
Concurrently Secure Computation

in Constant Rounds

Sanjam Garg1, Vipul Goyal2, Abhishek Jain1, and Amit Sahai1

1 UCLA
2 MSR India

Abstract. We study the problem of constructing concurrently secure
computation protocols in the plain model, where no trust is required
in any party or setup. While the well established UC framework for
concurrent security is impossible to achieve in this setting, meaningful
relaxed notions of concurrent security have been achieved.

The main contribution of our work is a new technique useful for de-
signing protocols in the concurrent setting (in the plain model). The core
of our technique is a new rewinding-based extraction procedure which
only requires the protocol to have a constant number of rounds. We show
two main applications of our technique.

We obtain the first concurrently secure computation protocol in the
plain model with super-polynomial simulation (SPS) security that uses
only a constant number of rounds and requires only standard assump-
tions. In contrast, the only previously known result (Canetti et al.,
FOCS’10) achieving SPS security based on standard assumptions re-
quires polynomial number of rounds. Our second contribution is a new
definition of input indistinguishable computation (IIC) and a constant
round protocols satisfying that definition. Our definition of input indis-
tinguishable computation is a simplification and strengthening of the
definition of Micali et al. (FOCS’06) in various directions. Most notably,
our definition provides meaningful security guarantees even for random-
ized functionalities.

1 Introduction

The notion of secure computation is central to cryptography. Introduced in the
seminal works of [49,19], secure multi-party computation allows a group of (mu-
tually) distrustful parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly
compute any functionality f in such a manner that the honest parties obtain
correct outputs and no group of malicious parties learn anything beyond their
inputs and prescribed outputs. The original definition of secure computation,
although very useful and fundamental to cryptography, is only relevant to the
stand-alone setting where security holds only if a single protocol session is ex-
ecuted in isolation. As it has become increasingly evident over the last two
decades, stand-alone security does not suffice in real-world scenarios where sev-
eral protocol sessions may be executed concurrently – a typical example being
protocols executed over modern networked environments such as the Internet.

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 99–116, 2012.
c© International Association for Cryptologic Research 2012



100 S. Garg et al.

Concurrent Security. Towards that end, the last decade has seen a push to-
wards obtaining protocols that have strong concurrent composability properties.
For example, we could require concurrent self-composability: the protocol should
remain secure even when there are multiple copies executing concurrently. The
framework of universal composability (UC) was introduced by Canetti [10] to
capture the more general security requirements when a protocol may be ex-
ecuted concurrently with not only several copies of itself but also with other
protocols in an arbitrary manner.

Unfortunately, strong impossibility results have been shown ruling out the
existence of secure protocols in the concurrent setting. UC secure protocols for
most functionalities of interest have been ruled out in [11,8]. These results were
further generalized [35] to rule out the existence of protocols providing even
concurrent self-composability. Protocols in even less demanding settings (where
all honest party inputs are fixed in advance) were ruled out in [4]. All these
impossibility results refer to the “plain model,” where parties do not trust any
external entity or setup. We stress that, in fact, some of these impossibility results
provide an explicit attack in the concurrent setting using which the adversary
may even fully recover the input of an honest party (see, e.g., the chosen protocol
attack in [4]). Hence, designing secure protocols in the concurrent setting is a
question of great theoretical as well as practical interest. Unfortunately, the only
known positive results for concurrent composition in the plain model are for the
zero-knowledge functionality [46,30,44].

To overcome these impossibility results, UC secure protocols were proposed
based on various “trusted setup assumptions” such as a common random string
that is published by a trusted party [11,9,1,14,28,15]. Nevertheless, a driving goal
in cryptographic research is to eliminate the need to trust other parties. In the
context of UC secure protocols based on setup assumptions, while there has been
some recent effort [26,24,18] towards reducing the extent of trust in any single
party (or entity), obviously this approach cannot completely eliminate trust in
other parties (since that is the very premise of a trusted setup assumption).
Ideally, we would like to obtain concurrently-secure protocols in the plain model
(which is the main focus of this paper).

Relaxing the Security Notion. To address the problem of concurrent security
for secure computation in the plain model, a few candidate definitions have been
proposed, including input-indistinguishable security [37] and super-polynomial
simulation [40,45,5]. We discuss the each of these notions (and the state of the
art) separately.

Super-Polynomial Simulation. The notion of security with super-polynomial sim-
ulators (SPS) is one where the adversary in the ideal world is allowed to run
in (fixed) super-polynomial time. Very informally, SPS security guarantees that
any polynomial-time attack in the real execution can also be mounted in the
ideal world execution, albeit in super-polynomial time. This is directly applica-
ble and meaningful in settings where ideal world security is guaranteed statisti-
cally or information-theoretically (which would be the case in most “end-user”



Concurrently Secure Computation in Constant Rounds 101

functionalities that have been considered, from privacy-preserving data mining
to electronic voting). SPS security for concurrently composable zero knowledge
proofs was first studied by [40], and SPS security for concurrently composable
secure computation protocols was first studied by [45,5]. The SPS definition
guarantees security with respect to concurrent self-composition of the secure
computation protocol being studied, and guarantees security with respect to
general concurrent composition with arbitrary other protocols in the context of
super-polynomial adversaries.

