477

Generated large and sparse banded matrix

Real sparse matrix

right_pan

left_part

1

2~

=

o

&

w
left_part

Fig. 2. A large sparse banded matrix generated by four processes from a real matrix
of the Davis collection

After that, each MPI process k builds its sub-matrix of size sizelocy by per-
forming several copies of the same real matrix of the Davis collection. And all
generated sub-matrices in the cluster construct the global sparse matrix of the
linear system. In order to generate banded matrices, each MPI process places its
copies on its part of the main diagonal of the global matrix as shown in Figure
2l Furthermore, the empty spaces between two consecutive copies on the main
diagonal are fulfilled by sub-copies right part and left part of the same initial
real matrix.

4.3 Experimental Results

The performance evaluation of our GMRES solver is made in double precision
data. All experimental results obtained from our tests are for a residual tolerance
threshold ¢ = 10719, a restart limit of GMRES method m = 16, a right-hand
side b filled with 1 and an initial guess x filled with 12. For the sake of simplicity,
we took the preconditioning matrix M as the main diagonal of the sparse matrix
A of the linear system. Indeed it allows us to easily compute the required inverse
matrix M ! and it provides a relatively good preconditioning in most cases.

Table dlshows the main characteristics of the banded sparse matrices on which
we performed our tests. First column gives the type of test matrices: symmetric
or unsymmetric. In the second column, we have the set of real sparse matrices
chosen in the Davis collection and from which we generated our sparse matrices
of tests. All sparse linear systems solved in our tests are of size 90 million of
unknowns. The fourth and fifth columns show respectively the number of nonzero
values and the bandwidth of the generated matrices of tests.

In our tests, we compared the performances of the parallel GMRES solver
implemented on a cluster of 12 GPUs with those obtained on cluster of 12 CPU
cores and those obtained on a cluster of 24 CPU cores. Tables Pl and [3 report
respectively the performances of the GMRES solver without and with the data

478 J.M. Bahi, R. Couturier, and L.Z. Khodja

Table 1. The main characteristics of the generated sparse banded matrices of tests

Matrix type Real matrix Nb. rows Nb. nonzeros Bandwidth
ecology?2 90 -10% 449,729,174 1,002
finan512 90-10° 915,824,547 106,017
Symmetric G3 circuit 90-10° 443,429,071 525,429
shallow water2 90-10° 360,751,026 23,212
thermal2 90 -10° 643,458,527 1,928,223
cageld 90 -10° 1,674,718,790 1,266,626
language 90-10° 276,894,366 398,626
Unsymmetric stomach 90 -10° 1,277,498,438 22,868
swang2 90 -10° 600,518,274 5,801
torso3 90 -10° 1,561,856,844 327,737

compression technique. We took into account the speedups of both GMRES
solvers implemented on the GPU cluster compared to those implemented on
CPU clusters.

The fourth and sixth columns of these tables show respectively the ratio of
execution times Tacpys and Typ,, and the ratio of execution times Th4cpys and
Typu, where Ty, is the execution time obtained on the cluster of 12 GPUs,
Th2¢pus is that obtained on the cluster of 12 CPUs and Tascpus is that obtained
on the cluster of 24 CPUs. The ratios define the relative gains of the GMRES
solvers implemented on the GPU cluster compared to those implemented on
CPUs clusters, such that:

TC u
ratio = _P". (3)
gpu

Table 2. Performances of GMRES solver without data compression on a GPU cluster
and CPU clusters

