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Abstract. Processing on encrypted data is a subject of rich investiga-
tion. Several new and exotic encryption schemes, supporting a diverse set
of features, have been developed for this purpose. We consider encryp-
tion schemes that are suitable for applications such as data clustering
on encrypted data. In such applications, the processing algorithm needs
to learn certain properties about the encrypted data to make decisions.
Often these decisions depend upon multiple data items, which might
have been encrypted individually and independently. Current encryp-
tion schemes do not capture this setting where computation must be
done on multiple ciphertexts to make a decision.

In this work, we seek encryption schemes which allow public com-
putation of a pre-specified property P about the encrypted messages.
That is, such schemes have an associated property P of fixed arity k,
and a publicly computable algorithm Test, such that Test(ct1,...,ctr) =
P(ma1,...,my), where ct; is an encryption of m; for i = 1, ..., k. Further,
this requirement holds even if the ciphertexts ct1, ..., ctx were generated
individually and independently. We call such schemes property preserv-
ing encryption schemes. Property preserving encryption (PPEnc) makes
most sense in the symmetric setting due to the requirement that Test is
publicly computable.

In this work, we present a thorough investigation of property pre-
serving symmetric encryption. We start by formalizing several meaning-
ful notions of security for PPEnc. Somewhat surprisingly, we show that
there exists a hierarchy of security notions for PPEnc, indexed by inte-
gers 7 € N, which does not collapse. We also present a symmetric PPEnc
scheme for encrypting vectors in Zy of polynomial length. This construc-
tion supports the orthogonality property: for every two vectors (&, §) it is
possible to publicly learn whether Z- 3§ =0 mod p. Our scheme is based
on bilinear groups of composite order.

1 Introduction

This paper introduces the notion of property preserving encryption schemes. The
idea is that it should be possible to publicly learn the properties of a massive data
set, by only looking at the encrypted data elements. For simplicity, we model
properties as boolean functions P defined over the space MP* for a fixed natural
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number k£ € N. The simplest way to capture this idea is by requiring a public
algorithm, Test, such that V(my,...,mg) € M*:

P(mq,...,my) = Test(cty,...,ctg)

where ct; is the encryption of m; for every ¢ € [k]. An important observation is
that the idea makes most sense only for symmetric encryption schemes, which
will be the main focus of this work

Property preserving encryption represents great promise, particularly for de-
veloping private algorithms for data classification. Of particular interest are the
applications that deal with streaming data. For example, consider the recipient
of a data stream, who receives data-elements arriving one at a time: my,ms, ...
and so on. The recipient would like to encrypt each of these elements, as they
arrive, and stord? the resulting ciphertexts on an untrusted computing facility,
e.g., a public cloud [21133]. The recipient can then instruct the cloud to classify
and organize this data—e.g., using data clustering techniques [B028], for the
target application. Current encryption schemes fall short of dealing with this
situation. This holds true even for the exotic class of schemes such as predicate
encryption [31], functional encryption [15], and fully homomorphic encryption
[39124].

Order Preserving Symmetric Encryption. Property preserving encryption
is directly inspired by the recent work of Boldyreva, Chenette, Lee, and O’Neill
on order preserving (symmetric) encryption [10]. Informally speaking, an en-
cryption scheme is order preserving if the ciphertexts preserve the order of the
plaintexts; that is, if mq,mo are two plaintexts integers and m; > meo, then
ct1 > cto, where cty, cty are encryptions of my, mo respectively. Boldyreva et al.
show that order-preserving schemes cannot satisfy the usual “indistinguishabil-
ity” based notions. In fact, as noted in [I0/11], formulating a reasonable notion
of security for order preserving encryption is a subtle and involved task. The
starting point of our work was to understand the source of this difficulty, and
how it affects other properties.

For this purpose, we start by generalizing the idea of preserving the order
as follows. First, we do not restrict ourselves only to the ordering relation, and
consider arbitrary properties. Second, we do not necessarily require the same re-
lation on plaintexts and ciphertexts—e.g., the greater than or equal to operation.
Instead, we only require a public algorithm to test this relation: Test(ctq, ct2) =1
if and only my1 > mo. With these generalizations, it turns out that there exist
nontrivial properties for which we can satisfy indistinguishability-based security
notions. This results in very strong and robust security guarantees.

! For asymmetric (or public-key) encryption, the encrypted message might be re-
coverable for most properties of interest, simply by using Test and the encryption
algorithm. See also section for further discussion.

2 We note that this model is similar to the model considered by Gennaro and Ro-
hatgi [23] for digital signatures. In particular, it is different from the “streaming
algorithms” model where the stream cannot be stored, and the computations must
be done in a single pass over a small sample of the stream[2]29].
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1.1 Owur Contribution

It quickly becomes apparent that property preserving encryption is a new notion
that requires a thorough investigation. This is the focus of the current work. We
present a summary of our results here.

Notions of Security. We start by defining three indistinguishability based
notions of security: (1) find-then-guess (FTG), (2) left-or-right (LOR), and (3)
selective real-versus-random (sRvVR). These notions are directly based upon the
work of Bellare, Desai, Jokipii, and Rogaway [5] for defining security of symmet-
ric encryption.

In FTG-security the adversary first participates in a “find” stage in which he
receives encryptions of many (adaptively) chosen messages. The adversary then
selects two challenges (mf, m}), and receives an encryption of one of them. The
adversary is supposed to “guess” which message was encrypted. In LOR-security,

the adversary adaptively chooses many pairs of messages (m{, m1), (m9,mi), ...,
and receives encryptions of messages m%,m$, ..., for a fixed bit b. The adver-

sary is supposed to guess b. In property preserving encryption, the adversary
is allowed to learn the value of the property P on various subsets of messages.
Therefore we enforce the following “equality pattern” condition (assume P to be
binary): in FTG game, we require that for every message m; that was encrypted,
P(m§, m;) = P(mj},m;); likewise, in LOR game, we require that for every two
indices (4, j): P(m,m$) = P(m},m}).

For standard symmetric encryption, these two notions are proven equivalent
using a simple hybrid experiment [5]. Quite surprisingly, we show that in case
of property preserving encryption, the FTG-security is much weaker than LOR-
security. There exist natural properties for which FTG can leak much more
about the encrypted messages than LOR. This proof also highlights that in
fact FTG is a rather subtle notion: there is a hierarchy of FTG definitions in-
dexed by a natural number € N, denoted FTG", which lie between FTG
and LoR. Roughly speaking, the FTG" notion is like the FTG notion ex-
cept that the adversary submits at most n pairs of challenges instead of just
one: (mg 1, mj 1),...,(mg,,mi,). We go on to show that FTG" is weaker than
FrG7H,

Our final indistinguishability based notion, is an adaptation of the “real-or-
random” security presented in [5]. Informally, in this game the attacker submits
adaptively chosen messages that form the real sequence of messages to an encryp-
tion oracle. The oracle either only encrypts the real message sequence or a random
message sequence. As usual, we want that the adversary should not know which
is the case. Adopting this notion to the setting of property-preserving encryption
is slightly tricky, due to the equality pattern condition. When returning encryp-
tions of a random sequence, it should be ensured that the random sequence will
have the equality pattern of the real sequence. Since the real sequence is chosen
adaptively based on the ciphertexts seen so far, the equality pattern of the real
sequence “evolves” during the entire experiment. One way to deal with this situ-
ation is to require the adversary to select its equality pattern £ (a binary vector)



378 O. Pandey and Y. Rouselakis

at the beginning of the game. This choice is motivated by the work on selective
security for identity based encryption [I8/19]. We require that the encryptions of
real sequence with equality pattern £, look indistinguishable from a random se-
quence with the same pattern £. The resulting notion is called the selective real-
versus-random security denoted by sSRVR, and is proven equivalent to the selective
version of LOR-security, denoted sLOR. The summary of relationships between
these security notions is presented in figure[ll

FrG
Il
FrG'T25 FrG2Es -S4 FrG"SS PG S5 - LoR

N/

!

sRVR

Fig. 1. Relations between all security notions. Solid arrows denote implications for all
properties. Cut arrows denote that there exist some properties for which the implication
is false.

Our Constructions. We seek interesting properties for which provably secure
constructions satisfying our security notions can be obtained. We present con-
structions that preserve, according to our notion, the orthogonality of encrypted
vectors. More formally, let p be a prime number; we construct a property pre-
serving scheme for P : Zj x Z; — {0,1} such that: P(u,v) = 0if @-7 =0
mod p and 1 otherwise.

First we observe a general approach for constructing property preserving en-
cryption from symmetric predicate-encryption that satisfy two essential proper-
ties: (1) predicate privacy in the multi-challenge model, and (2) security in the
standard model (as opposed to the selective models as defined in [I8IT9]). Shen,
Shi, and Waters [41] formulated the notion of predicate privacy in symmetric en-
cryption, and presented a construction for orthogonality testing. However, their
construction is secure only in the selective-security model. At present, there are
no known constructions satisfying the two requirements.

We present a new, direct construction, for preserving orthogonality. Our con-
struction is based on composite order groups with bilinear pairings. We prove
that our construction satisfies the LOR~security in the generic group model [44];
a provably secure construction in the standard model is left as an important
open problem.

1.2 Related Work

Other than the works of Boldyreva et al. [TOJTI], the work of Bellare, Risten-
part, Rogaway, and Stegers [8] on format preserving encryption is also a related
concept which ensures that the ciphertext has the same format as the plaintext.
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Encryption schemes supporting keyword search on encrypted data are very
relevant to our work. They were considered by Song, Wagner, and Perrig in
the symmetric setting [45], and by Boneh, Di Crescenzo, Ostrovsky, and Per-
siano [14] in the public-key setting. We can view these works as testing for the
equality property for a fixed keyword(s). Equality tests in symmetric setting
are related to oblivious RAM techniques [37]; in the public-key setting they are
related to anonymous Identity Based Encryption (IBE) [T4UTIT7]. Subsequent
works developed schemes for complex queries such as conjunctive and range
queries [25/16/42], and more efficient constructions [22].

Bellare, Boldyreva, and O’Neill [4] investigated the notion of deterministic
encryption to allow search in sub-linear time. These schemes provide meaning-
ful security guarantee only when messages are drawn from high min-entropy
distributions. Subsequent works further refined this notion and provided new
constructions [7JT2I36].

Another notion, closely related to our work, is predicate encryption, intro-
duced by Katz, Sahai and Waters [31], and further generalized to functional
encryption [15]. In predicate encryption, messages are encrypted using a set of
attributes S, and secret keys can be derived for predicates f, say Ky. A mes-
sage m encrypted using S can be decrypted using K if and only if f(S) = 1.
The principal difference between our notion and predicate encryption is that
the latter only tests unary property, i.e., f works only on a single ciphertext.
In contrast, property-preserving encryption is required to deal with multiple ci-
phertexts each generated individually and independently. Predicate encryption
is a generalization of previous works on attribute-based encryption [40], further
developed in [27/9I20/3826]. Subsequent works provided improved constructions
under a variety of cryptographic assumptions [3143/41134].

Our study of relationships between security notions of encryption schemes is
inspired by initial works of Bellare, Desai, Jokipii, and Rogaway [5], and Bellare,
Desai, Pointcheval, and Rogaway [6]; it has been pursued in many subsequent
works since then such as [3I32], as well as previously mentioned works on deter-
ministic encryption.

Somewhat tangentially related to our work is the notion of fully homomorphic
encryption (FHE) [39], first realized by Gentry [24]. While FHE allows processing
arbitrary computations on any number of ciphertexts, the resulting output is
encrypted, and therefore not useful for evaluating properties.

2 Property Preserving Encryption

Standard Notation. We write s & S to mean that s is picked uniformly at
random from the set S. When multiple elements z, v, z, . .. are picked uniformly

at random from S, we write x,y, z, ... &3, Symbols =, A, and @ denote the
standard boolean operations: NOT, AND, and XOR, respectively. The set of natu-
ral numbers is denoted by N; for n € N, we write by [n] the set {1,2,...,n}. We
will often refer to a vector directly by writing its components in order as either
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(a1,as,...,a,) or {a;};—,. The security parameter is denoted by A\ € N, and
a function negligible in A is denoted by negl(\). All algorithms are assumed to
have A\ as an implicit input, and run in time polynomial in A.

Property Preserving Encryption. A property-preserving symmetric encryp-
tion scheme, is just like a normal symmetric encryption scheme except that it
has an associated property P and a test algorithm, Test. Algorithm Test is a
publicly computable polynomial time algorithm which operates on ciphertexts.
The goal of Test algorithm is to test if the property P is satisfied on the un-
derlying messages of the input ciphertexts. The formal definition of symmetric
property-preserving encryption is given below; we allow some public-parameters
in the system so that Test algorithm can properly operate on the ciphertexts.

Definition 2.1. A symmetric property-preserving encryption scheme, with
plaintezxt - space M, consists of four probabilistic polynomial-time algorithms
IT = (Setup, Enc, Dec, Test) and an associated property P : M* — {0,1}, such
that:

Setup(1*) — (pp, sk):
This is a randomized algorithm, which on input a security parameter A € N,
outputs a secret-key sk, and public-parameters pp.

Enc(pp, sk,m) — ct:
The (possibly randomized) encryption algorithm takes as input pp, sk, and
the plaintext m; it outputs a ciphertext ct.

Dec(pp, sk, ct) — m:
The decryption algorithm takes as input pp, sk, and the ciphertext ct; it
outputs the plaintert message m.

Test(pp, ct1,. .., ctr) — {0,1}:
The testing algorithm takes as input the public parameters pp, and k cipher-
texts cty,...,cty; it outputs a bit.

We require that for all possible outputs (pp, sk) of algorithm Setup, and every
m € M, it holds that Dec(pp, sk, Enc(pp, sk,m)) = m. Further, we also require
that there exist a negligible function negl(-) such that ¥(my,...,my) € M*:

. Test(pp, ct1,...,ctx) | (pp,sk) < Setup(1?)

Pr_ P(mi,ma,...,mg) |Vi € [k] : ct; < Enc(pp, sk, m;)

> 1 — negl(\)

where the probability is taken over the randomness of all algorithms.

3 Security Notions

We follow the approach of Bellare, Desai, Jokipii, and Rogaway [5], and present
three different definitions. We will start by considering the two simplest variants,
each of which is obtained by modifying definitions in [5] to accommodate the
equality pattern. To do this, we introduce some notation.
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Notation. Let IT = (Setup, Enc, Dec, Test) be a symmetric property-preserving
encryption scheme with plaintext space M. Let P be a k-ary property defined
over M for some fixed positive integer & € N: P : M* — {0,1}. For a bit b,
let the “Left-Right Oracle” be defined as the following function: LR(mq,m1,b) =
my. Let X = (21,...,2,) € M®and Y = (y1,...,Yn) € M"™ be two message
sequences of polynomial length n = n(\). We say that X and Y have the same
equality pattern for property P, if and only if: V(iy, . . ., ix) € [n]*, P(zi,...,%,)

= P(yiu .- '7yik)'
It will be convenient to formally define the equality pattern of a sequence X.
For integers n, k, let Iy,..., I, be all sequences of indices (i1, ...,i;) € [n]”

in the lexicographic order [ The equality pattern of a sequence X € M" w.r.t.
property P : M¥ — {0, 1} is a binary vector of length n*, denoted by Eqp(X) :=
(b1,...,bux), such that b; = P(X7,). Here X, denotes the projection of X on

j™-sequence I, for j € [n*].

Find-then-Guess Security. The simplest indistinguishability based definition
is the “find-then-guess” security. Informally, adversary A participates in a game,
in which first it is given access to an encryption oracle. A can ask polynomially
many encryption queries by adaptively choosing and sending plaintexts m € M.
This is called the “find” stage; at some point, A produces two equal-length
messages (mg, m7). At this point, A is given a challenge ciphertext ct, which
is an encryption of my for a random bit b. A can make more queries to the
encryption oracle after receiving ct. At some point, A4 outputs a bit b’ (as its
guess of b), and the game ends. The output of the game is b'.

For convenience, we split A, into two algorithms denoted A := (A, As). Al-
gorithm A; participates in the “find” stage and outputs (mf, m}) and some state
information st (which includes public-parameters). Algorithm Az represents the
actions of A after the find stage—Ay receives the challenge ciphertext ct, and
the state information st, and outputs the bit &’. Formally, this game is captured
by a random process, denoted Game?{i’ 1(b), which appears in table[Il For suc-
cinctness, we adopt the convention that sk includes the public-parameters pp,
and we write Ency,(m) to mean Enc(pp, sk, m).

Let the queries of A; to the encryption oracle be (myq, ..., m¢), and the queries
of As be (myy1,...,my,). We say that A is a valid FTG-adversary if sequences X
and X have the same equality pattern, where Xo = (mq, ..., me, mg, met1, ...,

my) and X7 = (ma,...,me,mi, mes1,...,my); that is Eqp(Xo) = Eqp(X1).
Define the advantage of a valid FTG-adversary A = (A;,.As) as follows:

AdVES = [Pr [Gamel (1) = 1] - Pr [Gamel,(0) = 1]|

3 Equivalently, every sequence is an ordered multi-set of [n]k Note that multi-set
is important since the property is defined for sequences of the form P(m,...,m).
Likewise, order is important since changing the message-order may change the value
of P.
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Definition 3.1 (FtG Security). Let IT = (Setup, Enc,Dec, Test) be a sym-
metric property-preserving encryption scheme with plaintext space M and asso-
ciated property P : M¥ — {0,1} for a fized positive integer k € N. We say that
IT is FrG-secure, if there exists a negligible function negl(-) such that for all
probabilistic polynomial time valid FTG-adversaries A = (A1, As), and for all

sufficiently large X € N, the advantage of A in game Game%T’S"’A(b) is at most

negl(\). That is, Advi G , < negl()).

Table 1. Security games for defining the three notions—FTG, LOR, and sRVR

Game7% A (b) GameS' A (b)
Gamel?%, ,(b)
(pp, sk) < Setup(1*) (pp, sk) + Setup(1*)
(mg,mi, st) « A0 (pp) (pp, sk) + Setup(1*) (&, st) < Ai(pp)
ct* <+ Encg(my) b AEcek (LRCD) () 78 NG
o AR (gt et return b’ B ATk (RCZ0) ()
return v’ return b’

Left-or-Right Security. Define left-or-right encryption oracle, denoted by
Enc(pp, sk, LR(:,-, b)), which behaves as follows. On input a pair of equal-length
messages (mo, m1) € M2, the oracle obtains message LR(mq, m1,b) = my, and
then outputs a ciphertext by computing Enc(pp, sk, ms). Once again, we drop pp
from the notation for succinctness, and denote this oracle by Encg(LR(:, -, b)).
In this security definition, A participates in a game in which he gets access
to Encgx(LR(:, -, b)) for a random b. Throughout the execution of the game, A

adaptively submits the queries of the form (m?, m}) to the encryption oracle and
receives ct; = Encgi(m?) for i = 1,...,n where n = n()) is an arbitrary polyno-

mial. At some point, .4 outputs a bit b’ (as its guess of b), and the game ends. The
output of the game is b’'. Formally, this game is captured by a random process,

denoted Game%ﬁi 1 (b), which appears in table[Il Let the queries of A to the or-
acle be {(m?,m!)}" |, and let Xo = (m,...,m3) and X1 = (m},...,m}).

We say that A is a wvalid LoR-adversary if sequences Xg and X; have the
same equality pattern; that is Eqp(Xy) = Eqp(X1). The advantage of a valid
LoR-adversary A is defined as before:

AdviP = ‘Pr [Gameljfi’)\(l) = 1} —Pr [Game%ﬁi)\(ﬂ) = 1”

Definition 3.2 (LoR Security). Let I = (Setup, Enc, Dec, Test) be a symmet-
ric property-preserving encryption scheme with plaintext space M and associated
property P : M* — {0,1} for a fized positive integer k € N. We say that I is
LoR-secure, if there exists a negligible function negl(-) such that for all proba-
bilistic polynomial time valid LOR-adversaries A, and for all sufficiently large
A € N, the advantage of A in game GamelLffi,,\(b) is at most negl(\). That is,

/—\dv]ffiA < negl(\).
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We note that in their work on symmetric-key predicate encryption, Shen, Shi,
and Waters [41] called the FTG-security as the “single-challenge” security, and
the LoR-security as the “full-security.”

Real-versus-Random Security. Another interesting notion considered in [5]
is that of “real-or-random” security, where the attacker instead of giving two
sequences gives only one, called the real, sequence). In return, it either receives
the encryption of the messages from real sequence, or the encryption of random
messages (which form the random sequence). As discussed earlier, adopting this
notion to the setting of property-preserving encryption is slightly tricky.

Recalling briefly, the real sequence allows the adversary A to learn its equal-
ity pattern; and therefore indistinguishability makes sense only if a random se-
quence with the same equality pattern is selected. However, if the real sequence
is selected adaptively, its equality pattern also evolves adaptively; but since A
must receive encryptions “on-the-fly,” providing encryptions of random messages
that “in-the-end” would have the same equality pattern as the real sequence
may not always be possible. It is for this reason that defining a meaningful
“simulation-based” definition is difficult in this setting.

Nevertheless, a meaningful definition can still be achieved if we do not allow
the adversary to adaptively evolve the security pattern of the real sequence. That
is, we consider a static or selective setting, where the A “announces” the equality
pattern that the real sequence will have at the beginning of the game (on input
the public-parameters). This is much like the the selective-ID model of [I8/19] ]

The selective real-versus-random security denoted by sRVR, considers a game
that is identical to the game in LOR-security except for the following differ-
ence. The adversary is a pair of algorithms A = (A;,.As) such that A; on
input the public-parameters, outputs a binary vector £ of length polynomial
in A\, and a state information st (which includes public-parameters). Vector &
represents an equality-pattern and fixes an integer n € N. A random sequence
Z = (z1,--.,2n) € M™ is chosen such that Eqp(Z) = £. A is given access to an
encryption oracle which accepts queries of the form m € M; upon i*"-query m;,
the oracle returns the value of Encg,(LR(my, 2;, b)). We slightly abuse the nota-
tion, and denote this special oracle by Encs,(LR(:, Z,b)). This game is formally
captured by a random process, denoted Ga meﬁ%\:ﬁ' 4 (b), which appears in table[Il
Denote by S(€) the set of all message-sequences whose equality pattern is .

We say that A is a valid sRvR-adversary if the sequence of messages queried
by A, denoted M € M™ is such that Eqp(M) = £. Define the advantage Advﬁvj{,/\

and the sRvR-security of IT for a valid sRvR-adversary A, analogous to Adv]ffi N
and LOR-security by replacing the word LOR with sRVR.

Remarks on the Hierarchy. As noted earlier, we show that there is a hier-
archy of security notions that does not collapse. The security notion FTG" is

4 The fact that in our model, the public-parameters pp are given before A decides
the equality pattern does not make our model necessarily better. Indeed, pp are
irrelevant since we are dealing with symmetric encryption; in particular, pp can be
included simply as part of the ciphertext.



384 O. Pandey and Y. Rouselakis

identical to FTG except that the adversary has multiple find stages, and sends
exactly n pairs of challenges. Likewise, the sSRVR notion reduces to the selective
variant of the LOR notion, denoted sLOR: the only difference is that in sLOR
definition, A announces the security pattern & of the two sequences before seeing
any encryptions. Due to space constraints, the formal definitions of FTG", sLoR
are given in the full version.

4 Relations among Security Notions

In this section, we will establish relationships between various notions security
for symmetric property-preserving encryption (PPEnc). The main result of this
section is that FTG"” does not imply FTG"™!. We will start with the simpler
case that FTG-security does not imply LOR-security—mnot even the selective
variants sSLOR and sRVR. All other implications are rather trivial.

Informally, for a symmetric PPEnc IT for a property P, we say that LOR-
security implies FTG-security, denoted LOR — FTG, to mean the following
statement: “If IT satisfies LOR-security (i.e., definition B2) then it also satis-
fies FTG-security (i.e., definition B1]).” In [5], it was shown that, for an ordi-
nary symmetric encryption scheme, FTG-security and LOR-security, are in fact
equivalent (up to a polynomial degradation in security). Which means that FTG
implies LOR, and vice-versa. The same proof shows that FTG""! — F1G" for
every n € N.

4.1 LoR vs. FtG

First off, it is trivial to see that LOR implies FTG. In case of an ordinaryﬁ
scheme, to simulate the FTG-game for an attacker, a simulator participates in
an LOR game. To answer encryption queries of A (in “find” stage and after the
challenge ciphertext) which consist of a single message m € M, the simulator
can simply send a query of the form (m,m) € M? to its left-or-right-encryption
oracle, and give the answer to A. The challenge-query (mg, mj) can be used
directly. This strategy also applies to our setting of symmetric PPEnc, with
no change. The key observation is that the sequences sent by the simulator to
the outside oracle have the same equality pattern, simply because A is a valid
FrG-adversary. This proof is omitted, and we conclude that LOR — FTG for
all P.

To prove the other direction, i.e., FTG — LOR, a simple hybrid experiment
is used in [5] in which the left sequence is converted into the right sequence by
changing one message at a time. While this works for an ordinary encryption
scheme, this approach breaks down in case of PPEnc. In particular, in the i-th
hybrid, as we change the encryption of i-th “left” message to the corresponding
right message, the equality pattern may change. It might even be true that the
right-sequence is not “reachable” from the left-sequence for every property P
by changing one message at a time. In this case we say that the two sequences
belong in different equivalence classes.

® That is, it is not necessarily a property-preserving encryption scheme.
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Proving the Separation. To separate FTG from LOR, our goal is to think
of a property P (preferably, a natural property) and an encryption scheme IT
such that: P divides its message space in only a small number of equivalence
classes, and IT leaks the “identity” of the equivalence class at the end of the
security game. This will not break FTG-security, but by choosing two sequences
with same equality pattern but different equivalence classes, LOR-security can
be broken.

We will use quadratic residuosity to construct a property. For a prime number
p, define by OR,, and ON'R,, the set of quadratic residues and quadratic non-
residues respectively in Zj. It will be convenient to define the following “sign”
function 7, which outputs whether a message m € Z; is a quadratic residue or
notf if m € OR, then J(m) = 0, otherwise (i.e., m € OQN'R,), J(m) = 1. For
any two messages (r,y) € Z; x Z, we define the following binary property:

_Jlifz-ye QR,
qu(xay)* {Oifl‘-ye QNRP

We now prove the following theorem.

Theorem 4.1 (FtG 4 LoR). Suppose there exists a FTG-secure property-
preserving symmetric encryption scheme Il for property P, and plaintext-space
M = 7. Then there exists another property-preserving symmelric encryption
scheme II* for property Py and plaintext space M such that II* is FTG-secure,
but it is not LOR-secure.

Proof. The key-idea in our proof is that the property Py, puts a nice structure
on the equality pattern of adversary’s queries. We will use a one-time pad to
hide crucial information about this structure in the ciphertext, which can be
recovered in the LOR-game but not in the FTG-game.

Let IT = (Setup, Enc, Dec, Test). We construct a new scheme IT* = (Setup™,
Enc”, Dec*, Test"), whose algorithms are defined as follows.

1. The Setup™ algorithm calls Setup — (pp, sk), it then picks a uniformly ran-

dom bit ¢ ﬁ {0, 1}. It outputs pp as the public-parameters and the secret-key
is set to the pair sk* = (sk,t). The bit ¢ will be used as a one-time pad.
2. Algorithm Enc* encrypts an input m € Zs, as follows. It calls Enc(pp, sk,m) —

ct. Then it selects a uniformly random bit b & {0,1}. If b = 0 the out-
put ciphertext is ct* = (ct,b,t); otherwise, b = 1 and the ciphertext is
ct* = (ct,b,t ® J(m)). Namely if b = 0 the ciphertext reveals the one-time
pad, otherwise the XOR of the pad with the residuosity sign. Compactly,
the ciphertext is ct* = (Enc(pp, sk, m),b,t & (b A T (m))).

3. The decryption algorithm, on input (ct, b, ¢) outputs Dec(pp, sk, ct). The test
algorithm on input (ctq, b1, c1) and (cte, ba, c2) outputs Test(pp, ct1, cta).

It is easy to see to see that IT* satisfies all the correctness properties if 1T does.
We have to show that IT* is FTG-secure but not LOR-secure. This follows from
lemmas and This completes the proof.

5 This is essentially the Legendre symbol with -1 replaced by 0.
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Lemma 4.2. For every valid FTG adversary A for IT*, there exists a wvalid
FTG adversary B for Il such that for every A € N, Adv%T*(’;A’)\ = AdvIFYT’g’)\

Proof. We construct adversary (a.k.a. simulator) B, using A. However, before
doing so, we first analyze the possible attack sequences for A. Remember that
A participates in an FTG-game against IT*, and is denoted by A = (A, As).
Further, it must satisfy the equality-pattern condition.

According to the definition of the FTG game, A; will query for the messages
mi, Mg, ..., myg (in the “find” phase), and output a challenge pair (mf, m7) along
with some state information. Then As, on input a ciphertext and the state, will
query for the messages myy1,Meto,...,m, (in phase 2) and output a guess.
There are only two possible cases regarding the challenge pair:

Case 1: J(m§) = J(m3). That is, either both messages are quadratic
residues, or both are non-residues.

Case 2: J(m§) # J(m7). That is, one message is a quadratic residue, and
the other is a non-residue. Notice that in this case it holds that neither A; nor
As makes any queries to the encryption oracle. That is, no queries are made
either in phase-1 or phase-2. Indeed, suppose that either A; or Ay queries m
and receives ¢t = Encgi(m). Then, by the properties of quadratic residues, we
have that Pgy(m, m§) # Pgr(m,m}). This violates the equality pattern condition
since Py, can be learned from ct and c¢t* (which As receives).

Now, the adversary B = (B, B2) when participating in the FTG-game for I7,
internally simulates the FTG-game for A (with scheme IT*) as follows. B; on
input the public parameters of IT, forwards them to A;. A must follow one of
the two cases above. Suppose that A follows Case-1. In this case, if .4; makes a
single-message encryption query, B; forwards this query to the outside encryp-
tion oracle, and gives A; whatever the answer is. At some point, 4; outputs
(mg, m3, st); then By also outputs this triplet and halts.

Algorithm By picks a uniformly random one-time pad ¢ & {0,1} and stores it.
B> receives a ciphertext c¢t’ (and state st) as input. Note that ct’ is a ciphertext
of IT. To construct a ciphertext of IT*, By picks a random bit b, and sets ct* =
(ct’,b,t) if b = 0; otherwise it sets ct* = (ct’, b, (t ® J(mg)). This is a correctly
distributed ciphertext since J(m{) = J(m7). Bz internally provides (ct*, st) to
As. Encryption queries of Ay are answered by B using its encryption oracle. It
is clear that the simulation is perfect.

If on the other hand A; gives out at the beginning of the game a challenge pair
that consists of a residue and a non residue, we are in case-2. This means that no
encryption queries are made by A7, and none will be made by As. So B also simply
outputs this pair and the state information to outside experiment. Upon receiving
a challenge ciphertext and state, it gives the following ciphertext to As: (ct, b, ¢)
where both b and ¢ are uniformly random bits. The state information is also given
to As. In this case also the simulation is perfect, since irrespective of the value of
b, ¢ is distributed correctly as in a proper ciphertext (every value of ¢ defines an
implicit value for the one-time pad, which is information theoretically hidden since
there are no other encryption queries made). This completes the proof.
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Lemma 4.3. There exists a valid polynomial-time LOR. attacker on IT* with
advantage 1 — 27" where n is the number of queries it makes.

Proof. The attacker proceeds as follows in the LOR-game. It sends queries such
that the the left-sequence contains only quadratic-residues, while the right-
sequence contains only quadratic-non-residues. Notice that this a valid pair of
sequences since the equality patterns are the same with respect to property
Py,: the output of the property is always 1 for any pair of messages in each
sequence. However if the length of each sequence is n, then with probability
g=1-2- (é)n = 1 — 27" there will be two ciphertexts (cty,b1,c1) and
(cta, ba, c2) for which by # bs. In this case, the value ¢; @ca reveals the residuosity-
sign of one of the two streams. Since this sign is known to the attacker and it is
different for the two streams, it compromises LOR-security. In the unlikely case
when by = bs for all ciphertexts, the attacker fails, say by outputting 0, giving
us the required advantage.

Our next goal is to separate FTG"! from FTG". The following theorem will be
proven in the full version using the same property P,.

Theorem 4.4 (FtG"7 /4 FtG™'). Let n € N be a fized positive integer.
Suppose there exists a FTG"-secure property-preserving symmetric encryption
scheme II for property Py and plaintext-space M = Z;. Then there exists an-
other property-preserving symmetric encryption scheme II* for property Py and
plaintext space M such that IT* is FTG"-secure, but it is not FTG" L -secure.

5 Constructions of Property-Preserving Encryption

In this section, we present constructions of property preserving encryption
(PPEnc) encryption scheme. Instead of constructing the full-fledged scheme,
it suffices to construct a slightly weaker variant, called property-preserving tag
scheme (PPTag). A PPTag scheme allows us to test the property Test, without
having a decryption algorithm. We can get correct decryption by utilizing ap-
propriately any IND — CPA secure symmetric encryption scheme. We refer the
reader to [31/41] for this somewhat standard approach.

To start with, we note that for unary properties P, one can simply include
the value of P(m) in the ciphertext, to get a construction. Therefore, we fo-
cus on properties of higher arity. In the full version of the paper, we present
a generic construction of PPTag for any binary property from adaptively fully
secure predicate encryption[4I]. The main idea of this construction is that the
new encryption algorithm calls the encryption algorithm of the original predicate
encryption scheme and the token generation algorithm, both with input the mes-
sage m. The resulting ciphertext consists of a ciphertext part and a token part.
A selectively fully secure scheme is given in [4I], which is not sufficient for our
LoOR security definition. Therefore, we present an explicit PPEnc construction
in the following section.
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5.1 An Explicit Construction for Testing Orthogonality

This is a construction for testing orthogonality of two vectors. The plaintext
space of our scheme is M = (Z3% U {0})" where N = pq for two A\-bit primes p
and q, Z}; is the set of invertible elements of Zy, and n :€ N — N polynomial
in A.[1 The associated property P : M x M — {0,1} is such that: P(&,7) = 0 if
#-v =0 mod p and 1 otherwise. The algorithms of our scheme are the following;:

— Setup(1*,n) — (pp, sk): Pick two different prime numbers p, ¢ uniformly in
the range [2*~1,2%), where A > 3. Pick a group G of order N = pq with
a bilinear map e : G x G — Gg. Select two random generators go, g1 for

subgroups of order p and ¢ respectively.

Let S, % {(z1,..., @) € Z2|>7 22 € QRy} be a set of vectors with

K3
n components. Select a vector v = (71,...,7,) uniformly from the set S,.
Finally, let 6 € Z, be such that 6 = Y 72 (pick one of the two at
random), and 1g be the identity element of G. The parameters output by
the algorithm are:

pp = ()\,TL,N,G,GT,G,HG) sk = (907917{7i}?:176)
— Enc(pp, sk, M) — ct: On input a message M = (my, ma,..., my) the algo-

rithm picks two random elements of Zy: ¢, 1) &y ~- It outputs the following
ciphertext:

n 4 s "
et = (cto, fet:yiy) = (o7 {o™ - 9i™} )
— Test(pp, ct™, ct?) — {0,1}: On input the two ciphertexts ct(t) =
n n
(ct(()la{ctl(‘l)}‘ ) and ct@ = (ctéz),{ct?)}l ), the algorithm outputs

=1 =1
0 if and only if

H e (ctz(l), ctz(g)) =e (ct(()l), ct(()g))
i=1

Correctness. Correctness is satisfied, except with negligible probability, due to
the following:

H e (ctgl)7 ctgz)) =

—-

oMmt | My pOmP @,
€< "0 g 91

gO » Y0
=1 i=1
L ¢(1)¢(2>m(.1>m(.2) 1/2(”1#(2)7-2
:He(gmgo) T e(g1,91) ’
i=1
(1) () 3 (D) 7(2) (1) () 5= 2
=e(go,go)” © T elgr, )t ¥ =i

" Since the factorization of N is not public, the plaintext space is not public. However
if we assume that factoring is hard, any user that generates messages in Zy will,
except with negligible probability, generate a message in the correct plaintext space
Zy U A{0}.
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1) 2)
o () = e (5%, 08)

w(l)w@)é?
1)

e(g1,9

W@ 5 2
26(91791)¢ MRS

In the full version, we prove that our construction satisfies LOR-security in the
generic group model. We follow the terminology and proof ideas of [I3] and [9].
We assume that the group elements of groups G and G are encoded by two
random encodings v, 17 : Fxy — {0,1}™. These are injective functions that de-
fine the groups G = {¢(i)|i € Fn} and Gr = {¢r(i)|i € Fn}. We are also given
functions to compute the group operations on G and G and a function that
computes the non degenerate bilinear mapping e. Then, we prove the following
theorem.

Theorem 5.1. Let ¢, 97, G, Gy be as above, and let A be a generic algorithm,
representing a valid LOR-adversary against the scheme described above. Further,
suppose that A makes at most QQ encryption queries, and at most W group
operations and pairings counted together. Then the advantage of A in the LOR-
game is at most O ((nQ + W)?%-27%).
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