In recent years, the design of secure computation protocols in the plain model
with SPS security has been the subject of several works [45,5,34,13]. Very re-
cently, Canetti, Lin, and Pass [13] obtained the first secure computation protocol
that achieves SPS security based on standard assumptions1.

Unfortunately, however, the improvement in terms of assumptions comes at
the cost of the round complexity of the protocol. Specifically, the protocol of
[13] incurs polynomial-round complexity. The latency of sending messages back
and forth has been shown to often be the dominating factor in the running time
of cryptographic protocols [36,6]. Indeed, round complexity has been the sub-
ject of a great deal of research in cryptography. For example, in the context of
concurrent zero knowledge (ZK) proofs, round complexity was improved in a
sequence of works [46,30,44] from polynomial to slightly super-logarithmic (that
nearly matches the lower bound w.r.t. black-box simulation [12]). The round
complexity of non-malleable commitments in the stand-alone and concurrent
settings has also been studied in several works [17,2,43,42,31,48,22,32], improv-
ing the round complexity from logarithmic rounds to constant rounds under
minimal assumptions. We observe that for the setting of concurrently secure
computation protocols with SPS security, the situation is much worse since the
only known protocol that achieves SPS security based on standard assumptions
incurs polynomial-round complexity [13].

Input-Indistinguishable Computation. The notion of input indistinguishable com-
putation [37] is a relaxation of the standard notion of secure computation akin to
how witness indistinguishability is a relaxation of the notion of zero-knowledge.
In input indistinguishable computation (IIC), very roughly, given the output
vector (consisting of outputs in all concurrent sessions), consider any two hon-
est party input vectors x1 and x2 “consistent” with the output vector. The
security guarantee requires the adversary to have only a negligible advantage
in distinguishing which of these is the actual input vector. While SPS security
definition is based on the ideal/real world paradigm, the security definition of
IIC is a game based one where various required properties (such as input inde-
pendence) are formalized separately. In IIC, no guarantees are provided for any
two input vectors which don’t lead to the identical output (e.g., the functional-
ity may be randomized; furthermore, the outputs may only be computationally
indistinguishable as opposed to coming from identical or statistically close dis-
tributions).

1 In fact, the work of [13], together with [45,5], considers the stronger “angel-based
security model” of [45]. In this work, we focus only on SPS security.



102 S. Garg et al.

1.1 Our Contributions

The main contribution of our work is a new technique useful for designing pro-
tocols in the concurrent setting (in the plain model). The core of our technique
is a new rewinding-based extraction procedure which only requires the protocol
to have a constant number of rounds. Overall, our technique allows us to im-
prove upon the previous works in terms of round complexity, the security notion
being achieved as well the assumptions. We show two main applications of our
technique in this work.

Super Polynomial Simulation.We construct the first constant-round concur-
rently composable secure computation protocol that achieves SPS security based
on only standard assumptions. In addition, our construction only uses black-box
simulation techniques.

In contrast to prior works where several powerful tools were employed to
obtain positive results, e.g., CCA-secure commitments [13], our new proof tech-
nique allows us to only use relatively less powerful primitives, such as standard
non-malleable commitments. Our positive result relies on the nearly minimal as-
sumptions that constant-round (semi-honest) oblivious transfer (OT) exists and
collision-resistant hash functions (CRHFs) exist.2

Input Indistinguishable Computation. We introduce a new definition of
input indistinguishable computation and prove that, in fact, the same protocol
(as for constant round super-polynomial simulation) satisfies this notion as well.
Our definition of input indistinguishable computation is a simplification and
strengthening of the definition in [37] in various directions. In particular, our
definition provides meaningful security guarantees even for randomized function-
alities. Furthermore, the security guarantees hold even when the output distri-
butions resulting from the two honest party inputs (among which the adversary
is trying to distinguish) are computationally indistinguishable (as opposed to
coming from identical distributions)3. We follow the real/ideal world paradigm
for formalizing the security guarantees which leads to an arguably simpler defi-
nition. Additionally, we show that our definition implies the definition of [37].

The essence of our new definition can be understood as follows. Consider a real
world adversary. For any two input vectors x1 and x2, we require the existence
of a (PPT) ideal world simulator such that the output distribution in the ideal
and the real world are indistinguishable. Hence, the only relaxation compared to
the standard ideal/real world definition is now the ideal world simulator could be
different for different pairs (x1, x2). The key intuition behind such a guarantee is
that for any two honest party input vectors (x1, x2) leading to the same output
vector (on the input vector chosen by the adversary), the simulator in the ideal
world has no advantage in distinguishing which of the two was used. This implies

2 We believe that our assumption of CRHFs can be removed by employing techniques
from the recent work of [33], leaving only the minimal assumption that constant-
round OT exists. We leave this for the full version of this paper.

3 This is comparable to the relationship between witness indistinguishability and
strong witness indistinguishability.



Concurrently Secure Computation in Constant Rounds 103

that even to the real world adversary should only have a negligible distinguishing
advantage. We stress that in our definition, this holds even if the functionality is
randomized and the outputs are computationally indistinguishable (as opposed
to being identical). In addition, as opposed to [37], our ideal world simulator is
required to extract the input being used by the adversary (in PPT) and send it
to the trusted party. This provides a form of “input-awareness” guarantee.