Matrix Topu Ti2epus Tat1012cpus Todcpus Tati024cpus Fiter Prec. A
ecology?2 1.68s 14.22s 8.46 9.85s 5.86 22 1.86e-10 2.32e-10
finan512 5.35s 43.03s 8.04 28.97s 5.42 52 1.03e-09 2.66e-15
G3 circuit 2.05s 16.44s 8.02 11.30s 5.50 25 1.44e-09 9.66e-13

shallow water2 2.45s 22.98s 9.83 15.88s 6.49 33 4.27e-15 1.35e-18
thermal2 3.95s 25.91s 6.56 17.12s 4.34 31 3.15e-09 5.88e-15
cageld 2.95s 20.44s 6.93 15.62s 5.30 21 1.39e-08 1.20e-11
language 9.60s 84.58s 8.81 56.57s 5.89 112 2.61e-08 3.78e-10
stomach 12.66s 107.97s 8.53 74.40s 5.88 125 1.10e-08 2.13e-14
swang?2 3.84s 32.42s 8.44 22.10s 5.76 45 5.75e-08 3.41e-13
torso3 15.20s 125.45s 8.25 86.40s 5.68 134 1.93e-08 3.13e-13

From both ratios shown in Table [2] and Table Bl we can see that the GM-
RES solvers implemented on the GPU cluster are faster than those implemented
on the CPU clusters. Moreover, the GMRES solver with the data compression
technique is faster than that without the data compression. Indeed, the GMRES

Parallel Sparse Linear Solver GMRES for GPU Clusters 479

Table 3. Performances of GMRES solver with data compression on a GPU cluster and
CPU clusters

Matrix Topu Ti2epus Tat1012cpus To4cpus Tati024cpus Fiter Prec. A
ecology?2 1.06s 14.13s 13.33 9.75s 9.18 22 1.86e-10 2.32e-10
finan512 4.27s 42.95s 10.06 29.02s 6.80 52 1.03e-09 2.66e-15
G3 circuit 1.32s 16.33s 12.37 11.24s 8.53 25 1.44e-09 9.66e-13
shallow water2 1.78s 22.95s 12.89 15.85s 8.92 33 4.27e-15 1.35e-18
thermal2 2.36s 25.26s 10.70 16.64s 7.05 31 3.15e-09 5.88e-15
cageld 2.25s 20.50s 9.11 13.99s 6.21 21 1.39e-08 1.20e-11
language 7.04s 84.02s 11.93 56.63s 8.05 112 2.61e-08 3.78e-10
stomach 10.11s 107.73s 10.66 74.30s 7.35 125 1.10e-08 2.13e-14
swang2 2.95s 32.37s 10.97 22.14s 7.51 45 5.75e-08 3.41e-13
torso3 11.61s 124.70s 10.74 86.24s 7.43 134 1.93e-08 3.13e-13

solver using the data compression on the GPU cluster is about 11 times faster
than on the cluster of 12 CPUs and about 7.7 times faster than on the cluster of
24 CPUs. In contrast, the GMRES solver without the data compression on the
GPU cluster is about 8 times faster than on the cluster of 12 CPUs and about
5.6 times faster than on the cluster of 24 CPUs. Hence, it is interesting to use the
compression/decompression operations on the shared vectors of unknowns be-
fore/after the GPU/CPU data transfers in the GMRES solver on GPU clusters.
Indeed it allows us to exchange small shared vectors between the different com-
ponents of the GPU cluster, and thus, to minimize the communication overheads
in solving large sparse linear systems using GMRES solver.

The seventh, eighth and ninth columns of Table[Z2land Table[Bl give respectively
the number of iterations for solving the linear system, the solution precision Prec
computed on the GPU cluster and the difference A between solutions computed
on the CPU clusters and the GPU cluster, such that:

Prec = max(M™1 - (b — AXETY)). (4)
A = maz|X°PV — x¢PU|, (5)

where X¢PU and X&PU are respectively the solutions computed on the CPU
cluster and the GPU cluster. We can see that the precisions Prec of the solutions
computed on the GPU cluster are sufficient, varying from 5.75e-8 to 4.27e-15,
and the two versions of GMRES solver compute almost the same solutions in
both CPU cluster and GPU cluster, with A varying from 3.78e-10 to 1.35e-18.

