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Abstract. In 2008, Groth and Sahai proposed a powerful suite of tech-
niques for constructing non-interactive zero-knowledge proofs in bilinear
groups. Their proof systems have found numerous applications, includ-
ing group signature schemes, anonymous voting, and anonymous creden-
tials. In this paper, we demonstrate that the notion of smooth projective
hash functions can be useful to design round-optimal privacy-preserving
interactive protocols. We show that this approach is suitable for design-
ing schemes that rely on standard security assumptions in the standard
model with a common-reference string and are more efficient than those
obtained using the Groth-Sahai methodology. As an illustration of our
design principle, we construct an efficient oblivious signature-based en-
velope scheme and a blind signature scheme, both round-optimal.

1 Introduction

In 2008, Groth and Sahai [22] proposed a way to produce efficient and practi-
cal non-interactive zero-knowledge and non-interactive witness-indistinguishable
proofs for (algebraic) statements related to groups equipped with a bilinear map.
They have been significantly studied in cryptography and used in a wide variety
of applications in recent years (e.g. group signature schemes [8,9,20] or blind
signatures [2,[5]). While avoiding expensive NP-reductions, these proof systems
still lack in practicality and it is desirable to provide more efficient tools.

Smooth projective hash functions (SPHF) were introduced by Cramer and
Shoup [13] for constructing encryption schemes. A projective hashing family is
a family of hash functions that can be evaluated in two ways: using the (se-
cret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on
a special subset of its domain. Such a family is deemed smooth if the value of
the hash function on any point outside the special subset is independent of the
projected key. If it is hard to distinguish elements of the special subset from non-
elements, then this primitive can be seen as special type of zero-knowledge proof
system for membership in the special subset. The notion of SPHF has found
applications in various contexts in cryptography (e.g. [I8,26,1]). We present
some other applications with privacy-preserving primitives that were already
inherently interactive.
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Applications: Our two applications are Oblivious Signature-Based Envelope [27]
and Blind Signatures [12].

Oblivious Signature-Based Envelope (OSBE) were introduced in [27]. It can
be viewed as a nice way to ease the asymmetrical aspect of several authentica-
tion protocols. Alice is a member of an organization and possesses a certificate
produced by an authority attesting she is in this organization. Bob wants to
send a private message P to members of this organization. However due to the
sensitive nature of the organization, Alice does not want to give Bob neither her
certificate nor a proof she belongs to the organization. OSBE lets Bob sends an
obfuscated version of this message P to Alice, in such a way that Alice will be
able to find P if and only if Alice is in the required organization. In the pro-
cess, Bob cannot decide whether Alice does really belong to the organization.
They are part of a growing field of protocols, around automated trust negotia-
tion, which also include Secret Handshakes [3], Password-based Authenticated
Key-Exchange [19], and Hidden Credentials [I0]. Those schemes are all closely
related, so due to space constraints, we are going to focus on OSBE (as if you
tweak two of them, you can produce any of the other protocols [11]).

Blind signatures were introduced by Chaum [12] for electronic cash in order
to prevent the bank from linking a coin to its spender: they allow a user to
obtain a signature on a message such that the signer cannot relate the resulting
message/signature pair to the execution of the signing protocol. In [I5], Fischlin
gave a generic construction of round-optimal blind signatures in the common-
reference string (CRS) model: the signing protocol consists of one message from
the user to the signer and one response by the signer. The first practical instan-
tiation of round-optimal blind signatures in the standard model was proposed
in [2] but it relies on non-standard computational assumptions. We proposed, re-
cently only [5], the most efficient realizations of round-optimal blind signatures
in the common-reference string model under classical assumptions. But these
schemes still use the Groth-Sahai proof systems.

Contributions: Our first contribution is to clarify and increase the security
requirements of an OSBE scheme. The main improvement residing in some pro-
tection for both the sender and the receiver against the Certification Authority.
The OSBE notion echoes directly to the idea of SPHF if we consider the language
L defined by encryption of valid signatures, which is hard to distinguish under
the security of the encryption schemes. We show how to build, from a SPHF
on this language, an OSBE scheme in the standard model with a CRS. And we
prove the security of our construction in regards of the security of the commit-
ment (the ciphertext), the signature and the SPHF scheme. We then show how
to build a simple and efficient OSBE scheme relying on a classical assumption,
DLin. An asymmetrical version is available in the full version [6]. To build those
schemes, we use SPHF in a new way, avoiding the need of costly Groth-Sahai
proofs when an interaction is inherently needed in the primitive. Our method
does not add any other interaction, and so supplement smoothly those proofs.
To show the efficiency of the method, and the ease of application, we then
adapt two Blind Signature schemes proposed in [5]. Our approach fits perfectly
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and decreases significantly the communicational complexity of the schemes (it
is divided by more than three in one construction). Moreover one scheme relies
on a weakened security assumptions: the XDH assumption instead of the SXDH
assumption and permits to use more bilinear group settings (namely, Type-II
and Type-III bilinear groups [16] instead of only Type-I1I bilinear groups for the
construction presented in [5]).