While the above simple definition already provides meaningful security guar-
antees, the guarantees are unsatisfactory if there exists a “splitting input” which
the ideal world simulator uses even when the real world adversary is such that
it does not use a splitting input. A more detailed discussion of such issues can
be found in [37]. Towards that end, we propose an extension of our definition
and finally show that it implies the definition in [37]. To see an example of a
functionality for which our definition provides meaningful security guarantees
which neither the definition in [37] nor the SPS definition provide, please refer
to the full version.

1.2 The Main Technique

A ubiquitous technique for simulation-based proofs in cryptography is that of
rewinding the adversary. In the concurrent setting (which is the setting we con-
sider in this paper), where an adversary can interleave messages from different
protocols in any arbitrary manner, rewinding an adversary (to correctly simulate
each session) is often problematic. The rewinding becomes recursive because of
which the protocols typically requires a large number of rounds (in a single proto-
col). For example, in the context of concurrent zero knowledge, the best known
result [44] requires super-logarithmic round complexity, which nearly matches
the lower bound w.r.t. black-box simulation [12].

To deal with the problem of concurrent rewinding, we develop a novel proof
technique using which we can limit the depth of such recursion to at most 2. Such
a significant relaxation of the properties we need from our rewinding technique
allows us to obtain our result. In the following discussion, we give a more detailed
intuition behind our techniques, where we assume somewhat greater familiarity
with recent work in this area. The discussion is primarily for obtaining constant
round providing with SPS security although similar intuition applies for IIC as
well.

We first note that all prior works on obtaining secure computation proto-
cols with SPS security crucially use the super-polynomial time simulator to
“break” some cryptographic scheme and extract some “secret information”.
Then, to avoid any complexity-leveraging type technique (which would lead
to non-standard assumptions), and yet argue security, the technique used in
[13] was to replace the super-polynomial time simulator with a polynomial-time
rewinding “hybrid experiment” via a hybrid argument in the security proof. In-
deed, this is why their protocol incurs large round complexity (so as to facilitate
concurrent-rewinding). We also make use of rewinding, but crucially, in a weaker
way. The main insights behind our rewinding technique are explained as follows:



104 S. Garg et al.

– We first note that (like other works) we will restrict our usage of rewinding
only to the creation of “look-ahead threads”. Very roughly, this means that
a rewinding simulator never changes its actions on the “main thread” of exe-
cution; and as such, the rewinding is employed only to extract some informa-
tion from the adversary. Here, we again stress that our final simulator does
not perform any rewinding, and that we only perform rewindings in hybrid
experiments to bridge the gap between the real and ideal world executions.

– Now that we use rewindings only to extract some information from the ad-
versary, and only in hybrid experiments, we make the critical observation
that, in fact, we can make use of the secret inputs of the honest parties in
the look-ahead threads. Indeed, in all our intermediate hybrid experiments,
we perform rewindings to create look-ahead threads where we make “judi-
cious” use of the honest party’s inputs. In this manner, we eventually end up
with a rewinding (hybrid) simulator that simulates the main thread without
the honest party’s inputs, but still uses them in the look-ahead threads (in a
manner that guarantees extraction). This is our main conceptual deviation
from prior work, where, to the best of our knowledge, honest party’s inputs
were only used in some intermediary hybrids, with the main goal being to
eventually remove their usage even from the look-ahead threads. We show
that this is in fact unnecessary, since our final simulator does not perform
any rewindings, but instead runs in super-polynomial time to extract the
same information that was being earlier extracted via rewinding in the hy-
brid experiments. We only need to argue that the main thread output by the
rewinding (hybrid) experiment and the main thread output by the final sim-
ulator be indistinguishable. Indeed, we are able to argue that there is only a
small statistical distance between our final simulator (that corresponds to the
ideal execution) and the previous rewinding-based hybrid experiment. This
statistical distance corresponds to the probability that the rewinding-based
extraction is unsuccessful, since the SPS extraction is always successful.

– We further note that since we use the honest party’s inputs in the look-
ahead threads, we can bypass complex recursive rewinding schedules used in
previous works and simply use “local rewindings” that only require constant
rounds (in fact, only “one slot”).

– Finally, we observe that since we perform rewindings only in hybrid experi-
ments, we do not need the rewinding to succeed with probability negligibly
close to 1, as is needed for concurrent ZK. Instead, we only require rewinding
to succeed with probability 1−ε, where ε is related to the success probability
of the distinguisher that is assumed to exist for the sake of contradiction.
This observation, yet again, allows us to use a simpler rewinding strategy.

– Our overall proof strategy only makes use of relatively well understood primi-
tives like standard non-malleable commitments. This is a departure from [13]
which introduces a new primitive called CCA-secure commitment schemes.

At this point, an informed reader may question the feasibility of a “sound imple-
mentation” of the above approach. Indeed, a-priori it is not immediately clear
whether it is even possible for the simulator to “cheat” on the main thread, yet



Concurrently Secure Computation in Constant Rounds 105

behave honestly in look-ahead threads at the same time. In a bit more detail,
recall that any given look-ahead thread shares a prefix with the main thread of
execution. Now consider any session i on a look-ahead thread. Note that since
some part of session i may already be executed on the shared prefix, it is not clear
how the simulator can continue simulating session i on the look-ahead thread
without ever performing any recursive rewindings if it was already cheating in
session i on the shared prefix.

