
Tracing Your Maintenance Work –

A Cross-Project Validation of an Automated
Classification Dictionary for Commit Messages

Andreas Mauczka, Markus Huber Christian Schanes, Wolfgang Schramm,
Mario Bernhart, and Thomas Grechenig

Research Group for Industrial Software, Vienna University of Technology
Vienna 1040, Austria

{andreas.mauczka,markus.huber,christian.schanes,wolfgang.schramm,
mario.bernhart,thomas.grechenig}@inso.tuwien.ac.at

http://www.inso.tuwien.ac.at/

Abstract. A commit message is a description of a change in a Version
Control System (VCS). Besides the actual description of the change,
it can also serve as an indicator for the purpose of the change, e.g. a
change to refactor code might be accompanied by a commit message in
the form of “Refactored class XY to improve readability”. We would
label the change in our example a perfective change, according to main-
tenance literature. This simplified example shows how it is possible to
classify a change by its commit message. However, commit messages are
unstructured, textual data and efforts to automatically label changes
into categories like perfective have only been applied to a small set of
projects within the same company or the same community. In this work,
we present a cross-project evaluated and valid mapping of changes to the
code base and their purpose that is usable without any customization on
any open-source project. We provide further the Eclipse Plug-In Subcat
which allows for a comfortable analysis of projects from within Eclipse.
By using Subcat, we are able to automatically assess if a commit to the
code was e.g. a bug fix or a refactoring. This information is very useful
for e.g. developer profiling or locating bad smells in modules.

1 Introduction

Software is constantly evolving. Leading and monitoring software development
projects is a difficult task and performance indicators become mandatory for
deciding on a course of action, e.g. is now the time to refactor some of my code
or do I need to intensify my quality assurance work, because my development
team spends a majority of their time troubleshooting and bug fixing. Managers
or project leads need to be well informed to enhance their decision making
process and to have an accurate view of the current state of the project. By
gathering the information that is actually available in the form of meta data in
the Version Control System (VCS), conclusions about the software development
and maintenance (e.g. which modules are error prone, which modules have not

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 301–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



302 A. Mauczka et al.

been refactored recently) can be drawn. Since our approach does not rely on
the code itself, it can be applied to any programming language and early in the
software life cycles, when code metrics might not be conclusive yet.

In the following paper we use meta data which can be mined from a VCS that
uses commit messages to accompany any change (a commit) to the code base.
From the textual information in these commit messages, we mine information
about the software maintenance and evolution process in open source projects.
We base our work on the assumption that commit messages hold information that
should give evidence of the purpose of the source code change (see Section 5).

We present in this paper two contributions to the analysis of meta data in
a VCS. First, we implemented the tool “Subcat” to classify commit messages
based on a set of keywords (we refer to the master set of all keywords as a
dictionary). Subcat is a generic analysis tool that can be configured to classify
any commit message into arbitrary categories based on a dictionary. It further
is possible to customize Subcat to fit any personal project vocabulary by adding
categories or keywords to the dictionary.

Subcat provides different kinds of reports (categorization per file or per mod-
ule) to visualize the results of this categorization. Subcat also generates statistics
on the authors of the commit messages or statistics on the words used in the
commit messages. We provide Subcat as an Eclipse plugin for integrated analysis
by developers or project managers during early software lifecycle stages in the
Eclipse IDE and as a standalone command line tool for the mining of large scale
software projects (see Section 2).

Second, we used the reports generated by Subcat to create an optimized and
cross-project valid dictionary that allowed us to automatically classify com-
mits into Swanson’s maintenance categories [10] for the open source domain.
To achieve this, we defined an algorithm to incrementally train and improve this
dictionary with certain keywords. After training the dictionary on a number of
projects, we evaluated this dictionary against a larger set of open source projects
(see Section 3 for the algorithm and Section 4 for the results of the evaluation).

Subcat can be used in two different contexts. Subcat can be used by prac-
titioners in the open-source domain to analyze modules based on maintenance
characteristics. E.g. when a module has a lot of corrective changes, but no per-
fective changes, some refactoring of the code might be in order (see Figure 1.
Furthermore, Subcat provides Maintenance Profiles of the development team.
This means that one can see at first glance, whether a developer is mainly fixing
bugs or keeping the code clean.

