
Leakage-Resilient Circuits
without Computational Assumptions�

Stefan Dziembowski1,�� and Sebastian Faust2,� � �

1 University of Warsaw and Sapienza University of Rome
2 Aarhus University

Abstract. Physical cryptographic devices inadvertently leak informa-
tion through numerous side-channels. Such leakage is exploited by so-
called side-channel attacks, which often allow for a complete security
breache. A recent trend in cryptography is to propose formal models to
incorporate leakage into the model and to construct schemes that are
provably secure within them.

We design a general compiler that transforms any cryptographic
scheme, e.g., a block-cipher, into a functionally equivalent scheme which
is resilient to any continual leakage provided that the following three re-
quirements are satisfied: (i) in each observation the leakage is bounded,
(ii) different parts of the computation leak independently, and (iii) the
randomness that is used for certain operations comes from a simple (non-
uniform) distribution. In contrast to earlier work on leakage resilient cir-
cuit compilers, which relied on computational assumptions, our results
are purely information-theoretic. In particular, we do not make use of
public key encryption, which was required in all previous works.

1 Introduction

Leakage resilient cryptography attempts to incorporate side-channel information
leakage into standard cryptographic models and to design new cryptographic
schemes that provably withstand such leakages under reasonable physical as-
sumptions. The “holy grail” in leakage-resilient cryptography is a generic method
to provably protect any cryptographic computation against a broad, well-defined
and realistic class of side-channel leakages. This fundamental question has first

� This work was supported by the WELCOME/2010-4/2 grant founded within the
framework of the EU Innovative Economy (National Cohesion Strategy) Opera-
tional Programme.

�� The European Research Council has provided financial support to the first author
of this paper under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no CNTM-207908.

� � � Sebastian Faust acknowledges support from the Danish National Research Founda-
tion and The National Science Foundation of China (under the grant 61061130540)
for the Sino-Danish Center for the Theory of Interactive Computation, within part
of this work was performed; and from the CFEM research center, supported by
the Danish Strategic Research Council.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 230–247, 2012.
c© International Association for Cryptologic Research 2012

Leakage-Resilient Circuits without Computational Assumptions 231

been studied in the work of Ishai et al. [ISW03] who initiated the concept of
leakage resilient circuit compilers. A circuit compiler takes a description of a
(Boolean) circuit Γ as input and outputs a transformed (Boolean) circuit ΠΓ

with the same functionality, but with resilience to certain well-defined classes
of leakage. The authors consider a very specific type of leakage, namely, an ad-
versary who learns the values of up to n ∈ N internal wires in each execution
of ΠΓ . Security is proven by a simulation based argument. More precisely, it is
shown that any (computationally unbounded) adversary that learns the value of
up to n internal wires in each execution of ΠΓ has only a negligible advantage
over an adversary that only views the inputs/outputs of the original circuit Γ .

The result of Ishai et al. shows security for a very restricted class of leakages,
namely, security is proven only against the specific attack of learning the val-
ues of n wires. The question that motivates our work is whether, analogously
to [ISW03], we can protect any computation against the much broader class of
polynomial-time computable leakages. This question has been answered affirma-
tively in the recent feasibility results of Juma and Vahlis [JV10] and Goldwasser
and Rothblum [GR10] by making additionally use of the prominent “only com-
putation leaks information” assumption [MR04]. The security of both compilers,
however, relies on heavy cryptographic machinery by using public key encryption
to “encrypt” the secret state and the whole computation of Γ .1

At first sight, it may look natural to rely on some form of cryptographic en-
cryption, if we want to achieve security against any polynomial-time computable
leakage function. For instance, it is necessary to “encrypt” the secret state of Γ ,
as already a single bit of information leaking about the original secret state
makes simulation-based security impossible. Perhaps surprisingly, in this paper
we show that cryptographically secure encryption schemes are not necessary to
construct leakage resilient circuit compilers for polynomial-time computable leak-
ages. More precisely, we show that even an unbounded adversary with continuous
leakage access to ΠΓ only gains a negligible advantage over an adversary with
only black-box access to Γ .

Similar to earlier work, we make certain restrictions on the leakage. We follow
the work of Dziembowski and Pietrzak [DP08], and allow the leakage to be
arbitrary as long as the following two restrictions are satisfied:

1. Bounded leakage: the amount of leakage in each round is bounded to λ
bits (but overall can be arbitrary large).

2. Independent leakage: the computation can be structured into sub compu-
tations, where each part of the computations leaks independently (we define
the term of a “sub computation” below).

Formally, this is modeled by letting the adversary for each observation choose a
leakage function f with range {0, 1}λ, and then giving her f(τ) where τ is all
the data that has been accessed in the current sub-computation. In addition, we
require access to a source of correlated randomness generated in a leak-free way
1 More precisely, Juma and Vahlis require fully homomorphic encryption, while Gold-

wasser and Rothblum use a variant of the BHHO encryption scheme.

232 S. Dziembowski and S. Faust

– e.g., computed by a simple leak free component. We provide more details on
our hardware assumptions below.

On Independent Leakages. Variants of the assumption that different parts
of the computation leak independently have been used in several works [DP08,
Pie09,KP10,GR10,GR10,JV10]. In its weakest form, the assumption says that
the state is divided into two parts that leak independently. This type of assump-
tion is used, e.g., in the work on leakage resilient stream ciphers [DP08,Pie09].
Several stronger flavors have been used in the literature. For instance, in the cir-
cuit compiler of Goldwasser and Rothblum [GR10] the computation is structured
into O(s) sub-computations, where s is the size of the original circuit. Of course,
in practice leakage is a global phenomenon and assumptions that require a large
number of independent computations is a strong assumption on the hardware.
We would like to emphasize, however, hat many relevant global leakage func-
tions can be computed from independent leakages. This is not only true for the
prominent Hamming weight leakage, but more generally, for any affine leakage
function.