2 Definitions

In this section, we briefly recall the notations and the security notions of the
basic primitives we will use in the rest of the paper, and namely public key
encryption, signature and smooth projective hash functions (SPHF), using the
Gennaro-Lindell [18] extension. More details are available in the full version [6].
In a second part, we recall and enhance the security model of oblivious signature-
based envelope protocols [27].

2.1 Notations

Encryption Scheme. A (public-key) encryption scheme is defined by four algo-
rithms: param < ESetup(1¥), (ek, dk) +- EKeyGen(param), ¢ <— Encrypt(ek, m;7),
and m < Decrypt(dk, ¢). We will need the classical notion of IND-CPA security.
More precisely, we will use commitment schemes (as in [I]), which should be
hiding (indistinguishability) and binding (one opening only), with the additional
extractability property. The latter property thus needs an extracting algorithm
that corresponds to the decryption algorithm. Hence the notation with encryp-
tion schemes.

Signature Scheme. A signature scheme is defined by four algorithms: param «+
SSetup(1¥), (vk,sk) «- SKeyGen(param), o < Sign(sk,m; s), and Verif(vk,m, o).
We will need the classical notion of EUF-CMA security.

Smooth Projective Hash Function. An SPHF system [I3] on a language £ is
defined by five algorithms: SPHFSetup(1%) that generates the global parameters,
HashKG(L, param) that generates a hashing key hk, ProjKG(hk, (£, param), W)
that derives the projection key hp, possibly depending on the word W [18,[1].
Then, Hash(hk, (£, param), W) and ProjHash(hp, (£, param), W, w) outputs the
hash value, either from the hashing key, or from the projection key and the
witness. The correctness of the scheme assures that if W is indeed in £ with w as
a witness, then the two ways to compute the hash value give the same result. The
security of a SPHF is defined through two different notions, the smoothness and
the pseudo-randomness properties: The smoothness property guarantees that if
W & L, then the hash value is statistically random (statistically indistinguishable
from a random element). The pseudo-randomness guarantees that even for a
word W € L, but without the knowledge of a witness w, then the hash value is
random (computationally indistinguishable from a random element). Abdalla et
al. [1] explained how to combine SPHF to deal with conjunctions and disjunctions
of the languages.
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2.2 Oblivious Signature-Based Envelope

We now define an OSBE protocol, where a sender S wants to send a private
message P € {0, 1}2 to a recipient R in possession of a certificate/signature on
a message M.

Definition 1 (Oblivious Signature-Based Envelope). An OSBE scheme

is defined by four algorithms (OSBESetup, OSBEKeyGen, OSBESign, OSBEVerif),
and one interactive protocol OSBEProtocol(S, R):

— OSBESetup(1%), where k is the security parameter, generates the global pa-
rameters param;

— OSBEKeyGen(param) generates the keys (vk,sk) of the certification authority;

— OSBESign(sk,m) produces a signature o on the input message m, under the
signing key sk;

— OSBEVerif(vk,m, o) checks whether o is a valid signature on m, w.r.t. the
public key vk; it outputs 1 if the signature is valid, and 0 otherwise.

— OSBEProtocol(S(vk, M, P), R(vk, M, o)) between the sender S with the pri-
vate message P, and the recipient R with a certificate o. If o is a valid
signature under vk on the common message M, then R receives P, other-
wise it receives nothing. In any case, S does not learn anything.

Such an OSBE scheme should be (the three last properties are additional —or
stronger— security properties from the original definitions [27]):

— correct: the protocol actually allows R to learn P, whenever o is a valid
signature on M under vk;

— oblivious: the sender should not be able to distinguish whether R uses a valid
signature o on M under vk as input. More precisely, if R¢ knows and uses
a valid signature ¢ and R; does not use such a valid signature, the sender
cannot distinguish an interaction with R from an interaction with Rq;

— (weakly) semantically secure: the recipient learns nothing about S input P if
it does not use a valid signature o on M under vk as input. More precisely, if
Sy owns Py and S; owns Py, the recipient that does not use a valid signature
cannot distinguish an interaction with Sy from an interaction with Sy;

— semantically secure (denoted sem): the above indistinguishability should hold
even if the receiver has seen several interactions (S(vk, M, P), R(vk, M, o))
with valid signatures, and the same sender’s input P;

— escrow free (denoted esc): the authority (owner of the signing key sk), playing
as the sender or just eavesdropping, is unable to distinguish whether R used
a valid signature ¢ on M under vk as input. This notion supersedes the
above oblivious property, since this is basically oblivious w.r.t. the authority,
without any restriction.

— semantically secure w.r.t. the authority (denoted sem™*): after the interaction,
the authority (owner of the signing key sk) learns nothing about P.