5 Conclusion

In this paper we have presented an efficient parallel GMRES algorithm for solving
large sparse linear systems on GPU clusters. We have shown that it is interesting
to use compression/decompression techniques on the sub-vectors of unknowns

480 J.M. Bahi, R. Couturier, and L.Z. Khodja

shared between GPUs of the cluster. In fact, the parallelization of GMRES
method on a GPU cluster requires CPU/CPU and GPU/CPU data transfers
in order to perform full matrix-vector products. And since the parallel sparse
matrix-vector product does not often need all values of the vector, the use of
the data compression and decompression techniques on the shared vectors before
and after the GPU/CPU data transfers allows us to minimize the communication
overheads of the parallel GMRES solver on GPU clusters. The experimental
results show that the GMRES solver is more efficient when it uses the data
compression/decompression techniques on GPU clusters.

Obviously, even if the compression/decompression techniques reduce globally
the communication overheads, they do not provide enough gains to the GMRES
solver on GPU clusters. In fact, a large matrix bandwidth produces many data
dependencies between GPUs of the cluster. It means that each GPU will have
many neighbors with which it will share data. Therefore, a large matrix band-
width increases the number of communications, and thus, it reduces dramatically
the performances of solving large sparse linear systems on GPU clusters. In fu-
ture work, we will study the data partitioning methods required to minimize
the data dependencies between the computing nodes of a GPU cluster and to
improve the performance of the GMRES solver for GPU clusters.

References

1. Saad, Y., Schultz, M.: GMRES: a Generalized Minimal Residual Algorithm for Solv-
ing Nonsymmetric Linear Systems. STAM J. Sci. Stat. Comput. 7(3), 856-869 (1986)

2. Jost, T., Contassot-Vivier, S., Vialle, S.: An Efficient Multi-algorithms Sparse Lin-
ear Solver for GPUs. In: EuroGPU Mini-Symposium of ParCo 2009, Lyon, pp.
546-553 (2009)

3. Wang, M., Klie, H., Parashar, M., Sudan, H.: Solving Sparse Linear Systems on
NVIDIA Tesla GPUs. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 864-873.
Springer, Heidelberg (2009)

4. Ghaemian, N., Abdollahzadeh, A., Heinemann, Z., Harrer, A., Sharifi, M., Heine-
mann, G.: Accelerating the GMRES Iterative Linear Solver of an Oil Reservoir
Simulator using the Multi-Processing Power of Compute Unified Device Architec-
ture of Graphics Cards (2010)

5. Abbas-Turki, L., Vialle, S., Lapeyre, B., Mercier, P.: High Dimensional Pricing of
Exotic European Contracts on a GPU Cluster, and Comparison to a CPU Custer.
In: IPDPS 2009, pp. 1-8. IEEE Computer Society (2009)

6. Bahi, J., Couturier, R., Ziane Khodja, L.: Parallel GMRES Implementation for
Solving Sparse Linear Systems on GPU Clusters. In: HPC Symposium, pp. 23-30.
ACM/SIGSIM, Boston (2011)

7. Jeannot, E.: Improving Middleware Performance with AdOC: An Adaptive Online
Compression Library for Data Transfer. In: IPDPS, vol. 1, p. 70. IEEE, USA (2005)

8. Nvidia: NVIDIA CUDA C Programming Guide, Version 3.1.1 (2010)

9. Nvidia: Cuda Cublas Library, Version 3.1 (2010)

10. CUSP library, http://code.google.com/p/cusp-library/

11. Davis, T., Hu, Y.: The University of Florida Sparse Matrix Collection (1997),
http://www.cise.ufl.edu/research/sparse/matrices/

http://code.google.com/p/cusp-library/
http://www.cise.ufl.edu/research/sparse/matrices/

	Parallel Sparse Linear Solver GMRES for GPU
Clusters with Compression of Exchanged Data
	Introduction
	GPU Architecture
	GMRES Implementation on GPU Clusters
	Parallel GMRES Algorithm for GPU Clusters
	Minimizing Communication Overheads

	Performance Evaluation
	Our GPU Cluster
	Sparse Matrices of Tests
	Experimental Results

	Conclusion
	References