On the Relation between Leakage Granularity and the Amount of
Leakage. We show a relation between the granularity level of the independent
leakage assumption and the amount of leakage that can be tolerated per obser-
vation. More precisely, in our basic setting we assume that the computation is
structured into 2s parts that leak independently, where s is the number of gates
in Γ (this is comparable to the model of [GR10]). Here, the amount of leakage
can increase linearly with the size of the circuit. Alternatively, we may settle for
weaker independency assumptions. That is, in the best case we may require only
two sub-components that leak independently. Of course this comes at a price: the
amount of leakage that is tolerated is independent of the circuit’s size. We notice
that we can tolerate more leakage if we assume some strong form of memory
erasures between sub-computations (cf. Section 6 for the details).

On Leak-Free Components. Leak-free components are used by recent leakage
resilient circuit compilers [GKR08,FRR+10,JV10,GR10]. A leak-free component
leaks from its outputs, but the leakage is oblivious to its internals. In this work,
we use the leak-free component, O, that was recently introduced by Dziembowski
and Faust [DF11]. This component outputs two random vectors A, B ← F

n (with
F being a finite field and n being a statistical security parameter) such that their
inner product is 0, i.e.,

∑
i Ai ·Bi = 0. As discussed in [DF11], O exhibits several

properties that are beneficial for implementation. We refer the reader to [DF11]
for a more thorough discussion on the properties of O.

1.1 Our Contributions

We propose a general transformation (also called the “compiler”) that takes any
circuit Γ computing over finite fields F and transforms it into ΠΓ in such a
way that (1) the circuit ΠΓ computes the same function as Γ , and (2) any
(computationally unbounded) adversary that obtains continuous leakage from

Leakage-Resilient Circuits without Computational Assumptions 233

ΠΓ gains only negligible advantage over an adversary with only black-box ac-
cess to Γ . We emphasize that in contrast to earlier works in similar leakage
models [GR10, JV10], we do not use public key encryption to achieve leakage
resilience. This makes our results significantly more efficient.

Our construction is secure in the continuous leakage setting with adaptive
queries. That is, we assume that the circuit Γ can be initialized (during a trusted
step-up phase) with some secret state, and is then queried by an adversary S on
adaptively chosen inputs X1, . . . , X�. For each i let Y i := Γ (X i, state) be the
outcome of the ith query. To define security, we consider an adversary A that
attacks ΠΓ and gets the same information (i.e., pairs (X1, Y 1), . . . , (X�, Y �) for
X i’s chosen by him) plus the leakage from each computation. Informally, the
security definition requires that for every such (computationally unbounded)
adversary A, there exists S with only black-box access to Γ that produces the
same output as A. The formal definition is given in Section 5.3. For simplicity,
in the formal model we consider only the case where the adversary is allowed
to observe the computation once. For readers familiar with the work on leakage
resilient circuits [ISW03,FRR+10] this is the case of stateless circuits. We briefly
discuss how to extend our result to the continuous leakage setting in Section 6.

We emphasize that the running time of our simulator S is polynomial in the
running time of A. This is necessary to protect circuits Γ , which hide the secret
key only computationally – which is the case for most prominent cryptographic
schemes. This is in contrast to the recent work of Dziembowski and Faust [DF11]
that consider efficient transformations for cryptographic schemes which hide the
secret key information theoretically (e.g., Okamoto signatures or Cramer-Shoup
encryption).

1.2 Comparison to Related Work

An extension of the circuit compiler of Ishai et al. [ISW03] (mentioned above)
was proposed by Faust et al. [FRR+10]. The authors use similar techniques
as [ISW03] based on secret sharing but give a significantly improved security
analysis considering computationally weak (e.g., AC0) and noisy leakages. Simi-
lar to our work, the results of [ISW03,FRR+10] work in the information theoretic
setting. The leak-free components that are used in earlier works are similar in
spirit to the component used in our work. In [FRR+10], the leak-free compo-
nent outputs an n-bit string with parity 0, while in the works of Juma and
Vahlis [JV10] and Goldwasser and Rothblum [GR10] it outputs ciphertexts that
encrypt 0 using the underlying public-key encryption scheme. Except for the
work of Juma and Vahlis all leakage resilient circuit compilers (including ours)
require at least one leak-free component for each gate in the original circuit Γ .

We finally remark that our results do not imply the recent results of Dziem-
bowski and Faust [DF11]. More precisely, although we use the same trusted source
O as [DF11], the schemes of [DF11] cannot be obtained by using our circuit com-
piler. The reason for this are twofold: first, the protocols of [DF11] only use the
leak-free component for the refreshing of the secret key, while our protocols need
to use O for each gate of the original circuit. Second, their implementation of

234 S. Dziembowski and S. Faust

standard cryptographic schemes are significantly more efficient: while we work on
the gate level and blow-up the circuit’s size by O(n4), Dziembowski and Faust di-
rectly exploit homomorphic properties of cryptographic schemes and increase the
size only by a factor of O(n). Unfortunately, however, these techniques are limited
only to certain schemes such as the Okamoto identification and the Cramer-Shoup
encryption.

2 Preliminaries

For a set S we denote by X ← S the process of drawing X uniformly from S.
A vector V is a row vector, and we denote by V T its transposition. We let F be
a finite field and for m, n ∈ N, let F

m×n denote the set of m × n-matrices over
F. For a matrix M ∈ F

m×n and an m bit vector V ∈ F
m we denote by V ·M

the n-element vector that results from matrix multiplication of V and M . For a
natural number n let (0)n = (0, . . . , 0). We use V [i] to denote the ith element
of a vector V and V [i, . . . , j] to denote the elements i, i + 1, ..., j of V . For two
vectors V ∈ F

m, W ∈ F
n we denote by V ||W its concatenation and by V ⊗W

we will mean a vector in F
m·n defined as

V ⊗W := (V1W1, . . . , V1Wm, V2W1, . . . , V2Wm, . . . , VnW1, . . . , VnWm). (1)

Finally, let 〈V, W 〉 denote the inner product of V and W . We will use the fact
that the inner product is linear, i.e. 〈a · V + V ′, W 〉 = a · 〈V, W 〉+ 〈V ′, W 〉.

The “ d= ” symbol denotes the equality of two distributions. For two random
variables X0, X1 over X we define the statistical distance between X and Y as
Δ(X ; Y) =

∑
x∈X 1/2|Pr[X0 = x]− Pr[X1 = x]|.

2.1 Leakage Model

To formally model leakage, we follow Dziembowski and Faust [DF11] and only
recall some important details here. We model independent leakage from mem-
ory parts in form of a leakage game, where the adversary can adaptively learn
information from the memory parts. More precisely, for some c, �, λ ∈ N let
M1, . . . , M� ∈ {0, 1}c denote the contents of the memory parts, then we define a
λ-leakage game played between an adaptive adversary A, called a λ-limited leak-
age adversary, and a leakage oracle Ω(M1, . . . , M�) as follows. For some m ∈ N,
the adversary A can adaptively issue a sequence {(xi, fi)}mi=1 of requests to the
oracle Ω(M1, . . . , M�), where xi ∈ {1, . . . , �} and fi : {0, 1}c → {0, 1}λi with
λi ≤ λ. To each such a query the oracle replies with fi(Mxi) and we say that
in this case the adversary A retrieved the value fi(Mxi) from Mxi. The only
restriction is that in total the adversary does not retrieve more than λ bits
from each memory part. In the following, let (A � (M1, . . . , M�)) be the out-
put of A at the end of this game. Without loss of generality, we assume that
(A� (M1, . . . , M�)) := (f1(Mx1), . . . , fm(Mxm)).

Leakage from Computation. We model the computation that is carried out
on a device as a �-party protocol Π = (P1, . . . , P�), which is executed between

Leakage-Resilient Circuits without Computational Assumptions 235

the parties (P1, . . . , P�) and an adversary is allowed to obtain partial information
(the leakage) from the internal state of the players. Initially, some parties may
hold inputs, and we denote by Si the input of Pi. The execution of Π with initial
inputs S1, . . . , S�, denoted by Π(S1, . . . , S�), is structured into sub-computations.
In each sub-computation one player is active and sends messages to the other
players. These messages can depend on his input (i.e., his initial state), his local
randomness, and the messages that he received in earlier rounds. At the end of
the protocol’s execution, the players P1, . . . , P� output values S′

1, . . . , S
′
�, resp.

(some of these values may be empty). For each player Pi, we denote the local
randomness that is used by Pi during the execution of Π and all the messages
that are received or sent (including the messages from the user of the protocol)
by viewi. We assume that after the protocol terminates, the adversary A plays
a λ-leakage game against the leakage oracle Ω(viewi, . . . , view�). We will use
the following convention in order to simplify the exposition: while describing a
protocol we will explicitly describe the view of each player, sometimes omitting
redundant variables. For instance, if the view contains variables X, Y, Z, such
that always Z = X ⊕ Y , then we will omit Z, as it can be calculated by the
leakage function from X and Y .

2.2 Leakage-Resilient Storage

Davi et al. [DDV10] recently introduced the notion of leakage-resilient storage
(LRS) Φ = (Encode, Decode). An LRS allows to store a secret in an “encoded
form” such that even given leakage from the encoding no adversary learns in-
formation about the encoded values. One of the constructions that the authors
propose uses two source extractors and can be shown to be secure in the in-
dependent leakage model. More precisely, an LRS for the independent leakage
model is defined for message spaceM and encoding space L×R as follows:

– Encode :M→ L×R is a probabilistic, efficiently computable function and
– Decode : L×R →M is a deterministic, efficiently computable function such

that for every S ∈M we have Decode(Encode(S)) = S.

An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈M and any λ-limited adver-
sary A, we have Δ(A � (L, R);A � (L′, R′)) ≤ ε, where (L, R) ← Encode(S)
and (L′, R′) ← Encode(S′), for any two secrets S, S′ ∈ M. In this paper, we
consider a leakage-resilient storage scheme Φn

F
that allows to efficiently store

elements from M = F. It is a variant of a scheme proposed in [DF11] and
based on the inner-product extractor. For some security parameter n ∈ N,
Φn

F
:= (Encoden

F
, Decoden

F
) is defined as follows:

– Encoden
F
(S):

1. Sample (L[2, . . . , n], R[2, . . . , n])← (
F

n−1
)2.

2. Set L[1]← F \ {0} and R[1] := L[1]−1 · (S − 〈(L[2, . . . , n], R[2, . . . , n])〉)
Output (L, R).

– Decoden
F
(L, R): Output 〈L, R〉.

236 S. Dziembowski and S. Faust

The property that L[1]
= 0 will be useful in the “generalized multiplication”
protocol (cf. Section 4.2). It is easy to see that Φn

F
is correct, i.e.:

Decoden
F
(Encoden

F
(S)) = S.

Security is shown in the following lemma whose proof appears in the full version
of this paper.

Lemma 1. Let n ∈ N and let F such that |F| = Ω(n). For any 1/2 > δ > 0, γ >
0 the LRS Φn

F
as defined above is (λ, ε)-secure, with λ = (1/2 − δ)n log |F| −

log γ−1 − 1 and ε = 2m(|F|3/2−nδ + |F| γ).

We instantiate Lemma 1 with concrete parameters in the next corollary.
Corollary 1. Suppose |F| = Ω(n). Then, LRS Φn

F
is (0.49·log2 |Fn|−1, negl(n))-

secure, for some negligible function negl.

3 An Informal Description of the Protocol

In this section we describe informally our circuit compiler that is based on the
LRS scheme Φn

F
. Our starting point is the result of [DF11] where a protocol

Refreshn
F

is proposed to refresh secrets encoded with Φn
F
. Refreshn

F
is run between

two parties PL and PR, which initially hold L and R in F
n. At the end of the

protocol, PL holds L′ and PR holds R′ such that 〈L, R〉 = 〈L′, R′〉. The protocol
can be repeated continuously to refresh the encoding and satisfies the follow-
ing security requirement: even given continuous leakage independently from the
parties PL and PR no adversary can learn the encoded secret 〈L, R〉.

In order to create a general circuit compiler in the independent leakage model,
all we need is to perform in a leakage-resilient way arithmetic operations on the
encoded secrets using the LRS Φn

F
. This is similar to the methods used in the

MPC literature: first, the secret is secret-shared between the parties (in our case:
“encoded”), and then the operations are performed “gate-by-gate” in a secure way.
At the end the outputs of the computation are reconstructed in the following
way: one of the players, PL, say, sends his share L′ of the output to PR and PR

computes Decoden
F
(L, R). We us a similar approach in this paper.

To illustrate this approach, consider the simple case of a circuit that multiplies
a constant α with a secret S encoded as (L, R). If L is held by PL and R is
held by PR, then one of the players, PL, say, multiplies his vector by α (as
〈α · L, R〉 = α · 〈L, R〉). Also, addition of a constant c to S is simple: the player
PL sends x = L[1] to PR (for simplicity assume that L[1]
= 0), and then PR

sets R′ = R + (x−1 · c, 0, . . . , 0) and PL sets L′ = L. We notice that (L′, R′)
was computed from (L, R) just by sending one field element from PL to PR,
and in particular it did not involve computing 〈L, R〉. We call this protocol
AddConstn

F
(α, (L, R)).

The only ingredient that is missing for computing arbitrary functionalities is
a protocol for leakage-resilient multiplication of two encoded secrets. The con-
struction of such a protocol is the main contribution of this paper (for techni-
cal reasons, we construct in Section 4.2 a protocol for a slightly more general

Leakage-Resilient Circuits without Computational Assumptions 237

functionality, which we call “generalized multiplication”). Suppose we have two
secrets S0 ∈ F and S1 ∈ F encoded as (L0, R0) and (L1, R1), respectively.
Suppose further that player PL holds (L0, L1) and player PR holds (R0, R1).
Their goal is to compute L′′, R′′ ∈ F

n in a leakage-resilient way such that
〈L′′, R′′〉 = S and L′′ is held by PL, while R′′ is held by PR. Our first ob-
servation is that 〈L0 ⊗ L1, R0 ⊗ R1〉 = 〈L0, R0〉 · 〈L1, R1〉 = S0 · S1, which
follows from simple linear algebra. Hence, (L0⊗L1, R0⊗R1) encodes the secret
S0 · S1 in the Φn2

F
scheme. Note that this protocol, so far, is non-interactive

so it is clearly secure. The disadvantage of this protocol is that the length of
the encoding grows exponentially with the depth of Γ . Therefore, we need a
method of reducing the length of this encoding. This can be done in the fol-
lowing way. First, the players refresh the (L0 ⊗ L1, R0 ⊗R1) encoding with the
Refreshn2

F
protocol. Let (L′, R′) ∈ F

n2 × F
n2

be the result of this refreshing.
Then, the players reconstruct in clear the secret encoded by the final n(n − 1)
elements of L′ and R′. More precisely, the player PL sends L′[n + 1, . . . , n2]
to PR, and PR computes d = 〈L′[n + 1, . . . , n2], R′[n + 1, . . . , n2]〉. We now
clearly have that S0 · S1 = 〈L′, R′〉 = 〈L′[1, . . . , n], R′[1, . . . , n]〉 + d. Hence,
(L′[1, . . . , n], R′[1, . . . , n]) encodes S0 ·S1 minus d. Since d can be published by PR

we can now use the protocol AddConstn
F
(d, (L′[1, . . . , n], R′[1, . . . , n])), and add

a constant d to (L′[1, . . . , n], R′[1, . . . , n]). The output (L′′, R′′) of the protocol
is the result of this operation. Observe that the use of the refreshing protocol is
crucial, as (L0 ⊗ L1)[n + 1, . . . , n2] gives almost complete information about L0

and L1.

4 The Ingredients

In this section, we describe the two main ingredients of our compiler construction:
the “refreshing” protocol for Φn

F
(cf. Section 4.1) and the “generalized multipli-

cation” protocol (cf. Section 4.2). The latter protocol will use the former as a
sub-routine. In the full version of this paper, we show that these two components
satisfy a simple security property called reconstructibility. This notion was intro-
duced recently in [FRR+10] and essentially says that the view of the parties in a
protocol can be efficiently reconstructed from just knowing the encoded inputs
and outputs. For our setting, we modify this notion and define reconstruction
as a protocol run between players PL and PR, where the efficiency criteria of the
reconstructor is the amount of information exchanged between the parties. For
instance, for the generalized multiplication the reconstructor protocol is run be-
tween PL with input (L0, L1, L′′) and PR with input (R0, R1, R′′) and computes
viewL and viewR with only one field element of communication.

4.1 Leakage-Resilient Refreshing of LRS

In this section, we propose a simple variant of the refreshing protocol proposed
in [DF11] (cf. Section 3) for the LRS Φn

F
. As described in the introduction,

we assume that the players have access to a leak-free component that samples

238 S. Dziembowski and S. Faust

uniformly at random pairs of orthogonal vectors. Technically, we will assume that
we have an oracle O′ that samples a uniformly random vector ((A, Ã), (B, B̃)) ∈
(Fn)4, subject to the constraint that the following three conditions hold:

1. 〈A, B〉+ 〈Ã, B̃〉 = 0,
2. A
= (0)n, and
3. B̃
= (0)n.

Note that this oracle is different from the oracle O described in the introduction
(and used earlier in [DF11]) that simply samples pairs (A, B) of orthogonal
vectors. It is easy to see, however, that this “new” oracle O′ can be “simulated”
by the players that have access to O that samples pairs (C, D) of orthogonal
vectors of length 2n each. First, observe that C ∈ F

2n can be interpreted as a
pair (A, Ã) ∈ (Fn)2 (where A||Ã = C), and in the same way D ∈ F

2n can be
interpreted as a pair (B, B̃) ∈ (Fn)2 (where B||B̃ = D). By the basic properties
of the inner product we get that 〈A, B〉+〈Ã, B̃〉 = 〈C, D〉 = 0. Hence, Condition
1 is satisfied. Conditions 2 and 3 can simply verified by players PL and PR

respectively. If one these conditions is not met, then the players sample a fresh
(C, D) from O. Obviously, this happens with a negligible probability 2 · 2−n|F|

only, so it has almost no impact on the efficiency of the protocol.
The reason for introducing Conditions 2 and 3 is to make the exposition sim-

pler as it avoids dealing with the events that happen with negligible probability
(cf. the caption of Figure 1). The reason for having Condition 1 is slightly more
subtle and will be explained below.

The refreshing scheme is presented in Figure 1. The main idea behind this
protocol is as follows (for this high-level overview ignore Step 4, as it anyway
influences the execution only with negligible probability). Denote α := 〈A, B〉(=
−〈Ã, B̃〉). The Steps 2 and 3 are needed to refresh the share of PR. This is done
by generating, with the “help” of (A, B) (coming from O′) a vector X such that

〈L, X〉 = α. (2)

Eq. (2) comes from simple linear algebra: 〈L, X〉 = 〈L, B ·MT 〉 = 〈L ·M, B〉 =
〈A, B〉 = α. Then, vector X is added to the share of PR by setting (in Step 3)
R′ := R+X . Hence we get 〈L, R′〉 = 〈L, R〉+〈L, X〉 = 〈L, R〉+α. Symmetrically,
in Steps 5 and 6 the players refresh the share of PL, by first generating Y such
that 〈Y, R〉 = −α, and then setting L′ = L + Y . By similar reasoning as before,
we get 〈L′, R′〉 = 〈L, R′〉 − α, which, in turn is equal to 〈L, R〉. Hence, the
refreshing is correct.

The security proof of this refreshing scheme appears in the full version of this
paper. The key property that is used there is that X is generated “obliviously”
from PL, and Y is generated “obviously” from PR. In other words: PL gets no
information on X except that 〈L, X〉 = −〈Y, R〉, and a symmetric fact holds
for PR. For more intuition behind this protocol the reader may consult [DF11]
(Sect. 3), where a similar refreshing scheme is constructed. The main difference
is that the protocol presented here refreshes the shares “completely”, i.e. the new
encoding (L′, R′) is completely independent from (L, R) (except that is encodes

Leakage-Resilient Circuits without Computational Assumptions 239

the same secret), while in [DF11] this was not the case. More precisely, in the
refreshing of [DF11] A, Ã, B, and B̃ were such that 〈A, B〉 = 〈Ã, B̃〉 = 0, which
implied that in particular 〈L, R′−R〉 and 〈L′−L, R′〉 were equal to 0 (and hence
(L′, R′) was not independent from (L, R)). In our protocol it is not the case since
〈A, B〉 = α and 〈Ã, B̃〉 = −α (where α is random) and hence 〈L, R′ − R〉 and
〈L′ − L, R〉 are random. This “independence” of encodings after refreshing is a
very useful property for showing security of composition of larger circuits.

Protocol (L′, R′)← Refreshn
F ((L, R)):

Input (L, R): L ∈ (F \ {0})× F
n−1 is given to PL and R ∈ F

n is given to PR.

1. Let (A, Ã, B, B̃)← O′ and give (A, Ã) to PL and (B, B̃) to PR.

Refreshing the share of PR:

2. Player PL generates a random non-singular matrix M ∈ F
n×n such that

L ·M = A and sends it to PR.
3. Player PR sets X := B ·MT and R′ := R + X.

Refreshing the share of PL:
4. If R′ = (0, . . . , 0) then PR sends a message μ = “zero′′ to PL. Player PL sets

L′ ← (F \ {0}) × F
n−1. The players output (L′, R′) and finish this round

of refreshing. Otherwise the player PR sends a message μ = “nonzero′′ to
PL and they execute the following:

5. Player PR generates a random non-singular matrix M̃ ∈ F
n×n such that

M̃ ·R′ = B̃ and sends it to PL.
6. Player PL sets Y := Ã · M̃T and L′ := L + Y .
7. If L′[1] = 0 then restart the procedure of refreshing the share of PL, i.e.

go to Step 4.

Output: The players output (L′, R′).
Views: The view viewL of player PL is (L, A,M, Ã, M̃, μ) and the view viewR

of player PR is (R, B, M, B̃, M̃, μ).

Fig. 1. Protocol Refreshn
F . Oracle O′ samples random vectors (A, Ã, B, B̃) ∈ (Fn)4

such that (1) 〈A,B〉 = −〈Ã, B̃〉 and (2) A �= (0)n, and (3) B̃ �= (0)n. Note that the
conditions (2) and (3) are needed as otherwise it might be impossible to find matrices
M and M̃ in Steps 2 and 5, respectively. It is easy to see that L[1] has a uniform
distribution over F, and hence restarting part of the protocol in Step 7 happens with
probability |F |−1. Therefore if F is large then this probability is negligible. In Sect. 6
we show how to change our protocol so that the probability of restarting is negligible
even if |F| is small (e.g. constant).

4.2 Leakage-Resilient Computation of Generalized Multiplication

We now present a leakage-resilient protocol for computing a “generalized mul-
tiplication” function f(S0, S1, c) = c − S0 · S1, where the values S0 ∈ F and
S1 ∈ F are encoded by an LRS Φn

F
= (Encoden

F
, Decoden

F
) (let (L0, R0) and

240 S. Dziembowski and S. Faust

(L1, R1) be the respective encodings), and c ∈ F is a constant. The result
f(S0, S1, c) of the computation is encoded by (L′′, R′′). This construction has
already been discussed informally in Section 3. The formal description appears
in Figure 2. It uses the Refreshn2

F
protocol as a sub-routine, and hence also re-

lies on the special free oracle O′. It is easy to see that this protocol is correct.
More formally, for any inputs L0, R0, L1, R1 ∈ F

n and c ∈ F we have that
Decoden

F
(L′′, R′′) = c − Decoden

F
(L0, R0) · Decoden

F
(L1, R1), where (L′′, R′′) ←

Multn
F
((L0, R0), (L1, R1), c). The security properties of this protocol are defined

and proven in the full version of this paper, where we show that the multiplica-
tion protocol is reconstructible with low communication between the parties PL

and PR.

Protocol (L′′, R′′)← Multn
F ((L0, R0), (L1, R1), c):

Input (L, R): L0, L1 ∈ (F \ {0})× F
n−1 are given to PL and R0, R1 ∈ F

n are
given to PR. The field element c ∈ F is given to both players.

1. The players PL and PR run the Refreshn2

F (L0 ⊗L1, R0 ⊗R1) protocol. Let
L′ and R′ be their respective outputs, and let view′

L and view′
R be their

respective views.
2. Player PL sends x := L′[1] and the last n(n− 1) bits of L′ (i.e. the vector

L′[n+1, . . . , n2]) to PR. Player PR computes d := 〈L′[n+1, . . . , n2], R′[n+
1, . . . , n2]〉 and sets R′′ := −R′[1, . . . , n] + (x−1(c− d), 0, . . . , 0).

3. Player PL sets L′′ := L′[1, . . . , n].

Output: The players output (L′′, R′′).
Views: The view viewL of player PL is (L0, L1, L′, L′′, c, view′

L) and the view
viewR of player PR is (R0, R1, R′, R′′, c, d, x, L′[n + 1, . . . , n2], view′

R).

Fig. 2. Protocol Multn
F . Note that computing x−1 is possible since in our LRS the first

bit of L is never equal to 0. This is actually precisely the reason why this restriction
was introduced.

5 The Compiler

5.1 Arithmetic Circuits

Before describing our general circuit compiler, we must define how to model
arithmetic circuits over finite fields F as these are used to describe the original
circuits. To keep the exposition simple, we consider circuits consisting only of 4
types of gates. The first two types are: the public-input gates that will be used
by the user, or the adversary, to provide the input X to the circuit, and the
private-input gates that will be used to provide the secret input state (e.g., the
cryptographic key) to the scheme. The third type of a gate is the multiplication
gate (a, b, c). This gate takes as input the values A ∈ F and B ∈ F of two other
gates (indicated by a and b, resp.) and a constant c ∈ F, and produces a result
c − AB. Note that in particular the “negated and” function over bits can be

Leakage-Resilient Circuits without Computational Assumptions 241

expressed by such a gate, as A ∧B = 1 − AB, for A, B ∈ {0, 1}. Finally, we
also have the output gates. Each output gate takes as input a value from of a
gate of a previous type and outputs it. Since it is well-known that a NAND gate
is complete the above suffices to describe any functionality. Formally, a circuit
over a field F is a sequence Γ = (γ1, . . . , γt), where each γi is called a gate. The
set of gates is divided into the following groups.

public-input gates: γ1, . . . , γm — each such a gate is equal to a special symbol
pub and takes the inputs provided by the user.

private-input gates: γm+1, . . . , γm+k — each such a gate is equal to a special
symbol priv and represents the memory containing the secret state,

multiplication gates: γm+k+1, . . . , γt−u — each such a gate γi (i ∈ [m + k +
1, t − u]) has a form (a, b, c), where a, b ∈ {1, . . . , i − 1} and c ∈ F. We say
that the outputs of the gates γa and γb are inputs for the gate γi,

output gates: γt−u+1, . . . , γt — each such a gate γi is equal to some j, where
j ∈ {1, . . . , t− u}. We say that γj is an input for the gate γi.

For technical reasons, we also assume that the circuit’s fan-out is at most 2, more
precisely: each γi is an input for at most 2 other gates. This can be clearly done
without loss of generality. The computation Comp(Γ, X, state) of such a circuit
on input (X, state) = ((x1, . . . , xm), (s1, . . . , sk)) is a sequence (ξ1, . . . , ξt) of
values on the outputs of circuit gates (one may think of this as the output wires
of the gates), defined by the following procedure:

– For i = 1 to t do:
1. if γi = pub (“public-input gate”) then set ξi := xi,
2. if γi = priv (“private-input gate”) then set ξi := si−m,
3. if γi = (a, b, c) (“multiplication gate”) then set ξi = c− ξaξb.
4. if γi = j (“output gate”) then set ξi = ξj ,

The output of the computation is equal to (ξt−u+1, . . . , ξt) and will be denoted
by Γ (X, state).

5.2 Protocols Computing Circuits

Recall the definition of a protocol from Sect. 2.1. In this section we consider a
special type of such protocols, that we call LRS-protocols. Each such a protocol
ΠΦ is parameterized by an LRS Φ = (Encode : M → L × R, Decode : L ×
R → M) (we will say that Π works over Φ). It consists of 2t parties P =
{P 1

L , . . . , P t
L , P 1

R , . . . , P t
R}. The parties are divided into following groups:

“public-input parties”: P 1
L , . . . , Pm

L , P 1
R , . . . , Pm

R — each P i
L takes no input

and each P i
R takes as input xi ∈ F,

“private-input parties”: Pm+1
L , . . . , Pm+k

L , Pm+1
R , . . . , Pm+k

R — each P i
L takes

as input Li ∈ L, and each P i
R takes as input Ri ∈ R,

“multiplication parties”: Pm+k+1
L , . . . , P t−u

L , Rm+k+1, . . . , P t−u
R — they have

no inputs or outputs,

242 S. Dziembowski and S. Faust

“output parties”: P t−u+1
L , . . . , P t

L , Rt−u+1, . . . , P t
R — each P i

R produces an out-
put yi ∈M, and the P i

L’s produce no output.

The LRS-protocols will be analyzed only under the assumption that for i =
k + 1, . . . , m we have that (Li, Ri) ← Encode(zi) for some xi. More precisely
for X = (x1, . . . , xm) ∈ F

m and state = (s1, . . . , sk) ∈ F
k consider the following

experiment.

Experiment ExpExec(ΠΦ, X, state):

1. For each i = 1, . . . , m give xi to P i
R.

2. For each i = 1, . . . , k sample (Lm+i, Rm+i) ← Φ(si). Give Lm+i to Pm+i
L

and Rm+i to Pm+i
R .

3. Run the protocol ΠΦ with the inputs for the players as described in the
previous steps.

4. For i = 1, . . . , t let viewi
L be the view of P i

L, and let viewi
R be the view of P i

R

in the above execution.
Denote View(ΠΦ, (X, state)) := ((view1

L, view
1
R), . . . , (viewt

L, view
t
R)).

5. Let Exec(ΠΦ, (X, state)) be the vector containing the outputs of the parties
P t−u+1

R , . . . , P t
R in the above execution.

5.3 The Security Definition

We now present the main security definition of this paper. As mentioned in the
introduction, in this definition we consider only the non-adaptive security. In
Sect. 6 we show how this definition can be extended to adaptive settings. Let
Γ be a circuit with m public-input gates, k private-input gates and u output
gates. Let ΠΦ be an LRS-protocol with 2m public-input parties, 2k private-
input parties and 2u output parties. We say that the ΠΦ protocol (λ, ε)-securely
computes Γ if:

– ΠΦ computes Γ i.e.: for every (X, state) ∈ F
k × F

m we have that

Exec(ΠΦ, (X, state)) = Γ (X, state),

and
– for every λ-limited adversary A there exists a simulator S, running in time

polynomial in the running time of A, that for every (X, state) ∈ F
k × F

m,
on input (X, Γ (X, state)) produces a variable S(X, Γ (X, state)) such that

Δ((S(X, Γ (X, state)) ; (A� View(ΠΦ, (X, Γ (X, state)))) ≤ ε. (3)

Note that state is not given directly to the simulator. The only variables that
he gets are: the public input X and the output Y = Γ (X, state). Therefore,
intuitively, the only information that he gets about state comes from (X, Y).

Leakage-Resilient Circuits without Computational Assumptions 243

5.4 The Construction

We are now ready to present our construction of the circuit compiler. Our com-
piler takes an arithmetic circuit Γ and a parameter n ∈ N and produces an LRS
protocol ΠΓ

Φn
F

over Φn
F
. To simplify the notation we will write ΠΓ

n instead of ΠΓ
Φn

F

.
The protocol ΠΓ

n is depicted on Fig. 3.

Protocol (zt−u+1, . . . , zt)← (ΠΓ
n (x1, . . . , xm, (L1, R1), . . . , (Lk, Rk))):

Input (x1, . . . , xm, (L1, R1), . . . , (Lk, Rk)): Give each xi ∈ F to P i
R, each

Li ∈ F
n to P m+i

L and each Ri ∈ F
n to P m+i

R .

1. For i = 1, . . . , m player P i
R computes (Li, Ri) ← Encoden

F (xi) and sends
Li to P i

L . The view viewi
L of P i

L is Li and the view viewi
R of P i

R is (Li, Ri).
2. For i = m + 1, . . . , m + k the view viewi

L of P i
L is Li and the view viewi

R of
P i

R is Ri.
3. For i = m + k + 1, . . . , t− u let (a, b, c) be such that γi = (a, b, c)

(a) Player P a
L sends La to P i

L .
(b) Player P a

R sends Ra to P i
R.

(c) Player P b
L sends Lb to P i

L .
(d) Player P b

R sends Rb to P i
R.

(e) Players P i
L and P i

L execute the Multn((La, Ra), (Lb, Rb), c) protocol.
Let Li and Ri be the respective outputs of the players at the end of
this protocol, and let viewi

L and viewi
R be their respective views.

4. For i = t− u + 1, . . . , t let j be such that γi = j.
(a) Player P j

L sends Lj to P i
L .

(b) Player P j
R sends Rj to P i

R.
(c) The players P j

L and P i
R execute the Refreshn(Lj , Rj) protocol. Let Li

and Ri be the respective outputs of the players at the end of this
protocol, and let viewi

L and viewi
R be their respective views.

(d) Player P i
L sends Li to P i

R. Player P i
R computes zj := Decoden

F (Li, Ri)
and outputs it. The vi of P i

L is viewi
L and the view viewi

R of P i
R is

(viewi
R, Li).

Fig. 3. The ΠΓ
n protocol

We now have the following theorem. Its proof is based on the hybrid argument
and appears in the full version of this paper.

Theorem 1. Assume that for some n the LRS (Encoden
F
, Decoden

F
) is (λ, ε)-

secure for some λ and ε. Then for any Γ the ΠΓ
n protocol (λ/3 − log2 |F| , tε)-

securely computes Γ .

The following is an example of the application of Thm. 1 for a concrete LRS.

Corollary 2. Suppose |F| = Ω(n). Then for any Γ the ΠΓ
n protocol (0.16 ·

log2 |Fn| − 1− log2 |F| , negl(n))-securely computes Γ , for some negligible n.

244 S. Dziembowski and S. Faust

6 Extensions

The model in Sect. 5 was intentionally kept simple in order to make the proof as
easy as possible, and to satisfy the page limit. In this section we present several
generalizations and extensions of this model. The formal security definitions and
proofs will be presented in the extended version of this paper.

Adaptive security. Most of the cryptographic security definitions assume that
the adversary is adaptive, meaning that he can interact with the cryptographic
device in rounds, and his queries in the ith round may depend on the answers
that he got in rounds 1, . . . , i − 1. Our model from Sect. 5 obviously does not
cover this scenario. We now briefly argue how to extend the model and the
protocol to cover also the adaptive security. In the adaptive model one assumes
that the circuit Γ is initialized with some secret state ∈ F

k and it can be queried
adaptively on several inputs X1, . . . , X� (where � is the number of rounds). To
each such a query the circuit responds with Y i := Γ (X i, state). The input X i

is placed on the “private input gates” at the beginning of each round, and the
output Y i appears on the “output gates”.

The protocol ΠΓ that “computes Γ ” consists of 2t parties, whose role is ex-
actly like in the protocol in Sect. 5. In particular: the “private input parties” are
initialized with an encoding of state, the “public input parties” in the ith round
take X i as input, and the output Y i is produced by the “output parties”. After
the end of each round the memory of all the parties (except the “private-input
parties” that hold the encoding of state) gets erased. The adversary A can adap-
tively choose the X i’s and leak at most λ bits from each party in each round of
the computation of ΠΓ on input X i. The security definition assumes that for
each round the simulator S gets a pairs {(X i, Y i)}�i=1 and his goal is to produce
the output that is statistically close to the output of A.

The implementation of ΠΓ is similar to the implementation of ΠΓ from Sect.
5. In particular, the protocols for the parties in a single round are the same as
before. The only change is that, since state does not change between the rounds,
the “private input parties” need to refresh the encodings that they hold. This can
be done easily with the Refreshn

F
protocol from Sect. 4.1: each pair (P i

L, P
i
R) of

“private input parties” applies, at the end of each round, the refreshing protocol
to their encoding (L,Ri), setting (Li, Ri) := Refreshn

F
(Li, Ri). The security proof

goes along the same lines as the proof of Thm. 1. It will be provided in the
extended version of this paper.

