The SynchAADL2Maude Tool

Kyungmin Bae!, Peter Csaba OlveczkyQ,
José Meseguer!, and Abdullah Al-Nayeem!

! University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. SynchAADL2Maude is an Eclipse plug-in that uses Real-
Time Maude to simulate and model check Synchronous AADL mod-
els. Synchronous AADL is a variant of the industrial modeling standard
AADL that supports the modeling of synchronous embedded systems. In
particular, Synchronous AADL can be used to define in AADL the syn-
chronous models in the PALS methodology, in which the very hard tasks
of modeling and verifying an asynchronous distributed real-time system
that should be virtually synchronous can be reduced to the much simpler
tasks of modeling and verifying the underlying synchronous design.

1 Introduction

The Architecture Analysis & Design Language (AADL) [6] is an industrial mod-
eling standard used in avionics, aerospace, automotive, medical devices, and
robotics communities—including Honeywell, Rockwell-Collins, Lockheed Mar-
tin, General Dynamics, Airbus, the European Space Agency, Dassault, EADS,
Ford, and Toyota—to describe an embedded real-time system as an assembly of
software components mapped onto an execution platform.

A number of tools support the formal analysis of different aspects of models
in various fragments of AADL. However, since the components in AADL models
interact asynchronously, their model checking becomes unfeasible even for fairly
small models due to the state space explosion caused by the interleavings.

We therefore define in [I] a variant of AADL, called Synchronous AADL,
for modeling synchronous real-time systems in AADL. This effort was moti-
vated by the observation that many automotive and avionics systems should
be virtually synchronous—that is, conceptually, there is a logical period during
which all components perform a transition and send messages to each other—
that must be realized in a distributed environment with network delays, skewed
local clocks, etc. Together with colleagues at UIUC and Rockwell-Collins, we
have proposed the PALS transformation [3l4], whose key idea is that one can
model and verify the much simpler synchronous design, and PALS then provides
a correct-by-construction distributed asynchronous model. There are also other
transformations relating synchronous and asynchronous systems for distributed
real-time architectures, such as the time-triggered architecture (TTA) [2]. Syn-
chronous AADL makes it possible to define such synchronous models in AADL.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 59-F2] 2012.
© Springer-Verlag Berlin Heidelberg 2012

60 K. Bae et al.

The SynchAADL2Maude OSATH]} plug-in is a recent simulation and linear
temporal logic (LTL) model checking tool for Synchronous AADL. The tool
automatically synthesizes a Real-Time Maude [5] model from a Synchronous
AADL model, provides support to conveniently define LTL properties of the
Synchronous AADL model, and performs the Real-Time Maude model checking
within OSATE. This enables a model-engineering process for important classes of
distributed real-time systems that combines the convenience of AADL modeling,
the complexity reduction of PALS and TTA, and formal verification in Real-Time
Maude. We illustrate the use of SynchAADL2Maude in Section 3 with a virtually
synchronous avionics system, whose distributed asynchronous version (even in
very simple settings) has millions of reachable states and cannot be feasibly
model checked, but where the Synchronous AADL model of the corresponding
synchronous PALS design can be verified by our tool in less than a second.

The tool, together with related papers and technical reports, is available at
http://www.cs.illinois.edu/~kbae4/SynchAADL/.

2 Background: Real-Time Maude and Synchronous AADL

Real-Time Maude [5] is a rewriting-logic-based formal specification language
and analysis tool for real-time systems. Real-Time Maude provides simulation
capabilities, as well as (unbounded and time-bounded) explicit-state reachability
analysis and LTL and timed CTL model checking.

The Synchronous AADL modeling language [I] supports the modeling of syn-
chronous designs in AADL, including both synchronous PALS designs and other
synchronous designs that can be mapped onto different distributed real-time ar-
chitectures. Synchronous AADL is an annotated sublanguage of AADL, identi-
fying a set of AADL models that can be considered as synchronous, and adding a
property set SynchAADL to declare Synchronous AADL-specific properties. Since
Synchronous AADL is intended to model synchronous designs, it disregards the
hardware and scheduling features of AADL and focuses on the behavioral and
structural subset of AADL, namely, hierarchical system, process, and thread
components, ports and connections, and thread behaviors defined in the behav-
ior annex standard. The formal Real-Time Maude semantics of Synchronous
AADL is defined in [I].

3 Using the SynchAADL2Maude Tool

We exemplify the use of the SynchAADL2Maude tool with an avionics system
developed by Steve Miller and Darren Cofer at Rockwell-Collins [4]. In integrated
modular avionics, there are multiple physically separated cabinets on the aircraft
so that physical damage does not take out the computer system. The active
standby system considers the case of two cabinets and focuses on the logic for
deciding which side is active. The architecture of the system is shown in Figure[ll

! The OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

http://www.cs.illinois.edu/~kbae4/SynchAADL/

The SynchAADL2Maude Tool 61

(n . N
ActiveStandbySystem.impl SynchAADL::Synchronous => true
SynchAADL::SynchPerod =>2ms
(env: Environment.impl j
side1Failed side1FullyAvail side2FullyAvail side2Failed
) L,:},;
‘—f
sideOne: manualSelecion sideTwo:
Side1.impl m Side2.impl
LI
side1ActiveSide
H
side2ActiveSide