We address the above issues by a careful protocol design that guarantees that
a rewinding simulator can always extract some “trapdoor” information before
it “commits” to cheating in any session. As a result, during the simulation,
whenever a look-ahead thread is forked at any point from the main thread,
the simulator can either always continue cheating, or simply behave honestly
(without any conflict with the main thread) in any session.

In our overall proof, SPS is used only at the very last step to stop the look-
ahead threads (which required knowledge of honest party inputs to execute). A
modification of this step is required to prove that the protocols satisfies our new
notion of IIC as well. Instead of stopping the look-ahead threads (which used
honest party inputs), we will now run “two-sets” of look-ahead threads one for
each input vector given to the ideal world simulator. Since of these two is the
real honest party input vector, at least one of the sets of look-ahead threads is
guaranteed to be successful.

1.3 Other Related Work

Here we discuss some additional prior work related to the work in this paper.
We note that while the focus of this work is on the notions of SPS security and
IIC as means to obtain concurrently-secure protocols in the plain model, some
recent works have investigated alternative security models for the same. Very
recently, [25,23] considered a model where the ideal world adversary is allowed
to make additional queries (as compared to a single query, as per the standard
definition) to the ideal functionality per session. While our protocol bears much
similarity to the construction in [23], our rewinding technique (and the overall
proof) is quite different.

Independent of our work, a constant round protocol providing SPS security
was recently obtained by Lin, Pass and Venkitasubramaniam [41]. Their tech-
nique are quite different from ours and make use of a non-uniform argument. An
advantage of our work over that of Lin et. al. is that we provide a uniform reduc-
tion to the underlying hardness assumptions. Hence, our construction guarantees
security against uniform adversaries assuming that the underlying primitives are
only secure against uniform adversaries. Lin et. al. crucially require the under-
lying primitives to be secure against non-uniform adversaries to provide any
meaningful security guarantees.

We note that their techniques seem not to apply to get a construction satisfy-
ing our IIC security notion. Since the IIC simulator has to extract the adversar-
ial inputs in PPT, a rewinding technique in the concurrent setting is crucially
required.



106 S. Garg et al.

2 Our Definitions

2.1 UC Security and SPS

In this section we briefly review UC security. For full details see [10]. Follow-
ing [21,20], a protocol is represented as an interactive Turing machine (ITM),
which represents the program to be run within each participant.

Security of Protocols. Protocols that securely carry out a given task (or, protocol
problem) are defined in three steps, as follows. First, the process of executing a
protocol in an adversarial environment is formalized. Next, an “ideal process”
for carrying out the task at hand is formalized. In the ideal process the par-
ties do not communicate with each other. Instead they have access to an “ideal
functionality,” which is essentially an incorruptible “trusted party” that is pro-
grammed to capture the desired functionality of the task at hand. A protocol
is said to securely realize an ideal functionality if the process of running the
protocol amounts to “emulating” the ideal process for that ideal functionality.

Securely Realizing an Ideal Functionality. We say that a protocol Π emulates
protocol φ if for any adversary A there exists an adversary S such that no
environment Z, on any input, can tell with non-negligible probability whether
it is interacting with A and parties running Π , or it is interacting with S and
parties running φ. This means that, from the point of view of the environment,
running protocolΠ is ‘just as good’ as interacting with φ. We say thatΠ securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More
precise definitions follow. A distribution ensemble is called binary if it consists
of distributions over {0, 1}.
Definition 1. Let Π and φ be protocols. We say that Π UC-emulates φ if for
any adversary A there exists an adversary S such that for any environment
Z that obeys the rules of interaction for UC security we have EXECφ,S,Z ≈
EXECπ,A,Z .

Definition 2. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-realizes F if Π UC-emulates the ideal process Π(F).

UC Security with Super-Polynomial Simulation. We next provide a relaxed no-
tion of UC security by giving the simulator access to super-poly computational
resources. The universal composition theorem generalizes naturally to the case
of UC-SPS, the details of which we skip.

Definition 3. Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial time adversary S such that
for any environment Z that obeys the rules of interaction for UC security we
have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 4. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-SPS-realizes F if Π UC-SPS-emulates the ideal process Π(F).



Concurrently Secure Computation in Constant Rounds 107

For simplicity of exposition, in the rest of this paper we assume authenticated
communication; that is, the adversary may deliver only messages that were ac-
tually sent. (This is however not essential as shown previously [3].)

2.2 Input Indistinguishable Computation

Under our notion, very roughly, an adversaries’ goal is to guess the input, among
two pre-specified inputs, used by the honest party. We say that a protocol is
input indistinguishable if an adversary can not guess the honest parties input
in the protocol execution any better than what it could have done in the ideal
scenario. We formalize this by saying that the adversary learns nothing more
than the two pre-specified inputs (which it already knows) and the output it
learns in the ideal world. This naturally implies that if the adversary can not
guess the honest parties input in the ideal scenario then it can not do so in the
protocol execution as well.