More general circuits. The circuits that we consider in Sect. 5 have a very
restricted form in order to make the proof of Thm. 1 as simple as possible. We
now argue how some of these restrictions can be avoided. First, observe that we
can consider circuits with fan-out q > 2. The only price to pay is that the leakage
bound in the statement of Thm. 1 changes from “λ/3− |F|” to “λ/(q + 1)− |F|”.
This is because now each (Li, Ri) is given to at most q + 1 parties (not just 3
parties as before).

For some applications it may also be useful to have a separate procedure for
adding values in a leakage resilient way. First, observe that adding a publicly-

Leakage-Resilient Circuits without Computational Assumptions 245

known constant c to an encoded secret can be done easily, as depicted on Fig.
4 (protocol AddConstn

F
). In fact, this protocol has already been described in

Sect. 3 used (implicitly) in protocol Multn
F

(cf. Fig. 2, Step 2). The protocol
computing the sum of two encoded secrets is presented on Fig. 4. Correctness of
this protocols is a simple calculation. Because of the lack of space we the formal
pro of their security properties is moved to the full version of this paper.

Protocol (L′, R′)← AddConstn
F ((L, R), c):

Input (L, R): L ∈ (F \ {0}) × F
n−1 is given to PL and c ∈ F is given to both

players.

1. Player PL sends x := L[1] to PR.
2. Player PR computes R̃ := R + (x−1 · c, 0, . . . , 0)
3. The players execute the Refresh(L, R̃) procedure. Let (L′, R′) be the result.

Output: The players output (L′, R′).

Protocol (L′, R′)← Addn
F ((L0, R0), (L1, R1)):

Input (L, R): L0, L1 ∈ (F \ {0})× F
n−1 are given to PL and R0, R1 ∈ F

n are
given to PR.

1. Player PL sets A := L0 and C := L1 − L0.
2. Player PL sets B := R0 + R1 and D := R1.

Note that 〈A,B〉+ 〈C, D〉 = 〈L0, R0〉+ 〈L1, R1〉.
3. Refresh (C, D) by (C′, D′)← Refreshn

F (C, D).
4. Compute c := Decoden

F (C′, D′).
Note that this does not reveal any information about the inputs of the
protocol, as (C′, D′) were “refreshed”.

5. Set (L′, R′)← AddConstn
F ((A, B), c)

Output: The players output (L′, R′).

Fig. 4. Protocols AddConstn
F and Addn

F

Dealing with small fields. A natural field over which one could use our
compiler is Z2. The problem here is that we assumed that in our encoding we
have L[1]
= 0, and in the refreshing protocol, if this condition is not met, then
part of the protocol is restarted (cf. Fig. 1). Of course if F is small then this
restarting can happen with a high probability. To avoid this problem one could
change the underlying encoding scheme and require that some prefix of L of
length a = ω(log|F|(n)) (instead of just L[1]) is not equal to (0)a. In this way the
probability of restarting is at most |F|−a and hence it is negligible in n. The other
change that is also needed in this case is that in Step 2 of the Multn

F
protocol

the player PL needs to send L[1, . . . , a] (instead of L[1]) to PR. The price to pay
for it is that the “− |F|” term in the leakage bound needs to be replaced by 2a.

Smaller number of parties. Recall that the number of parties in the pro-
tocol ΠΓ corresponds to the number of independent memory parts in the real

246 S. Dziembowski and S. Faust

implementation of the scheme. In our model this number is linear (2t) in the
number t of the gates of Γ . This can be reduced in the following way. First,
observe that some parties can be “reused” if we look at the computation of Γ
as a procedure that evaluates Γ gate-by-gate (cf. Sect. 5.1). More precisely: if a
given gate γi is not used anymore as an input to other gates, then the memory
of the party P i that corresponds to γi can be erased and P i can be “assigned”
to some other gate. Hence, we can reduce the number of parties to 2t′, where t′

is the width of Γ . Here, by the “width” of a circuit we mean the minimal number
of gates that needs to be kept in memory in order to compute Γ .

Observe also that we can actually decrease the number of memory parts even
to two (call these parts: L and R), by placing all P i

L’s on L, and all P i
R’s on R.

This, however, comes at a price: the leakage bound of L and R still needs to be
a constant fraction of |n|, and hence it is a c

t′ · |L| (where c is a constant and t′

is the width of Γ), and the fraction c
t′ gets very small for large t′. Hence it is

mostly of a theoretical interest.

Acknowledgments. The authors wish to thank Marcin Andrychowicz for point-
ing out some errors in an earlier version of this paper.

References

[DDV10] Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay,
J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137.
Springer, Heidelberg (2010)

[DF11] Dziembowski, S., Faust, S.: Leakage-Resilient Cryptography from
the Inner-Product Extractor. In: Lee, D.H. (ed.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011),
http://eprint.iacr.org/

[DP08] Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS
2008: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, Washington, DC, USA (2008)

[FRR+10] Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protect-
ing Circuits from Leakage: the Computationally-Bounded and Noisy Cases.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156.
Springer, Heidelberg (2010)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008)

[GR10] Goldwasser, S., Rothblum, G.N.: Securing Computation against Contin-
uous Leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
59–79. Springer, Heidelberg (2010)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware
against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

[JV10] Juma, A., Vahlis, Y.: Protecting Cryptographic Keys against Continual
Leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58.
Springer, Heidelberg (2010)

http://eprint.iacr.org/

Leakage-Resilient Circuits without Computational Assumptions 247

[KP10] Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Hei-
delberg (2010)

[MR04] Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Ab-
stract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296.
Springer, Heidelberg (2004)

[Pie09] Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg
(2009)

	Leakage-Resilient Circuits
without Computational Assumptions
	Introduction
	Our Contributions
	Comparison to Related Work

	Preliminaries
	Leakage Model
	Leakage-Resilient Storage

	An Informal Description of the Protocol
	The Ingredients
	Leakage-Resilient Refreshing of LRS
	Leakage-Resilient Computation of Generalized Multiplication

	The Compiler
	Arithmetic Circuits
	Protocols Computing Circuits
	The Security Definition
	The Construction

	Extensions
	References