Fig. 1. The architecture of the active standby system

In SynchAADL2Maude, the properties to be verified are managed by an XML
file. One important property that the system should satisfy is that if a side is
failed, the other side should become active. Side i has failed if it has received the
value true in its sideiFailed port. Using the predefined proposition value of
port in component thread is v, the formula sideiFailed can be defined as follows:

<definition> <name> sidelFailed</name>
<value>value of sidelFailed in component MAIN->sideOne->sideProcess->sideThread is true
</value>

</definition>

The formulas sideiActive are defined in the same way. The LTL property to be
verified is then declared by the command tag as follows (where ‘~’, ‘=>’, ‘[1’, and
‘0’ denote, resp., negation, implication, and the “always” and “next” operators):

<command> <name>R4</name>
<value type="1t1"> [] (((sidelFailed /\ ~side2Failed) -> 0 ("~ side2Failed -> side2Active)) /\
((side2Failed /\ ~sidelFailed) -> 0 ("~ sidelFailed -> sidelActive)))
</value>
</command>

Figure [2] shows the SynchAADL2Maude window for the active standby sys-
tem. The Constraints Check, Code Generation, and Perform Verification
buttons are used to, respectively, check whether a model is a valid Synchronous
AADL model, generate the corresponding Real-Time Maude model, and model
check the LTL properties given by the XML property file and shown in the
“AADL Property Requirement” table. The results of the model checking are
shown in the “Maude Console.” Counterexamples from the LTL model checking
are presented in a reasonably intuitive and concise way.

We have verified each requirement of the Synchronous AADL model of the
active standby system, which has 203 reachable states, in 0.6 seconds on an Intel
Xeon 2.93 GHz with 24GB RAM. As shown in [3], where we define directly in

62 K. Bae et al.

% AADL Navigat 2 ™~ O] % Main.aaxIdi & AADL Maude Property Editor 3 el
J1=E-0 SynchAADL2ZMaude Verification
v 12 ActiveStandBy
» (= aadl AADL Instance Model
b = aaxl jon:
A Ever\ﬁca[inn Model Lacation: JActiveStandBy faax|/packages/Main_ActiveStandbySystem_impl_Instance.aax|
b (= rtmaude

& Main_Activest Constraints Check| | Code Generation |
ain_ActiveSta | | |

& Main_ActiveSta
& Main_ActiveSta
» =4 Plugin_Resources

Simulation Bound: %Peﬁcrm Simulation |

AADL Property Requirement

Name Property Category | |
|R1 0O ([] (neChangeAssumptionNextState -> O (agreeOnActiveSide \/ O (neitherSideFailed -> agre LTL
R2a 0 ([] ((noChangeAssumptionNextState /\ O side 1FullyAvailable j\ O ~ side2FullyAvailable) -> ¢ LTL
R3g [1 ¢ (~ manSelectPressed /\ agreeOnActiveSide /\ side1FullyAvailable /\ side2FullyAvailable /\ LTL
R4 [] (((side 1Failed [\ ~ side2Failed) -> O (~ side2Failed -> side2Active)) /\ ((side2Failed /\ ~¢ LTL

R5sidel [] (((side 1Active /Y sidelFullyAvailable /\ ~ manSelectPressed) -> (side LActive W (~ sidelFully LTL

I Perform Verification ‘

Verifi(aliunJ Maian(riveSrandbySyslsmiimplflnstan(e.pmpl

[AADL Property Values [L‘L Problems @Maudﬁ Console 53 EN
Ready.

lloed|@|@—0

e o o e e

deterministic time increase O

Result Bool :
true

Fig. 2. SynchAADL2Maude window in OSATE

Real-Time Maude models of both the synchronous and the asynchronous design
of the active standby system, it is unfeasible to model check the corresponding
asynchronous design: the simplest possible asynchronous model—with no mes-
sage delays, no execution times, and perfect local clocks—has 3,047,832 reachable
states and its model checking takes 1,249 seconds. If the message delay can be
either 0 or 1 then no model checking terminates in reasonable time.

Acknowledgments. This work has been supported by Boeing Corporation
under grant C8088, by The Research Council of Norway, and by the “Pro-
grama de Apoyo a la Investigacién y Desarrollo” (PAID-02-11) of the Universitat
Politécnica de Valencia.

References

1. Bae, K., Olveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and Its
Formal Analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651-667. Springer, Heidelberg (2011)
. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1) (2003)
3. Meseguer, J., Olveczky, P.C.: Formalization and Correctness of the PALS Archi-
tectural Pattern for Distributed Real-Time Systems. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 303-320. Springer, Heidelberg (2010)

4. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logical
synchrony in integrated modular avionics. In: Proc. DASC 2009. IEEE (2009)

5. Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161-196 (2007)

6. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/

[\

http://www.aadl.info/

	The SynchAADL2Maude Tool

	Introduction
	Background: Real-Time Maude and Synchronous AADL
	Using the SynchAADL2Maude Tool
	References