Concurrent execution in the Ideal model. In the ideal model, there is
a trusted party F that computes the functionality f (described above) based
on the inputs handed to it by the two parties – P1, P2 which are involved in
m = m(n) sessions (polynomial in the security parameter, n). An execution in
the ideal model with an adversary that controls P1 or P2 proceeds as follows:

Inputs: The honest party and adversary each obtain a vector of m inputs each
of length n; denote this vector by w (i.e., w = x or w = y).

Honest Parties Send Inputs to Trusted Party: The honest party sends its
entire input vector w to the trusted party F .

Adversary Interacts with Trusted Party: For every i = 1, . . . ,m, the ad-
versary can send (i, w′

i) to the trusted party, for any w′
i ∈ {0, 1}∗ of its

choice. Upon sending this pair, it receives back its output based on w′
i and

the input sent by the honest party. (That is, if P1 is corrupted, then the ad-
versary receives f1(w

′
i, yi) and if P2 is corrupted then it receives f2(xi, w

′
i).)

The adversary can send the (i, w′
i) pairs in any order it wishes and can also

send them adaptively (i.e., choosing inputs based on previous outputs). The
only limitation is that for any i, at most one pair indexed by i can be sent
to the trusted party.

Adversary Answers Honest Party: Having received all of its own outputs,
the adversary specifies which outputs the honest party receives. That is, the
adversary sends the trusted party a set I ⊆ {1, . . . ,m}. Then, the trusted
party supplies the honest party with a vector v of length m such that for
every i �∈ I, vi = ⊥ and for every i ∈ I, vi is the party’s output from the ith

execution. (That is, if P1 is honest, then for every i ∈ I, vi = f1(xi, w
′
i) and

if P2 is honest, then vi = f2(w
′
i, yi) .)

Outputs: The honest party always outputs the vector v that it obtained from
the trusted party. The adversary may output an arbitrary (probabilistic
polynomial-time computable) function of its initial-input and the messages
obtained from the trusted party.



108 S. Garg et al.

Let S be a non-uniform probabilistic polynomial-time ideal-model machine (rep-
resenting the ideal-model adversary). Then, the ideal execution of f (on input vec-
tors (x,y) of length m and auxiliary input z to S) denoted by idealF ,S(x,y, z),
is defined as the output pair of the honest party and S from the above ideal
execution.

Execution in the Real model. We next consider the real model in which
a real two-party protocol is executed (and there exists no trusted third party).
Let m = m(n) be a polynomial, let f be as above and let Π be a two-party
protocol for computing f . Furthermore, let A be a non-uniform probabilistic
polynomial-time machine that controls either P1 or P2. Then, the real concurrent
execution of Π (on input vectors (x,y) of length m(n) and auxiliary input z to
A), denoted realΠ,A(x,y, z), is defined as the output pair of the honest party
and A, resulting from m(n) executions of the protocol interaction, where the
honest party always inputs its ith input into the ith execution. The scheduling
of all messages throughout the executions is controlled by the adversary. That
is, the execution proceeds as follows. The adversary sends a message of the form
(i, α) to the honest party. The honest party then adds α to the view of its ith

execution of Π and replies according to the instructions of Π and this view. The
adversary continues by sending another message (j, β), and so on. Adversary can
schedule these the messages in any way it likes. (Formally, view the schedule as
the ordered series of messages of the form (index,message) that are sent by the
adversary.)

Definition 5 (Input Indistinguishable Computation (IIC)). Let F and
Π be the ideal trusted parted and the protocol realizing functionality f , as defined
above. Protocol Π is said to input indistinguishably compute (or, IIC) f for P1

under concurrent composition if for every polynomial m = m(n), for every inputs
x0,x1 ∈ ({0, 1}n)m of the honest party P1, for every real-model non-uniform
probabilistic polynomial-time adversary A controlling party P2, there exists an
ideal-model non-uniform probabilistic polynomial-time adversary S controlling
P2 such that ∀x ∈ {x0,x1},

{idealF ,S(x,y, z)}n∈N;z∈{0,1}∗
c≡ {realΠ,A(x,y, z)}n∈N;z∈{0,1}∗

Protocol Π is said to input indistinguishably compute (or, IIC) f if it input
indistinguishably computes f both for P1 and P2.

The above definition has various shortcomings and can be seen as only a stepping
stone to our final definition (which implies the one in [37]). We refer the reader
to the full version for our extended definition and for the relationship between
various notions.

3 Building Blocks

We now discuss the main cryptographic primitives that we use in our construction.



Concurrently Secure Computation in Constant Rounds 109

Statistically Binding String Commitments. In our protocol, we will use a
(2-round) statistically binding string commitment scheme, e.g., a parallel version
of Naor’s bit commitment scheme [38] based on one-way functions. For simplicity
of exposition, in the presentation of our results in this manuscript, we will actu-
ally use a non-interactive perfectly binding string commitment.4 Such a scheme
can be easily constructed based on a 1-to-1 one way function. Let com(·) denote
the commitment function of the string commitment scheme. For simplicity of
exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment function.