We insist that the escrow-free property (esc) is stronger than the oblivious prop-
erty, hence we will consider the former only. However, the semantic security
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Expzcgé’g’ (k) [Escrow Free property]

1. param < OSBESetup(1%)

2. vk < A(INIT : param)

3. (M,o) < A(FIND : Send(vk, -, -),Rec”(vk, -, -,0), Exec” (vk, -, -, -))
4. OSBEProtocol(A,Rec”(vk, M, o, b))

5. b < A(GUESS : Send(vk, -, -),Rec*(vk, -, -, 0), Exec* (vk, -, -, -))

6. RETURN b’

sem™ —b

Expsse. 4 (k) [Semantic security w.r.t. the authority]

1. param < OSBESetup(1*)

2. vk <— A(INIT : param)

3. (M,o, Py, Py) + A(FIND : Send(vk, -, -),Rec”(vk, -, -, 0), Exec” (vk, -, -, -))
4. transcript < OSBEProtocol(Send(vk, M, P,),Rec” (vk, M, o, 0)

5. b' < A(GUESS : transcript, Send(vk, -, -), Rec*(vk, -, -, 0), Exec* (vk, -, -, -))
6. RETURN b’

sem—b

Expospe (k) [Semantic Security]

. param < OSBESetup(1*)

(vk, sk) <— OSBEKeyGen(param)

. (M, Py, P1) < A(FIND : vk,Sign*(vk, ), Send(vk, -, -),Rec(vk, -, 0), Exec(vk, -, ))
. OSBEProtocol(Send(vk, M, P,), A)

. b + A(GUESS : Sign(vk, -), Send(vk, -, -), Rec(vk, -, 0), Exec(vk, -, -))

. IF M € SM RETURN 0 ELSE RETURN b’

O UL W

Fig. 1. Security Games for OSBE

w.r.t. the authority (sem*) is independent from the basic semantic security (sem)
since in the latter the adversary interacts with the sender whereas in the for-
mer the adversary (who generated the signing keys) has only passive access to
a challenge transcript.

These security notions can be formalized by the security games presented on
Figure[ll where the adversary keeps some internal state between the various calls
INIT, FIND and GUESS. They make use of the oracles described below, and the
advantages of the adversary are, for all the security notions,

Advpspe alk) = PT[EXP?DTSIB’S,A(IC) =1] - Pr[EXp?DTSOBS,A(k) =1]

Advpspe(k,t) = max Advpspe, (k).

— Sign(vk,m): This oracle outputs a valid signature on m under the signing
key sk associated to vk (where the pair (vk,sk) has been outputted by the
OSBEKeyGen algorithm);

— Sign*(vk, m): This oracle first queries Sign(vk,m). It additionally stores the
query m to the list SM;

— Send(vk, m, P): This oracle emulates the sender with private input P, and
thus may consist of multiple interactions;

— Rec(vk, m, b): This oracle emulates the recipient either with a valid signature
o on m under the verification key vk (obtained from the signing oracle Sign)
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if b = 0 (as the above Rg), or with a random string if b = 1 (as the above
R1). This oracle is available when the signing key has been generated by
OSBEKeyGen only;

— Rec*(vk,m, o, b): This oracle does as above, with a valid signature o provided
by the adversary. If b = 0, it emulates the recipient playing with o; if b =1,
it emulates the recipient playing with a random string;

— Exec(vk,m, P): This oracle outputs the transcript of an honest execution
between a sender with private input P and the recipient with a valid signa-
ture o on m under the verification key vk (obtained from the signing oracle
Sign). It basically activates the Send(vk, m, P) and Rec(vk, m, 0) oracles.

— Exec*(vk,m, o, P): This oracle outputs the transcript of an honest execution
between a sender with private input P and the recipient with a valid signa-
ture o (provided by the adversary). It basically activates the Send(vk, m, P)
and Rec*(vk, m, g, 0) oracles.

Remark 2. The OSBE schemes proposed in [27] do not satisfy the semantic
security w.r.t. the authority. This is obvious for the generic construction based
on identity-based encryption which consists in only one flow of communication
(since a scheme that achieves the strong security notions requires at least two
flows). This is also true (to a lesser extent) for the RSA-based construction: for
any third party, the semantic security relies (in the random oracle model) on the
CDH assumption in a 2048-bit RSA group; but for the authority, it can be broken
by solving two 1024-bit discrete logarithm problems. This task is much simpler
in particular if the authority generates the RSA modulus N = pq dishonestly
(e.g. with p — 1 and ¢ — 1 smooth). In order to make the scheme secure in our
strong model, one needs (at least) to double the size of the RSA modulus and to
make sure that the authority has selected and correctly employed a truly random
seed in the generation of the RSA key pair [25].

3 An Efficient OSBE Scheme

In this section, we present a high-level instantiation of OSBE with the previous
primitives as black boxes. Thereafter, we provide a specific instantiation with
linear ciphertexts. The overall security then relies on the DLin assumption, a
quite standard assumption in the standard model. Its efficiency is of the same
order of magnitude than the construction based on identity-based encryption [27]
(that only achieves weaker security notions) and better than the RSA-based
scheme which provides similar security guarantees (in the random oracle model).

3.1 High-Level Instantiation

We assume we have an encryption scheme &£, a signature scheme S and a SPHF
system onto a set G. We additionally use a key derivation function KDF to
derive a pseudo-random bit-string K € {0, 1}* from a pseudo-random element v
in G. One can use the Leftover-Hash Lemma [23], with a random seed defined
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in param during the global setup, to extract the entropy from v, then followed
by a pseudo-random generator to get a long enough bit-string. Many uses of
the same seed in the Leftover-Hash-Lemma just leads to a security loss linear
in the number of extractions. We describe an oblivious signature-based envelope
system OSBE, to send a private message P € {0,1}*:

— OSBESetup(1¥), where k is the security parameter:

e it first generates the global parameters for the signature scheme (using
SSetup), the encryption scheme (using ESetup), and the SPHF system
(using SPHFSetup);

e it then generates the public key ek of the encryption scheme (using
EKeyGen, while the decryption key will not be used);

The output param consists of all the individual param and the encryption
key ek;

— OSBEKeyGen(param) runs SKeyGen(param) to generate a pair (vk,sk) of
verification-signing keys;

— The OSBESign and OSBEVerif algorithms are exactly Sign and Verif from
the signature scheme;

— OSBEProtocol(S(vk, M, P), R(vk, M, c)): In the following, £ = L(vk, M) will
describe the language of the ciphertexts under the above encryption key ek
of a valid signature of the input message M under the input verification key
vk (hence vk and M as inputs, while param contains ek).

e R generates and sends ¢ = Encrypt(ek, o;7);

e S computes hk = HashKG(L, param), hp = ProjKG(hk, (£, param), ¢), v =
Hash(hk, (£, param), ¢), and @ = P @& KDF(v); S sends hp, @ to R;

e R computes v’ = ProjHash(hp, (£, param),c,r) and P’ = Q @& KDF(v').

3.2 Security Properties
Theorem 3 (Correct). OSBE is sound.

Proof. Under the correctness of the SPHF system, v' = v, and thus P’ = (P ®
KDF(v)) ® KDF(v') = P.

Theorem 4 (Escrow-Free). OSBE is escrow-free if the encryption scheme
& is semantically secure: AdviS e (k,t) < Advied(k, t') with t' ~t.

Proof. Let us assume A is an adversary against the escrow-free property of our
scheme: The malicious adversary A is able to tell the difference between an
interaction with Ry (who knows and uses a valid signature) and R; (who does
not use a valid signature), with advantage e.

We now build an adversary B against the semantic security of the encryption
scheme &:

— B is first given the parameters for £ and an encryption key ek;

— B emulates OSBESetup: it runs SSetup and SPHFSetup by itself. For the
encryption scheme &, the parameters and the key have already been provided
by the challenger of the encryption security game;
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— A provides the verification key vk;
— B has to simulate all the oracles:
e Send(vk, M, P), for a message M and a private input P: upon receiving
¢, one computes hk = HashKG(L, param), hp = ProjKG(hk, (£, param), ¢),
v = Hash(hk, (£, param),c), and Q@ = P @ KDF(v). One sends back
(hp, Q);
e Rec*(vk, M,0,0), for a message M and a valid signature o: B outputs
¢ = Encrypt(ek, o;7);
e Exec*(vk, M, o, P): one first runs Rec(vk, M, 0,0) to generate ¢, that is
provided to Send(vk, M, P), to generate (hp, Q).
— At some point, A outputs a message M and a valid signature o, and B has
to simulate Rec*(vk, M, 0,b): B sets og < o and sets o as a random string.
It sends (09, 01) to the challenger of the semantic security of the encryption
scheme and gets back ¢, an encryption of og, for a random unknown bit £.
It outputs c;
— B provides again access to the above oracles, and A outputs a bit &', that B
forwards as its guess 3’ for the 8 involved in the semantic security game for

£.

Note that the above simulation perfectly emulates Exp?;fggﬁg’ (k) (since basically
bis B, and v’ is B'):

e = Adv35pe a(k) = AdvEs(k) < Advid(k, t).

Theorem 5 (Semantically Secure). OSBE is semantically secure if the
signature is unforgeable, the SPHF is smooth and the encryption scheme is
semantically secure (and under the pseudo-randomness of the KDF ):

AdvET e (k, 1) < qu AdvE? (k, t')+2 Succ®® (k, gs, t")+2 AdvSSesit. (k) with t' , 1" ~t.

In the above formula, qu denotes the number of interactions the adversary has
with the sender, and qs the number of signing queries the adversary asked.

Proof. Let us assume A is an adversary against the semantic security of our
scheme: The malicious adversary A is able to tell the difference between an
interaction with Sy (who owns Py) and &1 (who owns P;), with advantage . We
start from this initial security game, and make slight modifications to bound €.

Game Gy. Let us emulate this security game:

— B emulates the initialization of the system: it runs OSBESetup by itself, and
then OSBEKeyGen to generate (vk,sk);
— B has to simulate all the oracles:
e Sign(vk, M) and Sign*(vk, M): it runs the corresponding algorithm by
itself;
e Send(vk, M, P), for a message M and a private input P: upon receiving
¢, one computes hk = HashKG(L, param), hp = ProjKG(hk, (£, param), ¢),
v = Hash(hk, (£, param),c), and Q@ = P & KDF(v). One sends back

(hp, Q);
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e Rec(vk, M,0), for a message M: B asks for a valid signature o on M,
computes and outputs ¢ = Encrypt(ek, o;r);

e Exec(vk, M, P): one simply first runs Rec(vk, M, 0) to generate ¢, that is
provided to Send(vk, M, P), to generate (hp, Q).

— At some point, A outputs a message M and two inputs (P, P1) to distinguish
the sender, and B call back the above Send(vk, M, P,) simulation to interact
with A;

— B provides again access to the above oracles, and A outputs a bit &’.

In this game, A has an advantage € in guessing b:

e=Prt =1b=1]-Prt/ = 1[b=0] =2 x Pr[t) =b] — 1.
0 Go Go

Game Qf . This game involves the semantic security of the encryption scheme: B
is already provided the parameters and the encryption key ek by the challenger
of the semantic security of the encryption scheme, hence the initialization is
slightly modified. In addition, B randomly chooses the bit b, and modifies the
Rec oracle simulation:

— Rec(vk, M, 0), for a message M: B asks for a valid signature oy on M, and
sets o1 as a random string, computes and outputs ¢ = Encrypt(ek, op; 7).

Since B knows b, it finally outputs 8’ = (b’ = b).

Note that GY is exactly Gp, and the distance between GY and G} relies on the
Left-or-Right security of the encryption scheme, which can be shown equivalent
to the semantic security, with a lost linear in the number of encryption queries,
which is actually the number gy of interactions with a user (the sender in this
case), due to the hybrid argument [4]:

qu x Advid(k) > Pr[f' = 1|8 = 0] — Pr[' = 1|8 = 1]
=Pr[b/ = b8 =0] - Pr[t = b8 =1]
:(2><1;g[b’:b]—1)7(2xglr[b’:b]fl)

As a consequence: € < g x Advitd(k) + (2 x Prgi [t = b] - 1).

Game Go. This game involves the unforgeability of the signature scheme: B is
already provided the parameters and the verification vk for the signature scheme,
together with access to the signing oracle (note that all the signing queries Sign*
asked by the adversary in the FIND stage, i.e., before the challenge interaction
with Send(vk, M, P,), are stored in SM). The simulator B generates itself all the
other parameters and keys, an namely the encryption key ek, together with the
associated decryption key dk. For the Rec oracle simulation, B keeps the random
version (as in G{). In the challenge interaction with Send(vk, M, P,), one stops
the simulation and makes the adversary win if it uses a valid signature on a
message M & SM:
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— Send(vk, M, P,), during the challenge interaction: upon receiving ¢, if M ¢
SM, it first decrypts ¢ to get the input signature o. If ¢ is a valid signature,
one stops the game, sets ¥’ = b and outputs o'. If the signature is in not
valid, the simulation remains unchanged;

— Rec(vk, M, 0), for a message M: B sets ¢ as a random string, computes and
outputs ¢ = Encrypt(ek, o; 7).

Because of the abort in the case of a valid signature on a new message, we know
that the adversary cannot use such a valid signature in the challenge. So, since M
should not be in SM, the signature will be invalid. Actually, the unique difference
from the previous game Gi is the abort in case of valid signature on a new
message in the challenge phase, which probability is bounded by Succf}”f(k, qs)-
Using Shoup’s Lemma [29]:

Ig’lr[b’ =b — Ig’r[b’ = b] < Succ®f(k, ¢s).

As a consequence: € < g X AdviE? (k) 4+ 2 x Succ® (k, g5) + (2 x Prg, [0’ = b] —1).

Game Gs. The last game involves the smoothness of the SPHF: The unique
difference is in the computation of v in Send simulation, in the challenge phase
only: B chooses a random v € G. Due to the statistical randomness of v in
the previous game, in case the signature is not valid (a word that is not in the
language), this game is statistically indistinguishable from the previous one:

Ig)r[b’ =b] - Ig)r[b’ = b] < AdvIRS (k).
2 3

Since P, is now masked by a truly random value, no information leaks on b:
Prg,[b/ =b] =1/2.

Theorem 6. OSBE is semantically secure w.r.t. the authority if the SPHF
is pseudo-random (and under the pseudo-randomness of the KDF ):

AdVET e (k1) < 2 x AdVE Ly, (K, t).

Proof. Let us assume A is an adversary against the semantic security w.r.t. the
authority: The malicious adversary A is able to tell the difference between an
eavesdropped interaction with Sy (who owns Fy) and &; (who owns Py ), with ad-
vantage €. We start from this initial security game, and make slight modifications
to bound e¢.

Game Gy. Let us emulate this security game:

— B emulates the initialization of the system: it runs OSBESetup by itself;
— A provides the verification key vk;
— B has to simulate all the oracles:
e Send(vk, M, P), for a message M and a private input P: upon receiving
¢, one computes hk = HashKG(L, param), hp = ProjKG(hk, (£, param), ¢),
v = Hash(hk, (£, param),c), and Q@ = P @ KDF(v). One sends back

(hp, Q);
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e Rec*(vk, M, 0,0), for a message M and a valid signature o: B outputs
¢ = Encrypt(ek, o;7);

e Exec*(vk, M, o, P): one first runs Rec(vk, M, o,0) to generate ¢, that is
provided to Send(vk, M, P), to generate (hp, Q).

— At some point, A outputs a message M with a valid signature o, and
two inputs (P, P1) to distinguish the sender, and B call back the above
Send(vk, M, Py) and Rec*(vk, M, 0,0) simulations to interact together and
output the transcript (c; hp, Q);

— B provides again access to the above oracles, and A outputs a bit b’.

In this game, A has an advantage € in guessing b:

c=Prfy =1b=1] — Prlt = 1b=0] = 2 x Pet/ = 0] — 1.
Go Go Go

Game G1. This game involves the pseudo-randomness of the SPHF: The unique
difference is in the computation of v in Send simulation of the eavesdropped
interaction, and so for the transcript: B chooses a random v € G and computes
@ = P, ® KDF(v). Due to the pseudo-randomness of v in the previous game,
since A does not know the random coins r used to encrypt o, this game is
computationally indistinguishable from the previous one.

Prlb’ = b] — Pr[t) = b] < Advpy, (k. 1).
1 0

Since P, is now masked by a truly random value v, no information leaks on b:
Prg, [/ =b] = 1/2.

3.3 Our Efficient OSBE Instantiation

Our first construction combines the linear encryption scheme [7], the Waters
signature scheme [30] and a SPHF on linear ciphertexts [13}28]. It thus relies on
classical assumptions: CDH for the unforgeability of signatures and DLin for the
semantic security of the encryption scheme. The formal definitions are recalled
in the full version [6].

Basic Primitives. Given an encrypted Waters signature from the recipient,
the sender is able to compute a projection key, and a hash corresponding to the
expected signature, and send to the recipient the projection key and the product
between the expected hash and the message P. If the recipient was honest (a
correct ciphertext), it is able to compute the hash thanks to the projection key,
and so to find P, in the other case it does not learn anything.

We briefly sketch the basic building blocks: linear encryption, Waters signa-
ture and the SPHF for linear tuples.

All these primitives work in a pairing-friendly environment (p, G, g,Gr,e),
where e: G x G — Gr is an admissible bilinear map, for two groups G and Gr,
of prime order p, generated by g and g; = e(g, g) respectively.
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Waters Signatures. The public parameters are a generator h ¢~ G and a vector
w = (uo,...,ux) & GF*' which defines the Waters hash of a message M =
(My, ..., M) € {0,1}* as F(M) = uq Hle uMi. The public verification key is
vk = g%, which corresponding secret signing key is sk = h?, for a random 2z & Z,,.
The signature on a message M € {0,1}* is o = (01 = sk F(M)*, 02 = ¢°),
for some random s ¢ Z,. It can be verified by checking e(g, 1) = e(vk,h) -
e(F(M), o2). This signature scheme is unforgeable under the CDH assumption.

Linear Encryption. The secret key dk is a pair of random scalars (y1,y2) and
the public key is ek = (Y7 = ¢¥*,Ys = ¢¥2). One encrypts a message M € G
as ¢ = (a1 = Y{',co = Y3%,¢5 = g™ - M), for random scalars ry,7s &

Zy. To decrypt, one computes M = c3/(c; 1/ 1/y2)

semantzcally secure under the DLin assumption.

This encryption scheme is

DLin-compatible Smooth-Projective Hash Function. This is actually a weaker
variant of [28]. The language £ consists of the linear tuples w.r.t. a basis (u, v, g).
For a linear encryption key ek = (Y1,Y2), a ciphertext C' = (c1,¢2,c3) is an
encryption of the message M if (c1,c2,c3/M) is a linear tuple w.r.t. the basis
(Y1,Y2,g). The language Lin(ek, M) consists of these ciphertexts. An SPHF for
this language can be:

HashKG(Lin(ek, M)) = hk = (21,29, z3) & Zi

Hash(hk; Lin(ek, M), C) = ¢]*c5*(c3/M)*™?
ProjKG(hk; Lin(ek, M), C) = hp = (Y"*¢**, Y52 ¢"*)
ProjHash(hp; Lin(ek, M), C;r) = hp]*hps?

This function is defined for linear tuples in G, but it could work in any group,
since it does not make use of pairings. And namely, we use it below in Grp.

Smooth-Projective Hash Function for Linear Encryption of Valid Waters Signa-
tures. We will consider a slightly more complex language: the ciphertexts under
ek of a valid signature of M under vk. A given ciphertext C' = (¢1, ¢, c3,02)
contains a valid signature of M if and only if (c1,ce,c3) actually encrypts o1
such that (01, 02) is a valid Waters signature on M. The latter means

(Cl = 6(6179)702 = 6(6279)703 = 6(63,9)/(€(h,Vk) ' e(]:(M)vU?))
is a linear tuple in basis (U = e(Y1,9),V = e(Y2,9),9: = e(g,9)) in Gr. Since
the basis consists of 3 elements of the form e(:,g), the projected key can be
compacted in G. We thus consider the language WLin(ek, vk, M) that contains
these quadruples (c1, ¢2, c3, 02), and its SPHF:
HashKG(WLin(ek, vk, M)) = hk = (21, 2, x3) < Z]
Hash(hk; WLin(ek, vk, M), C) =
e(cr, )" e(ca, g)** (e(cs, g)/ (e(h, vk)e(F (M), 02)))*
ProjKG(hk; WLin(ek, vk, M), C) = hp = (ekj'g"™?, ek3?g™*)
ProjHash(hp; WLin(ek, vk, M), C;r) = e(hpi*hps?, g)
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Instantiation. We now define our OSBE protocol, where a sender S wants to
send a private message P € {0, 1}‘Z to a recipient R in possession of a Waters
signature on a message M.

— OSBESetup(1*), where k is the security parameter, defines a pairing-friendly
environment (p, G, g, Gr,e), the public parameters h & G, an encryption
key ek = (Y7 = g¥1, Y5 = g¥2), where (y1,y2) & 22, and u = (ug, . .., ug) &
G**! for the Waters signature. All these elements constitute the string
param;

— OSBEKeyGen(param), the authority generates a pair of keys (vk = g, sk =
h#) for a random scalar z < Z,;

— OSBESign(sk, M) produces a signature o = (h*F(M)*, g°);

— OSBEVerif(vk, M, o) checks if e(o1, g) = e(o2, F(M)) - e(h, vk).

— OSBEProtocol(S(vk, M, P), R(vk, M, c)) runs as follows:

e R chooses random 71,7 & Z, and sends a linear encryption of o:
C = (c; =ekl',co = eki?, c3 = g™ 172 - 01, 09)

e S chooses random 1, T, x5 < Zg and computes:

* HashKG(WLin(ek, vk, M)) = hk = (21, 22, z3);

* Hash(hk; WLin(ek,vk, M),C) = v =

e(c1,9)7 elez, )7 (e(cs, 9), (e(h, VK)e(F (M), 72))) "

* ProjKG(hk; WLin(ek, vk, M), C') = hp = (ekj*g*2, ek32g™2).
e S then sends (hp,Q = P @ KDF(v)) to R;
e R computes v’ = e(hp]*hps?, g) and P’ = Q & KDF(v').

An asymmetric instantiation can be found in the full version [6].

3.4 Security and Efficiency

We now provide a security analysis of this scheme. This instantiation differs, from
the high-level instantiation presented before, in the ciphertext C of the signature
o = (01,02). The second half of the signature indeed remains in clear. It thus
does not guarantee the semantic security on the signature used in the cipher-
text. However, granted Waters signature randomizability, one can re-randomize
the signature each time, and thus provide a totally new os: it does not leak
any information about the original signature. The first part of the ciphertext
(c1, c2,c3) does not leak any additional information under the DLin assumption.
As a consequence, the global ciphertext guarantees the semantic security of the
original signature if a new re-randomized signature is encrypted each time. We
can now apply the high-level construction security, and all the assumptions hold
under the DLin one:

Theorem 7. Our OSBE scheme is secure (i.e., escrow-free, semantically se-
cure, and semantically secure w.r.t. the authority) under the DLin assumption
(and the pseudo-random generator in the KDF).
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Our proposed scheme needs one communication for R and one for S, so it is
round-optimal. Communication also consists of few elements, R sends 4 group
elements, and S answers with 2 group elements only and an ¢-bit string for the
masked P € {0,1}%. As explained in Remark [ this has to be compared with
the RSA-based scheme from [27] which requires 2 elements in RSA groups (with
double-length modulus). For a 128-bit security level, using standard Type-I bilin-
ear groups implementation [16], we obtain a 62.5% improvement]] in communica-
tion complexity over the RSA-based scheme proposed in the original paper [27].

While reducing the communication cost of the scheme, we have improved
its security and it now fits the proposed applications. In [27], such schemes
were proposed for applications where someone wants to transmit a confidential
information to an agent belonging to a specific agency. However the agent does
not want to give away his signature. As they do not consider eavesdropping and
replay in their semantic security nothing prevents an adversary to replay a part
of a previous interaction to impersonate a CIA agent (to recall their example).
In practice, an additional secure communication channel, such as with SSL, was
required in their security model, hence increasing the communication cost: our
protocol is secure by itself.

4 An Efficient Blind Signature

4.1 Definitions

A more formal definition of blind signatures is provided in the full version [6],
but we briefly recall it in this section: A blind signature scheme BS is defined
by a setup algorithm BSSetup(1*) that generates the global parameters param,
and key generation algorithm BSKeyGen(param) that outputs a pair (vk, sk), and
interactive protocol BSProtocol(S(sk), U (vk, m)) which provides U with a signa-
ture on m, and a verification algorithm BSVerif (vk, m, o) that checks its validity.
The security of a blind signature scheme is defined through the unforgeability
and blindness properties: An adversary against the unforgeability tries to gen-
erate ¢s + 1 valid message-signature pairs after at most g5 complete interactions
with the honest signer; The blindness condition states that a malicious signer
should be unable to decide which of two messages mg, m; has been signed first
in two executions with an honest user.

4.2 Our Instantiation

We now present a new way to obtain a blind signature scheme in the standard
model under classical assumptions with a common-reference string. This is an
improvement over [5]. We are going to use the same building blocks as before,
so linear encryption, Waters signatures and a SPHF on linear ciphertexts. More
elaborated languages will be required, but just conjunctions and disjunctions of

! The improvement is even more important for the scheme described in the full version
where the size drops down to 3/16-th.
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classical languages, as done in [I] (see the full version [6]), hence the efficient
construction. Our blind signature scheme is defined by:

— BSSetup(1*¥), generates a pairing-friendly system (p, G, g, Gr,€) and an en-
cryption key ek = (u,v,g9) € G3. It also chooses at random h € G and
generators u = (u;)ie[1,g € G* for the Waters function. It outputs the
global parameters param = (p, G, g,Gr, e, ek, h, u);

— BSKeyGen(param) picks at random a secret key sk = = and computes the
verification key vk = ¢*;

— BSProtocol(S(sk), U (vk, m)) runs as follows, where U wants to get a signature
on M

e U/ computes the bit-per-bit encryption of M by encrypting each uiw‘ in b;,
Vi € [1,4],b; = Encrypt(ek, ui\/[‘; (rig,ri2)) = (u’"ivl,v’"iv%g”’l*’"ivzuiw"’).
Then writing 71 = Y. r;1 and ro = > 7; 2, he computes the encryption
c of vk 172 with Encrypt(ek, vk 772; (51, 52)) = (u®t, v®2, g5t T52vk™ T72),
U then sends (c, (b;));

e On input of these ciphertexts, the algorithm S computes the correspond-
ing SPHF, considering the language £ of valid ciphertexts. This is the
conjunction of several languages :

1. One checking that each b; encrypts a bit in basis w;: in BLin(ek, u;);

2. One considering (di,da, c1, 2, c3), that checks if (1, ¢o, c3) encrypts
an element ds such that (dq, ds, d3) is a linear tuple in basis (u, v, vk):
in ELin(ek, vk), where di =[], b;;1 and da =[], bi 2.

e S computes the corresponding Hash-value v, extracts K = KDF(v) €
Z,p, generates the blinded signature (of = h¥6%,05 = ¢°), where § =
uo [, bi,s = F(M)g™+"2, and sends (hp, @ = of x g%, 0%);

e Upon receiving (hp, Q, 04), using its witnesses and hp, U computes the
ProjHash-value v/, extracts K’ = KDF(v/) and unmasks o/ = Q x g~ %".
Thanks to the knowledge of r1 and r3, it can compute of = of X
(o4)~™~"2. Note that if v' = v, then o] = h*F(M)*®, which together
with o = ¢° is a valid Waters signature on M. It can thereafter re-
randomize the final signature o = (¢} - F(M)*, 0} - g* ).

— BSVerif(vk, M, o), checks whether e(o1,9g) = e(h,vk) - e(F(M), 02).

The idea is to remove any kind of proof of knowledge in the protocol, which was
the main concern in [5], and use instead a SPHF. This way, we obtain a protocol
where the user first sends 3¢ 4 6 group elements for the ciphertext, and receives
back 5 + 4 elements for the projection key and 2 group elements for the blinded
signature. So 8¢ + 12 group elements are used in total. This has to be compared
to 94424 in [5]. We both reduce the linear and the constant parts in the number
of group elements involved while relying on the same hypotheses. And the final
result is still a standard Waters signature.

Remark 8. In [17], Garg el al. proposed the first round-optimal blind signature
scheme in the standard model, without CRS. In order to remove the CRS, their
scheme makes use of ZAPs [14] and is quite inefficient. Moreover, its security
relies on a stronger assumption (namely, sub-exponential hardness of one-to-one
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one-way functions). A natural idea is to replace the CRS in our scheme with
Groth-Ostrovsky-Sahai ZAP [21] based on the DLin assumption. This change
would only double the communication complexity, but we do not know how
to prove the security of the resulting schemdd. Tt remains a tantalizing open
problem to design an efficient round-optimal blind signature in the standard
model without CRS.

4.3 Security
In blind signatures, one expects two kinds of security properties:

— blindness, preventing the signer to be able to recognize which message was
signed during a specific interaction. Due to Waters re-randomizability and
linear encryption, this property is guaranteed in our scheme under the DLin
assumption;

— unforgeability, guaranteeing the user will not be able to output more signed
messages than the number of actual interactions. In this scheme, granted the
extractability of the encryption (the simulator can know the decryption key)
one can show that the user cannot provide a signature on a message different
from the ones it asked to be blindly signed. Hence, the unforgeability relies
on the Waters unforgeability, that is the CDH assumption.

Theorem 9. Our blind signature scheme is blindd under the DLin assumption
(and the pseudo-randomness of the KDF) and unforgeable under the CDH as-
sumption.

A full proof can be found in the full version [6].
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