Subcat can also be used by researchers. By using Subcat’s corrective classifi-
cation mechanism, we are able to track bugs within the repository additionally
to a normal bug tracker. This allows for research on the difference of bug gran-
ularity in repositories and bug trackers like bugzilla (a bug fix in the repository
may not correspond to a bug report in the tracker). Additionally, we can use
Subcat to analyze how developer profiles change over time in a project (E.g.
a developer starts in a project to fix bugs that annoy him and ends up imple-
menting a whole new feature see Figure 2 for an example). Subcat provides this



Tracing Your Maintenance Work 303

Fig. 1. Visualization of the classified activities in two different software modules

information, which can be combined with mailing list analysis. This can provide
a whole new insight into how a developer changes over time in an open-source
project.

Fig. 2. Developer Profile in Subcat

2 Automated Classification Approach

A dictionary, as used in the context of this paper, is a set of categories. A cat-
egory is a group of keywords that share a common meaning and therefore are
indicators for this category, e.g. the word ”fix” is a keyword for the mainte-
nance category ”corrective”. In the context of this work, we apply Swanson’s
maintenance categories to group our keywords.



304 A. Mauczka et al.

We propose the following procedure to create a dictionary:

Pre-Processing the Meta Information. The meta information for our anal-
ysis was derived from the commit messages in the VCS. As these messages
are written in natural language, we have to normalize them to be able to
extract sensible information (e.g. we want to match “this fixes a re-ocurring
crash” and “I fixed an overflow” to its lemma “fix” - a head word un-
der which the word would be found in a dictionary). We use WordNet1 to
normalize the commit messages

Initializing the Dictionary. We generate an initial seed for a dictionary by
referring to prior work (Mockus and Votta in [9] and Hassan in [5]). This
initial seed only contains words that hold a high likelihood of indicating a
maintenance category

Training the Dictionary. To be able to categorize as many changes as pos-
sible with a high accuracy for a single project, we use a defined algorithm
to train the dictionary. We employ the algorithm to train the dictionary
on additional open source projects to further increase the accuracy of the
dictionary (see Section 3)

Evaluating the Dictionary. After the initial training, we use the dictionary
on another set of projects to evaluate cross-project validity. We do not further
change the dictionary during this step. Only blacklist items (keywords that
filter out administrative changes) are introduced (see Section 4)

2.1 Classification Rules

The research area of the identification and classification of maintenance tasks
in the software development process has evolved for decades. In [10], Swanson
defines a maintenance task as an activity that can be assigned to one of the
following three categories:

Corrective Software Maintenance. Activities that are necessary to fix pro-
cessing failures, performance failures or implementation failures

Adaptive Software Maintenance. Activities that focus on changes in the
data environment or changes in the processing environment

Perfective Software Maintenance. Activities that strive to decrease pro-
cessing inefficiency, enhance the performance or increase the maintainability

For the development of the automated classification in this work, Swanson’s orig-
inal definition of maintenance tasks is used and slightly extended. An additional
category, the “Blacklist” is introduced. We use the Blacklist to filter all commits,
which underlying modifications were not carried out by humans or which do not
actually include any source code modifications. For example commits generated
by the “cvs2svn” repository-converter2 or commits that just “tag” a version. In
addition we merged the implementation category, as presented by Hindle et al.[6]

1 http://wordnet.princeton.edu/
2 http://cvs2svn.tigris.org/

http://wordnet.princeton.edu/
http://cvs2svn.tigris.org/


Tracing Your Maintenance Work 305

with Swanson’s adaptive maintenance category. As a result we are able to map
every commit to exactly one category. Using Swanson’s original maintenance clas-
sification provides a categorization into a few, well defined categories and is there-
fore a suitable starting point to develop an automated classification algorithm.

As mentioned above, our algorithm relies on two sources of information to
carry out the classification, namely the commit message and the dictionary. The
commit message is attached to every commit and encapsulates the information
about the intention of the modification. The dictionary defines the knowledge
base for the classification including the categories. The different categories are
defined by a set of keywords that indicate that a commit message may belong
to this category. In addition, every word has an associated weight. The weight
value constitutes how strong the indication is. The same word can be contained
in multiple categories. See Figure 3 for a sample dictionary that is used to classify
a commit message.

Fig. 3. Example for Dictionary and Classification

To implement the blacklist feature, “absolute categories” have been intro-
duced. If a commit message contains a word (e.g. “cvs2svn”) that is included
in the listing of an absolute category, the commit is instantly assigned to this
category, ignoring the weighting mechanism and the normal categories.

2.2 Categorization Tool - Subcat

Subcat is a tool implemented to generically categorize commit messages based
on their content. It consists of two parts, the command line tool Sublex and the
Eclipse plugin, which we describe in detail in the following sections.

Sublex is the tool that implements all relevant functionality to classify com-
mits from a generic data source. Due to the modular design of the command line
tool different Versioning Systems are supported, if adapters for pre-processing
a logfile to the generic data source format are available. The adapter for Sub-
version is supplied together with Sublex and ships also as a part of the Eclipse
plugin.



306 A. Mauczka et al.

The results of the classification are reports in the CSV-format. Sublex offers
the following reports:

Categorization-Report. The categorization report contains all commits and
their corresponding classification results in detail. It is the base for the detail
reports that follow. It can be used by analysts to generate their own statistics
based on the report data. The displayed information per row are: commit
including the revision, the category it has been assigned to, the author, the
date of the change, the length of its commit message, the overall number of
added and deleted lines for the commit, the score of the commit for each
category from the dictionary, the affected modules, the affected files and the
revised commit message.

Author-Report. The author report shows the analysis of commits (including
the assigned maintenance categories) per author. Its purpose is to analyze the
profiles of developers in the project. For example if an author is responsible
for perfective maintenance or if perfective maintenance is distributed evenly
on the team.

Dictionary-Report. This report provides required information to create and
improve dictionaries by showing statistical information for every unique word
found in any of the parsed commit messages. The report provides the lemma
for the word, the average number of appearances of the word in the commit
messages it was found in, the total number of appearances in all the commit
messages, the total number of classified and unclassified commits the word
was found in

Lemma-Report. The lemma-report is the second required report for creating
and improving dictionaries. It includes an entry for every unique lemma,
together with the number of classified and unclassified commits the lemma
was found in

Modules-Report. This report shows categorization statistics about the mod-
ules of a project. Module structure to be analyzed can be parametrized. E.g.
the project has the structure of /util/login/security. We configure a module
depth of 2. There will be a row for /util/* and one row for util/login/* in
the report

Control-Report. This report was used to manually validate the analysis re-
sult during our research. It contains every original commit message and the
category it was assigned to

Eclipse Plugin. The Eclipse plugin has been implemented to integrate Subcat
into the Eclipse IDE to give analysts and developers, but also project managers,
a familiar environment for maintenance analysis. The integration into Eclipse al-
lows a comfortable comparison between our reports and any other metric suites
a user might employ. E.g. a project manager can view results for code metrics



Tracing Your Maintenance Work 307

next to the results of the categorization of the commits of a module and use
both of these views in his decision making process. Furthermore, the usability of
Subcat is improved by using the point and click paradigm to generate reports,
e.g. for authors and modules, as a user can navigate through the proper views
in the IDE (see Figure 2).

The Eclipse plugin uses the generic data source adapter for Subversion and the
classification functionality and the logic from the command line tool Sublex. Due
to its generic approach the classification functionality can be used without adap-
tations in a different context. The complete plugin project is split into three indi-
vidual plugins. The generic data source adapter and Sublex and the main plugin
which integrates the categorization functionality into the Eclipse workbench. This
corresponds to the MVC design pattern (see Buschmann et al. [2]).

3 Generation of a Cross-Project Valid Dictionary

To build a representative dictionary, a set of projects to provide initial keywords
and to train our dictionary are required. We further need another set of projects
to ensure cross-project validity of the dictionary.

3.1 Criteria and Selection of Open Source Projects

Eight open source projects were chosen to build, test and cross verify the dic-
tionary. The following criteria were used to select the projects:

Number of Commits. For our analysis we only considered projects with at
least 30,000 commits3

Number of Developers. To show the categorization of the developer role in
a project and also to increase the variance of different commit message style
only projects with at least 30 developers4 are considered.

Subversion Repository. Our approach is currently based on Subversion repos-
itories. Therefore only projects with access to their Subversion repositories
are included.

Table 1 shows the key figures of the selected projects.

3.2 Populating the Dictionary

As a starting point to create the dictionary we analyzed the log of the FreeBSD-
Project and used exemplary keywords from prior work (see [5] and [9]) for the
categorization. In the next step we ranked the keywords by occurrence. The top
three ranked keywords of each category are included in the first dictionary:

3 The number of commits is the number of commits in the log.
4 The number of developers represents the number of distinct author names in the
log.



308 A. Mauczka et al.

Table 1. Key figures of the analyzed open source projects

App. Name App. Type # Devs # Commits

Boost Prog. Library 294 63,616
Enlightenment Window Manager 187 51,884
Evolution E-Mail-Client 431 37,500
FreeBSD OS 536 150,595
Firebird RDBMS 43 51,509
GCC Compiler-Suite 426 102,672
Python Interpreter 216 83,100
Wireshark Packet Analyzer 43 34,067

Corrective: fix, bug, problem
Adaptive: new, change, patch
Perfective: style, move, removal

This first dictionary constituted the “seed” to create a more exhaustive dictio-
nary. This initial dictionary only categorized a low number of commits, leaving
a large number of commits uncategorized. Starting with this seed, we set up an
algorithm with the goal to increase the ratio of classified commits to 80% while
maintaining adequate values for a self-evaluated precision (0.8) and recall (0.8).
Values beyond these thresholds yield diminishing results - either less commits
will be classified, or precision and recall will suffer. An early attempt at the al-
gorithm had to be abandoned, because of a too conservative approach in adding
words to the dictionary (stagnation at about 65% of categorized commits). For
the final algorithm we used a more open and flexible approach so that more
words would qualify for the dictionary. We further introduced weighting of key-
words and rulesets for ambiguous, yet strongly indicative words. The following
list describes step wise our final algorithm to create the dictionary:

1. Classify the commit using the “seed” dictionary
2. If the total percentage of classified commits is greater than 80%, EXIT
3. Count the appearances of all words in the commit messages of the non-

classified commits and order them by frequency
4. Choose a set of words from the top of the list and add these as a test set to

the existing dictionary
5. Count the number of appearances of every word in the test set in each

category
6. If the number of appearances of a word in a category is at least 1.5 times

of the appearances of the same word in the other categories, add it to the
dictionary with a weight of 2 and remove it from the test set

7. If the number of appearances of a word in two classes is at least 1.5 times of
the appearances of the same word in the third class, add it to the dictionary
to both classes with a weight of 1 and remove it from the test set

8. If neither 6 or 7 are true, remove the word from the test set and do not add
it to the dictionary

9. Go to Step 2



Tracing Your Maintenance Work 309

This algorithm achieved a classification rate of 80.34 % after 21 iterations on the
FreeBSD project. The output is the following dictionary (weights of keywords
in brackets, default weight 1).

Corrective: active, against, already, bad, block, bug, build, call, case, catch,
cause(2), character, compile, correctly, create, different, dump, error(2), ex-
cept, exist, explicitly, fail, failure(2), fast, fix(2), format, good, hack, hard,
help, init, instead, introduce, issue, lock, log, logic, look, merge, miss(2),
null(2), oops(2), operation, operations, pass, previous, previously, probably,
problem, properly, random, recent, request, reset, review, run, safe, set, sim-
ilar, simplify, special, test, think, try, turn, valid, wait, warn(2), warning,
wrong(2)

Adaptive: active, add(2), additional(2), against, already, appropriate(2),
available(2), bad, behavior, block, build, call, case, catch, change(2), char-
acter, compatibility(2), compile, config(2), configuration(2), context(2), cor-
rectly, create, currently(2), default(2), different, documentation(2), dump,
easier(2), except, exist, explicitly, fail, fast, feature(2), format, future(2),
good, hack, hard, header, help, include, information(2), init, inline, install(2),
instead, internal(2), introduce, issue, lock, log, logic, look, merge, method(2),
necessary(2), new (2), old(2), operation, operations, pass, patch(2), previ-
ous, previously, probably, properly, protocol(2) provide(2), random, recent,
release(2), replace(2) ,request, require(2), reset, review, run, safe, security(2),
set, similar, simple(2), simplify, special, structure(2), switch(2), test, text(2),
think, trunk(2), try, turn, useful(2), user(2), valid, version(2), wait

Perfective: cleanup(2), consistent(2), declaration(2), definition(2), header, in-
clude, inline, move(2), prototype(2), removal(2), static(2), style(2), unused(2),
variable(2), warning, whitespace(2)

Blacklist: cvs2svn, cvs, svn

The analysis further showed that the word “documentation” was assigned to the
adaptive category by the algorithm. Since “documentation” is a perfective task
per definition, the word “documentation” was moved from adaptive back to
perfective. The implications warrant further research however.

This final dictionary was used to classify the FreeBSD-project again and pre-
cision and recall were measured based on modification records (MR) as shown
in Table 2.

Table 2. Recall and precision of the classification for the FreeBSD-project

Class MR % Recall Precision

Corrective 54,015 35.86% 0.92 0.85
Adaptive 56,046 37.21% 0.91 0.80
Perfective 8,484 5.63% 0.86 0.80

We then used the dictionary and the algorithm on the “Boost” project
(inital classification rate 74.94%), thereafter on “Enlightenment” project (ini-
tial classfication rate 72.80%) and altered the dictionary until it achieved 80%



310 A. Mauczka et al.

of classified changes. We decided to train the dictionary on two other projects
to achieve a greater classification ratio and to work out project-individual lan-
guage issues (e.g. ambiguously connotated lemmas). After this training phase,
the dictionary was used with the “Evolution”, “Firebird”, “GCC”, “Python”
and “Wireshark” projects and scored a classification rate of over 80% for each
project, without adaption.

Table 3. Recall and precision of the analysis for various open source projects

Project # MR Recall Precision

Enlightenment 51,884 0.90 0.80
Evolution 37,500 0.96 0.92
Firebird 51,509 0.95 0.90
GCC 102,672 0.92 0.83
Python 83,100 0.93 0.85
Wireshark 34,067 0.92 0.85
FreeBSD 150,595 0.90 0.82
Boost 63,616 0.94 0.88

4 Evaluation of the Dictionary

To evaluate our results, we did a survey with five professional Software Devel-
opers. The developers are working for different companies since between two to
five years (2,2,4,4 and 5). Our survey was structured as follows:

– Five questionnaires, each with the 21 changes in the code (7 of each cate-
gory).

– Five questionnaires, each with the same changes in the code, but with their
corresponding commit messages

4.1 Inter-rater Agreement

To measure inter-rater Agreement of the developers, we used Fleiss’ Kappa on
six commits that were identical in each questionnaire. Table 4 shows the agree-
ment amongst the developers for these six commits (two commits per category).
The resulting Fleiss’ Kappa for this matrix is K = 0.48 . This indicates a
moderate agreement according to Landis and Koch’s Benchmark [8] between
the developers themselves.

If a commit is assigned to two categories, its count is split between the
categories.

4.2 Conducting the Evaluation

We conducted the survey in two rounds. Table 5 and Table 6 show the agreement
between developers and the automated classification tool. If a developer chose
two categories, a point was split between these categories.



Tracing Your Maintenance Work 311

Table 4. Matrix showing the agreements amongst the developers for the six common
commits in evaluation round two

Commit/Category Adap. Corr. Perf.

Corr. 1 1.0 4.0 0.0
Corr. 2 0.5 4.5 0.0
Perf. 1 1.0 2.0 2.0
Perf. 2 0.0 0.0 5.0
Adap. 1 4.5 0.0 0.5
Adap. 2 4.0 0.0 1.0

Table 5. Agreements between developers and classification tool for the evaluation
round one

Automated Classification
Developers Adap. Corr. Perf.

Adaptive 11.0 4.5 0.5 16.0
Corrective 4.5 12.0 0.5 17.0
Perfective 7.5 8.5 24.0 40.0

23.0 25.0 25.0 47.0

Table 7 shows the summarized results of the evaluation rounds one and two.
The columns show the total number of agreements between the developers and
the automated classifications for each category and the Cohen’s Kappa-value.

4.3 Interpretation of the Evaluation

The following conclusions can be drawn from these results:

– Both the agreements in the adaptive category as well as the agreements in the
perfective category stayed constant for both rounds. In contrast, the num-
ber of agreements for the corrective category has significantly risen between
round one and two. From this fact we conclude that corrective maintenance
tasks are most difficult to spot just by looking at the source code and without
reading the commit message

– The number of agreements for the perfective category is almost perfect in
both rounds. We therefore conclude that our classification tool excels at
identifying perfective maintenance tasks (a finding similar to Mockus et al’s
inspection change finding in [9])

– The Kappa-value has risen from 0.46 to 0.61 from round one to round two.
This means that with the additional information of the commit message, the
developers have converged their decisions with the decisions of the automated
classification. Curiously this affected mainly corrective changes

– 0.46 and 0.61 both indicate a moderate agreement according to the El
Emam Benchmark - see “SPICE Software Process Assessment Kappa bench-
mark” as introduced in[3]



312 A. Mauczka et al.

Table 6. Agreements between developers and classification tool for the evaluation
round two

Automated Classification
Developers Adap. Corr. Perf.

Adaptive 12.0 1.5 0.0 13.5
Corrective 3.5 19.0 1.0 23.5
Perfective 8.5 4.5 24.0 37.0

24.0 25.0 25.0 55.0

Table 7. Comparison of evaluation rounds one and two

Agreement
Round Adap. Corr. Perf. Kappa

Round 1 11 12 24 0.46
Round 2 12 19 24 0.61

5 Related Work

In 2000 Mockus and Votta presented a study [9] that followed an approach sim-
ilar to this work. They propose the importance of a textual description to un-
derstand the reasons behind software changes. The evaluation performed in our
work strongly suggests the truth of that statement. They further state that other
factors might also influence the change classification. We aim to find new classifi-
cation rules to improve the classification algorithm. The classification algorithm
and the dictionary that we developed solely focus on the “textual description
field” but our implemented tool Subcat was built already keeping in mind an
extension of the classification algorithm also involving other aspects, such as size
of the commit, measured in changed lines of code, or interval.

In 2008 German and Hindle released a study about the taxonomy of large
commits [6]. They define large commits as commits that include a large number
of files. In their study, they manually classified large commits from nine open
source projects by their intentions. They started by extending Swanson’s cate-
gories by the categories “implementation” and “non functional”. During their
work they observed that these categories did not suffice for the categorization
of the intention of large commits and developed a new set of categories which
they call the “Categories of Large Commits”. In [7] , Kemerer and Slaughter
presented a set of methods and techniques to study software evolution. Bevan et
al. introduced a system called Kenyon [1]. They imply resource intensive logis-
tical constraints, e.g. the extraction of analysis specific facts, the storage of the
results of the extraction. These tasks have to be performed for each change or
configuration separately. Kenyon is designed to support these logistical tasks. It
provides support for different software configuration management systems and
retrieves consistent source code configurations. This issue is solved by imple-
menting different plugins for every software configuration management system.



Tracing Your Maintenance Work 313

The plugins themselves are very lightweight because they can all utilize the same
libraries, that hold the core functionalities.

A good overview and description of existing change metrics for commits and
their different subtypes is provided by German et al. in [4]. They also presented
a framework for the classification of change metrics. They present five differ-
ent groups of change metrics: entity change metrics, MR-scoped change metrics,
time-based change metrics, event-triggered change metrics and change metrics
that do not measure code. Additionally they divide the change metrics into
modification-unaware and modification-aware metrics. The classification pre-
sented in this paper can be the basis for the computation of related change
metrics. The software that we present, in a first step is only capable of classify-
ing changes using the classification algorithm. In the future the software can be
extended in a way that it automatically calculates some of the metrics presented
by [4].

6 Conclusion

The presented work provides a tool, Subcat, and a dictionary for cross-project
analysis of software evolution based on an automated classification. To achieve
these two goals, we completed the following tasks:

Classification Algorithm. We developed a classification algorithm which uses
a dictionary as its base of decision-making. The classification algorithm uses
a set of commits as its input and returns an assignment between the commits
and the categories that are defined in the dictionary. It is based on the
analysis of the natural language in the commit messages and follows a lexical
approach.

Dictionary. We presented a dictionary for our classification algorithm that
is capable of assigning commits to Swanson’s maintenance categories. The
cross project validity of the dictionary has been proven on five different open
source software projects. We instantly reached a percentage of successfully
classified commits of over 80% for each of the projects, without having to
adopt the dictionary.

Evaluation. We evaluated the dictionary and the automated classification by
using a two-step evaluation process. In a first step we evaluated the decisions
of the automated classification and the dictionary against our own manual
classification. We reached an average recall of 0.93 and an average precision
of 0.86. In the second evaluation step we evaluated the dictionary against the
opinion of five professional software developers. We have proven amoderate
agreement between the decisions of the automated classification and the
decisions of the developers. This result is similar to the result achieved by
Mockus et al. in [9] and proves that the approach presented is valid for
cross-project analysis in the open source project landscape.

Subcat. We developed a command line tool, which implements the classification
process. We defined a generic input format for the commits, to ensure the re-
usability for data, extracted from different VCS. The command line tool de-
livers the results of the classification as CSV-based reports. We presented an



314 A. Mauczka et al.

Eclipse plugin which integrates the automated classification directly into the
Eclipse workbench. It provides easy access to the classification functionality
and includes a rudimentary visualization of the results of the classification.

The successful evaluation of the lexical-approach on generic open source projects
has many implications. Researchers can use Subcat for a new definition of main-
tenance and software evolution metrics, not only in open-source projects, but
also in any project using non-obscure commit messages. Or fellow researchers
can use Subcat to comfortably analyze for example developer profiles over time
in open source projects, e.g. which developer does the bug fixing, who is imple-
menting the new features. Subcat can not only be used for profiling or software
evolution metrics though. Additionally, Subcat has been adapted to work with
GIT repositories recently.

Additionally to the main purpose, the categorization of changes into software
maintenance categories, Subcat can be easily adapted (by changing the dictio-
nary) for any other studies on commit messages in repositories. The author and
dictionary report and to some extent the lemma report are especially useful for
this purpose.

6.1 Discussion

There are many extensions to Swanson’s classification of maintenance tasks. In
our work, we adhere to Swanson’s original category set, because it is manageable
and well defined. During our research we studied a lot of commits and recognized
that often, one commit holds multiple, non-associated changes that would have
to be assigned to different categories. This indication warrants further research.
In the survey based evaluation we used Cohen’s Kappa as a measure. The def-
inition of a nominal scale implies that every item can be classified to exactly
one category. As indicated earlier, there are cases where a commit can not be
distinctly classified to one category but includes different activities that stretch
between two or even all of the three maintenance categories.

For detailed results per project, please contact the authors at the given mail
address.

6.2 Future Work

In this paper we use WordNet solely for matching words and lemmas. Word-
Net also possesses the possibility for cognitive matching which could be in-
cluded in the matching algorithm. Furthermore, Subcat is capable of measuring
further details of the commits (e.g. commit size, length of commit messages).
These parameters provide possibilities for further tuning of the categorization
mechanism.

References

1. Bevan, J., Whitehead Jr., E.J., Kim, S., Godfrey, M.: Facilitating software evolution
research with kenyon. In: Proceedings of the 10th European Software Engineering
Conference, pp. 177–186 (2005)



Tracing Your Maintenance Work 315

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, vol. 1. John Wiley and
Sons (1996)

3. Emam, K.E.: Benchmarking kappa for software process assessment reliability stud-
ies. Empirical Software Engineering 4, 113–133 (1999)

4. German, D.M., Hindle, A.: Measuring fine-grained change in software: Towards
modification-aware change metrics. In: Proceedings of the 11th IEEE International
Software Metrics Symposium, p. 28 (2005)

5. Hassan, A.E.: Automated classification of change messages in open source projects.
In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 837–841
(2008)

6. Hindle, A., German, D.M., Holt, R.: What do large commits tell us? a taxonomical
study of large commits. In: Proceedings of the International Working Conference
on Mining Software Repositories, pp. 99–108 (2008)

7. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolu-
tion. IEEE Transactions on Software Engineering 25 (1999)

8. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorial
data. Biometrics 33, 159–174 (1977)

9. Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: Proceedings of the International Conference on Software Engineer-
ing, pp. 120–130 (2000)

10. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2nd Inter-
national Conference on Software Engineering, ICSE 1976, pp. 492–497 (1976)


	Tracing Your Maintenance Work –
A Cross-Project Validation of an Automated Classification Dictionary for Commit Messages
	Introduction
	Automated Classification Approach
	Classification Rules
	Categorization Tool - Subcat

	Generation of a Cross-Project Valid Dictionary
	Criteria and Selection of Open Source Projects
	Populating the Dictionary

	Evaluation of the Dictionary
	Inter-rater Agreement
	Conducting the Evaluation
	Interpretation of the Evaluation

	Related Work
	Conclusion
	Discussion
	Future Work

	References