Extractable Commitment Scheme. We will also use a simple challenge-
response based extractable statistically-binding string commitment scheme 〈C,R〉
that has been used in several prior works, most notably [44,47]. We note that in
contrast to [44] where a multi-slot protocol was used, here (similar to [47]), we
only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive
perfectly binding string commitment scheme (as described in Section 3). Let n de-
note the securityparameter.Thecommitment scheme 〈C,R〉 is describedas follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random
pairs {α0

i , α
1
i }ki=1 of strings such that ∀i ∈ [k], α0

i ⊕ α1
i = str; and commits

to all of them to R using com. Let B ← com(str), and A0
i ← com(α0

i ),
A1

i ← com(α1
i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.
3. For every i ∈ [k], if vi = 0, C opens A0

i , otherwise it opens A1
i to R by

sending the appropriate decommitment information.

Open Phase: C opens all the commitments by sending the decommitment in-
formation for each one of them.

This completes the description of 〈C,R〉.
Modified Commitment Scheme. Due to technical reasons, we will also use a minor
variant, denoted 〈C′, R′〉, of the above commitment scheme. Protocol 〈C′, R′〉 is
the same as 〈C,R〉, except that for a given receiver challenge string, the commit-
ter does not “open” the commitments, but instead simply reveals the appropriate
committed values (without revealing the randomness used to create the corre-
sponding commitments). More specifically, in protocol 〈C′, R′〉, on receiving a
challenge string v1, . . . , vn from the receiver, the committer uses the following
strategy: for every i ∈ [k], if vi = 0, C′ sends α0

i , otherwise it sends α1
i to R′.

Note that C′ does not reveal the decommitment values associated with the re-
vealed shares.
4 It is easy to see that the construction given in Section 4 does not necessarily require
the commitment scheme to be non-interactive, and that a standard 2-round scheme
works as well. As noted above, we choose to work with non-interactive schemes only
for simplicity of exposition.



110 S. Garg et al.

When we use 〈C′, R′〉 in our main construction, we will require the committer
C′ to prove the “correctness” of the values (i.e., the secret shares) it reveals in
the last step of the commitment protocol. In fact, due to technical reasons, we
will also require the the committer to prove that the commitments that it sent
in the first step are “well-formed”. Below we formalize both these properties in
the form of a validity condition for the commit phase.

Proving Validity of the Commit Phase.We say that commit phase between C′ and
R′ is valid with respect to a value ˆstr if there exist values {α̂0

i , α̂
1
i }ki=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and
2. Commitments B, {A0

i , A
1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 re-

spectively.
3. Let ᾱv1

1 , . . . , ᾱvk
k denote the secret shares revealed by C in the commit phase.

Then, for all i ∈ [k], ᾱvi
i = α̂vi

i .

We can define validity condition for the commitment protocol 〈C,R〉 in a similar
manner.

Constant-Round Non-Malleable Zero Knowledge Argument. In our
main construction, we will use a constant-round non-malleable zero knowledge
(NMZK) argument for every language in NP with perfect completeness and neg-
ligible soundness error. In particular, we will use a specific (stand-alone) NMZK
protocol, denoted 〈P, V 〉, based on the concurrent-NMZK protocol of Barak et
al [4]. Specifically, we make the following two changes to Barak et al’s proto-
col: (a) Instead of using an ω(logn)-round PRS preamble [44], we simply use
the one-slot commitment scheme 〈C,R〉 (described above). (b) Further, we re-
quire that the non-malleable commitment scheme being used in the protocol be
constant-round and public-coin w.r.t. receiver. We note that such commitment
schemes are known due to Pass, Rosen [43]. Further, in full version, we show
how to adapt the scheme of Goyal [22] to incorporate the public-coin property.5

We now describe the protocol 〈P, V 〉.
Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively.
Let L be an NP language with a witness relation R. The common input to P
and V is a statement π ∈ L. P additionally has a private input w (witness for
π). Protocol 〈P, V 〉 consists of two main phases: (a) the preamble phase, where
the verifier commits to a random secret (say) σ via an execution of 〈C,R〉 with
the prover, and (b) the post-preamble phase, where the prover proves an NP
statement. In more detail, protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in the execution of 〈C,R〉 where V commits to a random
string σ.

5 We note that while the commitment scheme of [43] admits a non black-box security
proof, the security proof of Goyal’s scheme is black-box. As such, the resultant NMZK
protocol has a black-box security proof as well.



Concurrently Secure Computation in Constant Rounds 111

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be
the commitment string. Additionally, P proves the knowledge of a valid
decommitment to c using a statistical zero-knowledge argument of knowledge
(SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉
that was executed in step 1.

4. P commits to the witness w using a constant-round public-coin extractable
non-malleable commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to π (i.e.,
R(π,w) = 1, where w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Decoupling the Preamble Phase from the Protocol. Note that the preamble phase
in 〈P, V 〉 is independent of the proof statement and can therefore be executed
by P and V before the proof statement is fixed. Indeed, this is the case when
we use 〈P, V 〉 in our main construction in Section 4. Specifically, in our main
construction, the parties first engage in multiple executions of 〈C,R〉 at the
beginning of the protocol. Later, when a party (say) Pi wishes to prove the
validity of a statement π to (say) Pj , then Pi and Pj engage in an execution of
the post-preamble phase of 〈P, V 〉 for statement π. The protocol specification
fixes a particular instance of 〈C,R〉 that was executed earlier as the preamble
phase of this instance of 〈P, V 〉. In the description of our main construction, we
will abuse notation and sometimes refer to the post-preamble phase as 〈P, V 〉.
Straight-line Simulation of 〈P, V 〉. A nice property of protocol 〈P, V 〉 is that it
allows straight-line simulation of the prover if the trapdoor secret σ is available to
the simulator S. (Note that S can rewind V during the execution of 〈C,R〉 in or-
der to extract σ.) See the full version for a description of the simulation strategy.

Constant-Round Statistically Witness Indistinguishable Arguments.
In our construction, we shall use a constant-round statistically witness indis-
tinguishable (SWI) argument 〈Pswi, Vswi〉 for proving membership in any NP
language with perfect completeness and negligible soundness error. Such a pro-
tocol can be constructed by using ω(log n) copies of Blum’s Hamiltonicity pro-
tocol [7] in parallel, with the modification that the prover’s commitments in
the Hamiltonicity protocol are made using a constant-round statistically hiding
commitment scheme [39,27,16].

Semi-Honest Two Party Computation. We will also use a constant-round
semi-honest two party computation protocol 〈P sh

1 , P sh
2 〉 for any functionality F

in the stand-alone setting. The existence of such a protocol follows from the
existence of constant-round semi-honest 1-out-of-2 oblivious transfer [49,19,29].



112 S. Garg et al.

4 Our Construction

Let F be any well-formed functionality6 that admits a constant round two-
party computation protocol in the semi-honest setting. In particular, F can be
a universal functionality. In this section we will give a protocol Π that UC-SPS-
realizes F . Note that in the UC framework any two parties (say Pi and Pj)
might interact as per the protocol Π on initiation by the environment for some
session corresponding to a SID sid. For simplicity of notation, we will describe
the protocol in terms of two parties P1 and P2, where these roles could be taken
by any two parties in the system. Further we will skip mentioning the SID to
keep the protocol specification simple.

In order to describe our construction, we first recall the notation associated
with the primitives that we use in our protocol. Let com(·) denote the commit-
ment function of a non-interactive perfectly binding commitment scheme, and
let 〈C,R〉 denote the one-slot extractable commitment scheme, and 〈C′, R′〉 be
its modified version (see Section 3). Further, we will use a constant-round NMZK
protocol 〈P, V 〉 (see Section 3), a constant-round SWI argument 〈Pswi, Vswi〉, and
a constant-round semi-honest two party computation protocol 〈P sh

1 , P sh
2 〉 that

securely computes F as per the standard simulation-based definition of secure
computation.

Let P1 and P2 be two parties with inputs x1 and x2 provided to them by
the environment Z. Let n be the security parameter. Protocol Π = 〈P1, P2〉
proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 samples a random string σ1 (of appropriate length; see below)
and engages in an execution of 〈C,R〉 with P2, where P1 commits to σ1. We
will denote this commitment protocol by 〈C,R〉1→2.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, P2 samples a random string
σ2 and commits it via an execution of 〈C,R〉 (denoted as 〈C,R〉2→1) with
P1.

3. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends
com1 to P2. P1 and P2 now engage in an execution of (the post-preamble
phase of) 〈P, V 〉, where P1 proves that com1 is a commitment to bit 0. The
commitment protocol 〈C,R〉2→1 (executed earlier in step 2) is fixed as the
preamble phase for this instance of 〈P, V 〉 (see Section 3).

4. P2 ⇒ P1 : P2 now acts symmetrically.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining
a “trapdoor” to be used during the simulation of the protocol. As discussed
earlier in Section 1.2, in order to bypass the need of recursive rewindings (even
though we consider concurrent security), we want to ensure that a “hybrid”
simulator (that performs rewindings) can always extract a “trapdoor” before

6 See [9] for a definition of well-formed functionalities.



Concurrently Secure Computation in Constant Rounds 113

it begins cheating in any protocol session. Here, we achieve this effect by de-
coupling the preamble phase of 〈P, V 〉 from the post-preamble phase (see Section
3) and executing the preamble phase at the very beginning of our protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs
and random coins (to be used in the next phase) via the commitment protocol
〈C′, R′〉.
1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to

be used as P1’s randomness in the execution of 〈P sh
1 , P sh

2 〉 in phase III) and
engages in an execution of 〈C′, R′〉 (denoted as 〈C′, R′〉1→2) with P2, where
P1 commits to x1‖r1. Next, P1 and P2 engage in an execution of 〈Pswi, Vswi〉
where P1 proves the following statement to P2: (a) either there exist values
x̂1, r̂1 such that the commitment protocol 〈C′, R′〉1→2 is valid with respect
to the value x̂1‖r̂1 (see Section 3), or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1)
be the random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting
the adversary’s input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution
of 〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since

〈P sh
1 , P sh

2 〉 is secure only against semi-honest adversaries, we first enforce that
the coins of each party are truly random, and then execute 〈P sh

1 , P sh
2 〉, where

with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its honest
behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends
it to P2. Similarly, P2 samples a random string r′1 and sends it to P1. Let
r′′1 = r1⊕ r′1 and r′′2 = r2⊕ r′2. Now, r

