
Model-Driven Techniques to Enhance Architectural
Languages Interoperability

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, and Alfonso Pierantonio

University of L’Aquila, Dipartimento di Informatica
{davide.diruscio,ivano.malavolta,henry.muccini,

patrizio.pelliccione,alfonso.pierantonio}@univaq.it

Abstract. The current practice of software architecture modeling and analysis
would benefit of using different architectural languages, each specialized on a
particular view and each enabling specific analysis. Thus, it is fundamental to
pursue architectural language interoperability. An approach for enabling interop-
erability consists in defining a transformation from each single notation to a pivot
language, and vice versa. When the pivot assumes the form of a small and abstract
kernel, extension mechanisms are required to compensate the loss of information.
The aim of this paper is to enhance architectural languages interoperability by
means of hierarchies of pivot languages obtained by systematically extending a
root pivot language. Model-driven techniques are employed to support the cre-
ation and the management of such hierarchies and to realize the interoperability
by means of model transformations. Even though the approach is applied to the
software architecture domain, it is completely general.

1 Introduction

Architecture descriptions shall be developed to address multiple and evolving stake-
holders concerns [1]. Being impractical to capture all concerns within a single, narrowly
focused Architectural Language (AL) [2], i.e., a form of expression used for architec-
ture description [1], we must accept the co-existence of different domain specific ALs,
each one devoted to specific purposes. The use of various ALs requires interoperability
among them since bridging the different descriptions to be kept consistent and coherent
is of paramount relevance [3]. The need of interoperability at the architecture level is
clearly demonstrated by international projects like Q-ImPrESS [4], and ATESST [5]
where correspondences among different languages have to be created and maintained.

An approach for enabling interoperability among various notations which is recently
getting consensus in different application domains (e.g., [6,7]) consists in organizing
them into a star topology with a pivot language in its center: in these cases inter-
operability is enabled by defining a transformation from each single notation to the
pivot language, and vice versa. Thus, the pivot language acts as a bridge between all
the considered notations and avoids point-to-point direct transformations among them.
While how to build a pivot language is still a craftsman activity, two different trends
can be noted: (i) building a (rich) pivot language that contains each element required

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 26–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Driven Techniques to Enhance Architectural Languages Interoperability 27

by any AL, like in the Q-Impress project, and (ii) building a (small) kernel pivot lan-
guage containing a set of core elements common to most of the involved ALs, like in
KLAPER [8]. On one hand, the adoption of a rich pivot language tends to reduce the
loss of information in the pivot-based transformation process from one AL to another.
On the other hand, the use of a kernel pivot may give rise to loss of information, since
concepts in some of the ALs might be missing in the pivot language (due to the kernel
pivot language minimality).

The use of a rich pivot is ideal when ALs have to be related under a closed-world-
assumption, i.e., when the set of ALs to be used is a-priori defined. However, a rich
pivot difficultly scales when new ALs are introduced in the star topology: the rich pivot
has to be updated to cover newly introduced concepts. This is an error-prone task that
could easily introduce inconsistencies within the pivot. In such a scenario, while the
kernel pivot solution is more scalable (since the kernel pivot language is defined once
forever and is AL-independent), the addition of new ALs increases the loss of informa-
tion when new ALs introduce new concepts not included in the kernel pivot. When the
closed-world-assumption decays, a new solution is needed to support the interoperabil-
ity among various ALs while reducing as much as possible the loss of information. This
calls for kernel extensions, each extension defined for dealing with specific stakeholder
concerns. Moreover, the construction of kernels must be properly controlled to support
their coexistence and reuse. The information that can be lost consists of concepts that
potentially could be transformed from a source model and properly represented in a
target one, but for some reason are neglected by the transformation process.

In this paper we present a Model-Driven Engineering (MDE) approach to enhance
the interoperability among ALs by using extensible kernel pivots. The approach (i) en-
compasses a systematically defined extension process that, starting from a small kernel
pivot language permits the automated construction of a hierarchy of kernel pivots, and
(ii) provides mechanisms to transform from an AL to another by minimizing the loss of
information; this is realized by passing through the most informative pivot kernel in the
hierarchy for the considered ALs. The overall approach is general and, while applied to
the software architecture domain, may be adopted in different domains.

The remaining of the paper is organized as follows. Section 2 highlights limitations
and challenges of current pivot-based solutions. Section 3 describes the proposed kernel
pivot extension mechanisms. