Model Checking Support for Conflict Resolution
in Multiple Non-functional
Concern Management

Marco Danelutto!, P. Kilpatrick?, C. Montangero!, and L. Semini'

! Dept. Computer Science, University of Pisa
2 Dept. Computer Science, Queen’s University Belfast

Abstract. When implementing autonomic management of multiple non-
functional concerns a trade-off must be found between the ability to de-
velop independently management of the individual concerns (following
the separation of concerns principle) and the detection and resolution
of conflicts that may arise when combining the independently developed
management code. Here we discuss strategies to establish this trade-off
and introduce a model checking based methodology aimed at simplifying
the discovery and handling of conflicts arising from deployment—within
the same parallel application—of independently developed management
policies. Preliminary results are shown demonstrating the feasibility of
the approach.

Keywords: Autonomic managers, model checking, non-functional
concerns, structured parallel computations.

1 Introduction

The past ten years have seen a major shift in the nature of distributed and par-
allel computing systems. While traditionally systems were relatively unchanged
throughout their lifetime and existed in more or less stable environments, the per-
vasive nature of many modern systems and their composition from grid or cloud
services mean that often they need the capability to adapt automatically to
changes in their environment and/or changes to their constituent services. This
has relatively little impact on the core functionality, which tends to lend itself to
precise definition, but has significant implications for non-functional aspects such
as performance, security, etc. These aspects may not be so clearly defined and often
the code to handle them is interwoven with the core functionality. In previous work
we have proposed a means of isolating such code by introducing, in the notion of
behavioural skeleton, an amalgam of algorithmic skeleton (parallel pattern) — for
example, farm, pipeline — together with one or more managers of non-functional
concerns (such as performance, power usage, security). A manager monitors the
performance of its associated skeleton with respect to a particular concern and has
the capacity to initiate changes to the skeleton behaviour with respect to that con-
cern. However, when bringing together managers of differing concerns, these man-
agers may not sit comfortably together and indeed may be in conflict. For example,

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 128@, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Model Checking Support for Conflict Resolution 129

it is conceivable that a power manager may be prompting removal of a worker from
a task farm (to reduce power consumption) while a performance manager is (more
or less) simultaneously indicating that a worker be added to boost performance.
In earlier work [2] we proposed a protocol for coordinating the activities of man-
agers to deal with such conflicts and showed how this protocol might operate in
practice [3]. There the conflicts were identified simply by human inspection. Here
we extend that work by using a model checking approach to identify potential con-
flicts and generate a trace showing the origin of the conflict. This trace allows us
to modify the design to avoid the possibility of conflict or to deal with such conflict
dynamically.

2 Rule Based Management

In [I] we introduced the concept of a behavioural skeleton comprising an al-
gorithmic skeleton (parallel pattern), e.g., farm, pipe, etc. and an autonomic
manager taking care of non-functional aspects of the computation, such as per-
formance, security, etc. The manager has the capacity to modify the behaviour
of the associated skeleton by prompting a change to the structure or opera-
tion of the skeleton. It runs a classic MAPE loop: it Monitors the behaviour
of the pattern with respect to a given non-functional concern (e.g., throughput
for performance); Analyses the monitored values to determine if the skeleton is
operating satisfactorily; if adjustment is necessary it Plans for a modification;
and finally Executes the modification. The MAPE loop then recurs. The MAPE
cycle may in practice be implemented as a set of pre-condition— action rules [3].
From a separation of concerns viewpoint it is best if autonomic management
can be developed as a set of separate managers, each handling a single concern.
Each manager may thus be developed by an expert in the concern at hand.
The challenge then lies in coordinating the activities of these managers so that
cooperation rather than conflict within a given MAPE cycle is achieved. To
identify conflicts it is necessary to have a means of cataloguing the structural
or operational changes to a skeleton that may be initiated by a manager. For
this it is useful to have the concept of an application graph [2] whose nodes
represent parallel/distributed activities and whose arcs represent communica-
tions/synchronizations among these activities (Fig. [[l). Each node and arc can
be labelled with metadata specifying non-functional properties. To identify con-
flicts one must first identify actions on the application graph which are clearly
in opposition (such as add-worker/remove-worker) and determine if there is a
possible evolution of the system which would lead to two such actions being in-
voked in the same MAPE cycle. It is in this latter activity that model checking
proves beneficial, as will be seen in section [l First we discuss more generally
strategies for managing non-functional concerns in distributed systems.

3 Multiple Non-functional Concern Management

When dealing with multiple non-functional concerns within a parallel applica-
tion, conflicts may arise when two or more management policies demand changes

130 M. Danelutto et al.

|
'
E
secure(false), location(IPz) :' “-
|
'
'
'

,,,

Sample metadata Application graph

Fig. 1. Sample Application Graph

to the application graph which are incompatible, as discussed above. Here we
will describe three approaches to resolution of such conflicts. These vary in the
degree of coordination required and in the timing of this coordination. In prin-
ciple, autonomic non-functional concern management of parallel or distributed
computations should be designed by experts in parallel computing and in the
single non-functional concern at hand to ensure the maximum impact of the
management. The approaches presented differ in how they attempt to resolve
the tension that exists between separation of concerns at the development stage
and the need to bring these concerns together in a unified running system.

3.1 Fully Coordinated Co-design

In the fully coordinated design approach we sacrifice separation of concerns for
ease of consolidation. A single expert (or a single team of experts) is in charge of
developing management policies for all the non-functional concerns considered.
As a result, the management policies may be coordinated from the beginning
and conflict may be prevented by design.

Situations raising conflicts are detected by the single (team of) expert(s) and
rules in the managers are (re)programmed so that their combined effect no longer
raises conflicts. For example, consider the case where performance security and
power consumption are the non-functional concerns to be managed. When pro-
gramming rules to increase the program throughput by augmenting the paral-
lelism degree, both recruitment of non power-hungry processing resources and
the deployment of secure communication mechanisms will be considered. As a
result of consideration of both concerns, a simple rule stating that if throughput
is lowl] the parallelism degree should be increased:

R1 performance low — recruit resource; deploy code; link resource to par. computation;
will be replaced by the following pair of rules:

Rla performance low and R is available and low power resource and secure(R) — re-
cruit(R); deploy code; link R to parallel computation;

R1b performance low and R is available and low power resource and unsecure(R) —
recruit(R); deploy secure code; link R to parallel computation;

merging knowledge of performance, security and power management concerns.

! e.g. with respect to some user agreed SLA or contract.

Model Checking Support for Conflict Resolution 131

3.2 Coordinated Decision Commitment

In the coordinated decision commitment approach, emphasis is placed on separa-
tion of concerns and an attempt is made to build into the rules for each separate
concern the ability to identify and resolve conflicts at runtime. Here distinct
(teams of) experts design the policies for the autonomic management of distinct
non-functional concerns. However, the policies are designed in such a way that
they can also work when policies for the management of other concerns are con-
currently applied in the same context. In a sense, a coordinated commitment of
independently taken decisions is implemented — hence the name.

To achieve this coordination a two-phase distributed agreement protocol such
as that proposed in [2] may be adopted. In this case, when according to the
policies managing concern C; a decision d; is to be taken, a consensus is sought
from managers of all other concerns different from C;. The consensus is sought
on the new application graph resulting from the implementation of decision d;.
If all the other managers agree on the feasibility of the new graph, the decision is
taken. If at least one of the other managers (e.g. the one managing concern Cy,)
indicates that the decision would eventually lead to an unfeasible application
graph — according to the concern managed, C} — then the decision is aborted
and the priority of the rules firing the decision is lowered. The last, and more
interesting, case is where all managers agree on the feasibility of the new appli-
cation graph, but some request that an additional feature be taken into account
when implementing the decision d;. In this case the decision is committed by the
manager managing concern C; using an alternative implementation plan which
ensures the additional requirements.

If we consider the rule R1 discussed in Sec. 3.1l leading to an increase of the
current parallelism degree, in this case we will eventually arrive at the set of
rules:

R1.1 performance low and R is available — ask consensus on recruitment of resource R
to other managers

R1.2 all managers grant unconditional consensus — recruit resource R; deploy code; link
resource to parallel computation

R1.3 one manager negates consensus — abort decision; lower priority for R1.1

R1.4 all managers grant consensus provided properties P, ..., Py are ensured — change
original decision plan A’ to A” such that A” ensures P; to Py; commit decision
through plan A”

In this case, the knowledge needed to implement a different decision plan comes
in part from the knowledge of the concern of the manager using these rules and
in part from the concerns managed by autonomic managers requiring properties
P;. If consensus is granted, provided that Py = security is ensured, then the
original plan:

recruit(R); deploy code; link R to parallel computation;
will be substituted by the new plan:

recruit(R); deploy secure code; link R to parallel computation;

132 M. Danelutto et al.

With this approach the separation of concerns principle is compromised some-
what by the need for the individual rule systems to be designed so as to be able
to accommodate future interactions with rule systems pertaining to other con-
cerns. Insofar as the interactions are described in terms of modifications to the
application graph, this can reasonably be achieved, although the fact that the
graph contains metadata relating to various concerns (and not just structure)
means that full separation is not possible.

3.3 Ex Post Independent Manager Coordination

Coordinated commitment may be regarded as an interpretive approach to co-
ordination. When we deploy more than a single manager in the same applica-
tion, we pre-configure a number of conflict situations that may eventually arise
(managers ask consensus) and pre-configure modified decision commitment plans
taking care of these conflicts.

The consensus building phase takes time, however. Even in the case of no
conflicts, communications must be performed between the manager taking the
decision and those checking the decision is safe w.r.t. their own policies. This
means of implementing management is thus a reactive process, and the reaction
time of the system critically impacts the efficiency of the whole management
process. Thus any delay should be reduced as much as possible.

As is usual in computer science, moving from interpreters to compilers im-
proves performance.

In the third approach, we retain the idea of coordinated decision making but
implement it through the compilation of a modified set of management rules
before the system is actually run. In particular, we perform the following steps:

e We analyze the independently developed sets of rules, looking for those rules
which, if fireable at the same time, may lead to conflicting actions. The
key point here is again to identify the conflicting actions in terms of the
application graph.

e Then we derive a new set of rules possibly including some (modified version)
of the initial set of rules from the different managers together with new rules
managing the conflict situations.

Note that the knowledge required to determine this modified set of rules is
roughly the same as that needed to implement the coordinated decision com-
mitment approach.

For example, consider a performance manager having a rule that increases
the parallelism degree when low throughput is experienced (Rpd—increase), and a
power manager with a rule stating that “power hungry” resources must be dis-
missed when too much power is consumed by the computation (Rpw—decrease)-
In this case a conflict arises if the performance manager wants to increase the
parallelism degree and the power manager wants to dismiss a resource. Adopting
an “ex post coordination” approach, we can look at the condition of the rules
used in the conflict situation and implement a new rule, with a higher priority

Model Checking Support for Conflict Resolution 133

w.r.t. to both Rpq—_increase and Rpw—decrease, stating that if performance is low
and power consumption high we should increase parallelism degree by select-
ing low consumption resources or by releasing high consumption resources and
replacing them with a larger number of low consumption resources.

4 Model Checking for Conflict Resolution

The ability to develop independent managers and modify them to accomplish
coordinated management of multiple concerns looks attractive in that it en-
forces modular design and reuse as well as allowing better use of domain specific
knowledge relative to different non-functional concerns.

However, combining a set of single-concern managers in both coordinated
decision commitment and ex post independent manager coordination may be
difficult to achieve unless the developer is an expert in all of the non-functional
concerns to be coordinated. Even then, the sheer number of evolution paths of
the combined managers may make it extremely difficult for the human to identify
possible conflict.

Model checking tools may, however, provide useful support. When considering
a complex set of management rules, such as those describing a number of different
non-functional concern managers, an approach such as that proposed in [9] can
be used. There, “conflicts” in rule based management systems can be detected
using a model checker after identifying conflicting atomic actions.

Here we modify that methodology to support conflict detection in rules de-
scribing independently developed managers. As the “ex post” approach looks the
more promising, we consider the use of a model checker to support compilation
of a coordinated set of rules from a set of independently developed rules. We
propose a methodology in which:

e Independent experts design policies for distinct non-functional concerns. We
assume the rules are expressed using APPEL [10]. This allows better struc-
turing of the manager rules. In particular, we use APPEL triggers to start
rule evaluation. In previous work, we used JBoss rule syntax to express man-
agement rules. In that case rules were tested cyclically for fireability. The
period of the cycle de facto determined the MAPE loop efficiency, as “too
slow” loops react poorly and “too fast” loops may lead to overly rapid deci-
sions. By using the concept of APPEL triggers to start rule evaluation, we
avoid problems related to MAPE loop polling.

o A set of conflicting actions is defined, such that a pair of actions a;,a; are
in the set iff action a; “undoes” action a; and vice versa. As actual atomic
actions only affect the application graph, this step does not require any
specific knowledge of non-functional concerns.

e A formal model of the system is derived, which is fed to a model checker. The
model is generated following the approach outlined in [9]. APPEL policies are
automatically mapped to a UMC specification, i.e. the textual description
of a UML state machine, in the UMC input format. The mapping is based
on the APPEL formal semantics, as given in [7].

134 M. Danelutto et al.

e The model checker is used to check formulas stating that conflicting actions
may coincide, that is occur in the same MAPE loop iteration. Traces of
actions leading to conflicts are produced.

e Knowledge obtained from the traces is used to develop the additional rules
to be included in the rule system to handle conflicts

5 Preliminary Results

To evaluate the feasibility of the proposed approach, we ran experiments using
the model checker UMC [I1,[§]. UMC is an on-the-fly analysis framework which
allows the user to explore interactively the UML state machine, to visualize
abstract behavioural slices of it and to perform local model checking of UCTL
formulae. UCTL is an action- and state-based branching-time temporal logic [5].
Its syntax thus allows one to specify the properties that a state should satisfy
and to combine these basic predicates with advanced temporal operators dealing
with the actions performed.

Layouni et al. in [6] experimented with the use of the model checker Alloy [4]
to support policy conflict resolution. In view of its current widespread use in
industrial practice, we considered UML a better candidate: it has good tool sup-
port, and, besides supporting conflict detection, will also help in understanding
and resolving them.

The results reported here were obtained using a prototype translator to auto-
mate the translation from the APPEL rules to an equivalent UMC specification,
dubbed Appel2UMC, and written in OCaml. Appel2UMC is structured as a syn-
tax definition module, a Compiler, and an Unparser. The Compiler translates
APPEL to UMC, at the abstract syntax level, and the Unparser generates the
textual version needed by the model checker. These core modules depend on a
further one that defines the domain dependent features (triggers, conditions and
actions), thus ensuring adaptability of the tool. At the moment, the syntax is
about 100 lines, the core modules are slightly over 500 lines, and the domain
dependent part less than 80 lines, and translation times are not an issue.

In our experiment we considered merging two independently developed man-
agers taking care respectively of performance and power management concerns
(part of these rules were introduced in [2]). The performance manager has a
rule stating that in case of poor throughput the parallelism degree may be in-
creased. The power manager has a rule stating that in case of too high power
consumption the parallelism degree may be decreased. Both managers operate
on the application graph executing actions from a set including “LinkWorker”
and “UnLinkWorker”, including or removing a worker node in/from the current
computation, respectively. These link /unlink actions are marked as “atomic con-
flict” as they clearly negate one another.

2 At the moment conflicts are identified by the model checker, but then the actions
needed to resolve the situation (i.e. the modifications to the manager rules) are
performed by humans. Ideally this part would also be executed automatically.

Model Checking Support for Conflict Resolution 135

Top_Rules
Top_RuleDecreaseThroughput Top_RuleincreaseParDegree
ruleDecreaseThroughput1_wait ruleincreasePardegree1_wait
NewPerformanceMonitored NewParMonitored
[HighPerformance/=0] [LowParDegree/=0]
/ /
Sys.GetWorker Sys.GetResource

ruleDecreaseThroughput1

rulelncreaseParDegree1

-/ -
Sys.suCC Sys.SUCC

-/ ruleDecreaseThroughput2_wait -/ rulelncreaseParDegree2_wait
Sys.FAIL Sys.FAIL
Sys. UnlmkWorker Sys. LlnkWOrKer
ruleDecreaseThroughpulZ rulelncreaseParDegreeQ
Sys FAIL Sys FAIL
Sys. succ Sys. succ

ruleDecreaseThroughpul rulelncreasePardegree fai
failure lure
ruleDecrease Throughput_ ruleincreaseParbDegree_s
success uccess

Fig. 2. Model checker output: UML parallel state machine

The result of the compilation of the parallel composition of the power and per-
formance manager rules is the UML parallel state machine in Figure [2, whose
graphical representation is produced by the UMC framework. In this simple
example it is clear, by inspection, that the conflict will arise. To detect it au-
tomatically, however, we load the model into the model checker, together with
the formalization in UCTL of the relevant question: may a conflict occur in one
MAPE cycle? In terms of traces: is there no trace among those generated by the
automaton, which includes both link and unlink? Formally:

(not EF EX{LinkWorker} EF{UnlinkWorker} true) & (not EF EX{UnlinkWorker} EF{LinkWorker} true)

The question has to be formulated in this way, since UMC translates the input
model into a standard finite state machine, resolving parallelism with interleav-
ing: “parallel” actions appear in sequence, in different orders, in several traces.
The traces of the automaton are shown in Figure Bl

The answer given by the model checker is “false” and the explanation outlines
the traces leading to the situation where the formula is demonstrated false. To
solve the conflict, the user can then also reason on the UML state machine,
which is more expressive than the graph of the traces, including the names of
the states and complete labelling of the transitions.

According to the methodology outlined in Sec. [we are able to collect the
knowledge necessary to produce a modified set of rules that avoid the conflict
from the traces exposed by the model checker. From the traces in Fig. [3] we can
evince that:

136 M. Danelutto et al.

{NewParMonitored, {NewPerfMointored,
NewPerfMonltored} NewParMonltored}
{GelWorker) {GetFlesource}
(Stiﬁ (suco)/z\
{UnlinkWorker} {FAIL} {LlnkWorker) {FAIL}
(FAILQL?M {FAIL} {succy
{GetResource} {GetWorker}
{SUCC} {SUCC}
{LmkWorker) (UnllnkWorker}
{FAIL} {FAIL}

Fig. 3. Model checker output: Traces

e the situation leading to the conflicting actions is determined by the presence
of both triggers firing the power manager “reduce power usage” and the
performance “increase parallelism degree” rules. This is evidenced by the
triggers at the beginning of the two traces.

e both paths leading to the conflict (relative to different interleavings of the

same actions) include the actions in the “reduce power usage” and the “in-
crease parallelism degree” rules.

Based on this knowledge, we can conclude that handling of the detected conflict
may be achieved by a high priority rule (or a set of rules):

e that includes both triggersE; and
e whose action part consists in a plan whose effect is an increase of the
parallelism degree with reduced power consumption.

Alternatively, we may solve the conflict by assigning a priority to one of the
conflicting rules, in such a way that only the higher priority rule is executed.

This is a very simple case. We modelled just two rules and so we get a very
compact model and useful “explanations” in terms of traces. In fact, the number
of states generated in the UMC model is below one hundred and the response
time of the model checker is of the order of a fraction of a second.

3 possibly a new trigger logically corresponding to the conjunction of the two triggers,

as APPEL does not support the conjunction of triggers but only trigger disjunction.

Model Checking Support for Conflict Resolution 137

However, we also made more realistic experiments with a set of up to 6 rules
with complex action parts.
Fig. @ shows times needed to exe-

cute the model checker with different Rules# | Jeonflict | AG(true)
rules sets and queries (the AG(true) 2 0.03 0.02
query gives the upper bound in exe- 4 0.05 0.12
cution times, as it requires the model 6 0.06 0.25

checker to visit all possible paths in

the model). This confirmed to us that Fig, 4. Execution times (in seconds) with
the approach is feasible in more realis- different sets of rules and queries

tic situations. We do not show sample

output from the model checker in this case, as the graphs are significantly larger
and do not fit easily on a page.

6 Future Work and Conclusions

This paper builds on previous results in the field of multiple non-functional con-
cern management. To the best of our knowledge, the classification of the possible
approaches for autonomic management of multiple non-functional concerns pre-
sented in Sec. Bl is original. The proposal for using model checking to support
merging of independently developed autonomic managers is also new.

In previous work [9] some of the authors presented a compositional, but man-
ual, translation from APPEL to UML and then to UMC. In this paper we
automate the translation and introduce a shortcut for those situations where
starting from a UML graphical presentation of the rules is not a requirement.
Moreover, if we wish to build a transformer from a UML state machine, as gen-
erated by a design environment, to a checkable UMC model, we can reuse at
least the Unparser.

We are currently improving the methodology outlined in this paper. In par-
ticular, we are performing more experiments with the model checker to refine
the technique (both in the design of the queries and in the interpretation of the
analysis) and we are using more realistic rule sets to check that the approach
remains feasible.

Acknowledgements. We thank Franco Mazzanti for his support with the model
checker. This work is partially supported by Italian PRIN project “SOFT”.

References

[1] Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza,
D., Tonellotto, N.: Behavioural skeletons for component autonomic management
on grids. In: Making Grids Work, CoreGRID, Chapter Component Programming
Models, pp. 3-16. Springer (August 2008)

[2] Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic managenemt of multiple
non-functional concerns in behavioural skeletons. In: Grids, P2P and Services
Computing (Proc. of the CoreGRID Symposium 2009), CoreGRID, pp. 89-103.
Springer, Delft (2010)

138

3]

[4]
[5]

[6]

[7]
8]
[9]

[10]

[11]

M. Danelutto et al.

Aldinucci, M., Danelutto, M., Kilpatrick, P., Xhagjika, V.: LIBERO: A Frame-
work for Autonomic Management of Multiple Non-functional Concerns. In:
Guarracino, M.R., Vivien, F., Traff, J.L., Cannatoro, M., Danelutto, M., Hast, A.,
Perla, F., Kniipfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-Workshop
2010. LNCS, vol. 6586, pp. 237-245. Springer, Heidelberg (2011)

Alloy Community, http://alloy.mit.edu/community/

ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An Action/State-Based
Model-Checking Approach for the Analysis of Communication Protocols for
Service-Oriented Applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 133-148. Springer, Heidelberg (2008)

Layouni, A., Logrippo, L., Turner, K.: Conflict Detection in Call Control using
First-Order Logic Model Checking. In: Proceedings International Conference on
Feature Interactions in Software and Communication Systems (ICFI 2007), pp.
66-82. 10S Press (2007)

Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based Conflict Detection
for Distributed Policies. Fundamenta Informaticae 89(4), 511-538 (2008)

ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76, 119-135 (2011)

ter Beek, M.H., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts
by model checking uml state machines. In: ICFI 2009, pp. 59-74 (2009)

Turner, K.J., Reiff-Marganiec, S., Blair, L., Campbell, G.A., Wang, F.: APPEL:
An Adaptable and Programmable Policy Environment and Language. Technical
Report CSM-161, Univ. of Stirling (2011),
http://www.cs.stir.ac.uk/~kjt/techreps/pdf/TR161.pdf

UMC v3.7, http://fmt.isti.cnr.it/umc

http://alloy.mit.edu/community/
http://www.cs.stir.ac.uk/~kjt/techreps/pdf/TR161.pdf
http://fmt.isti.cnr.it/umc

	Model Checking Support for Conflict Resolution
in Multiple Non-functional Concern Management
	Introduction
	Rule Based Management
	Multiple Non-functional Concern Management
	Fully Coordinated Co-design
	Coordinated Decision Commitment
	Ex Post Independent Manager Coordination

	Model Checking for Conflict Resolution
	Preliminary Results
	Future Work and Conclusions
	References