′′
1 and r′′2 are the random coins that P1

and P2 will use during the execution of 〈P sh
1 , P sh

2 〉.
2. Let t be the number of rounds in 〈P sh

1 , P sh
2 〉, where one round consists of a

message from P sh
1 followed by a reply from P sh

2 . Let transcript T1,j (resp.,
T2,j) be defined to contain all the messages exchanged between P sh

1 and P sh
2

before the point P sh
1 (resp., P sh

2 ) is supposed to send a message in round j.
For j = 1, . . . , t:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j, x1, r
′′
1 ) and send it to P2. P1 and P2

now engage in an execution of 〈Pswi, Vswi〉, where P1 proves the following
statement:
i. either there exist values x̂1, r̂1 such that (a) the commitment proto-

col 〈C′, R′〉1→2 is valid with respect to the value x̂1‖r̂1 (see Section
3), and (b) β1,j = P sh

1 (T1,j, x̂1, r̂1 ⊕ r′1)
ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of protocol Π . We now claim the following.



114 S. Garg et al.

Theorem 1. Assume the existence of constant round semi-honest OT and col-
lision resistant hash functions.Then for every well-formed functionality F , there
exists a constant-round protocol that UC-SPS-realizes F .
We prove the above claim by arguing that the protocol Π = 〈P1, P2〉 described
earlier UC-SPS-realizes F . Note that our simulator will run in sub-exponential
time, where the desired parameters can be obtained by using a “scaled-down”
security parameter of the commitment scheme com. See the full version for the
proof.

Acknowledgements. Research supported in part from a DARPA/ONR PRO-
CEED award, NSF grants 1136174, 1118096, 1065276, 0916574 and 0830803, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency
through the U.S. Office of Naval Research under Contract N00014-11-1-0389.
The views expressed are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

References

1. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

2. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS, pp. 345–355 (2002)

3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure Computation
Without Authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 361–377. Springer, Heidelberg (2005)

4. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS, pp. 345–354 (2006)

5. Barak, B., Sahai, A.: How to play almost any mental game over the net - concur-
rent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE
Computer Society (2005)

6. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security,
pp. 257–266 (2008)

7. Blum, M.: How to prove a theorem so no one else can claim it. In: International
Congress of Mathematicians, pp. 1444–1451 (1987)

8. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2),
135–167 (2006)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC, pp. 494–503 (2002)

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

11. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)



Concurrently Secure Computation in Constant Rounds 115

12. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-

knowledge requires
∼
Ω (log n) rounds. In: STOC, pp. 570–579 (2001)

13. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

14. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an
imperfect reference string. In: FOCS, pp. 249–259 (2007)

15. Chandran, N., Goyal, V., Sahai, A.: New Constructions for UC Secure Computation
Using Tamper-Proof Hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

16. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptology 10(3), 163–194
(1997)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

18. Garg, S., Goyal, V., Jain, A., Sahai, A.: Bringing People of Different Beliefs To-
gether to Do UC. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 311–328.
Springer, Heidelberg (2011)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987: Proceedings of the 19th Annual ACM Conference on Theory of Computing,
pp. 218–229. ACM Press, New York (1987)

20. Goldreich, O.: Foundation of Cryptography - Basic Tools. Cambridge University
Press (2001)

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

22. Goyal, V.: Constant round non-malleable protocols using one-way functions. In:
STOC (2011)

23. Goyal, V., Jain, A., Ostrovsky, R.: Password-Authenticated Session-Key Genera-
tion on the Internet in the Plain Model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 277–294. Springer, Heidelberg (2010)

24. Goyal, V., Katz, J.: Universally Composable Multi-party Computation with an
Unreliable Common Reference String. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 142–154. Springer, Heidelberg (2008)

25. Goyal, V., Sahai, A.: Resettably Secure Computation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2009)

26. Groth, J., Ostrovsky, R.: Cryptography in the Multi-string Model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

27. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996)

28. Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof
Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

29. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

30. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560–569 (2001)

31. Lin, H., Pass, R.: Non-malleability amplification. In: STOC, pp. 189–198 (2009)

32. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC (2011)



116 S. Garg et al.

33. Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent Non-
Malleable Zero Knowledge Proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 429–446. Springer, Heidelberg (2010)

34. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC,
pp. 179–188 (2009)

35. Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

36. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium, pp. 287–302 (2004)

37. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS,
pp. 367–378. IEEE Computer Society (2006)

38. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

39. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43 (1989)

40. Pass, R.: Simulation in Quasi-Polynomial Time, and its Application to Pro-
tocol Composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003)

41. Pass, R.: Personal Communication (2011)
42. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS,

pp. 563–572 (2005)
43. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-

graphic protocols. In: STOC, pp. 533–542 (2005)
44. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-

mic round-complexity. In: FOCS, pp. 366–375 (2002)
45. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-

ability without trusted setup. In: STOC, pp. 242–251 (2004)
46. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge

Proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431.
Springer, Heidelberg (1999)

47. Rosen, A.: A Note on Constant-Round Zero-Knowledge Proofs for NP. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004)

48. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: FOCS, pp. 531–540 (2010)

49. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE (1986)


	Concurrently Secure Computation in Constant Rounds
	Introduction
	Our Contributions
	The Main Technique
	Other Related Work

	Our Definitions
	UC Security and SPS
	Input Indistinguishable Computation

	Building Blocks
	Our Construction
	References




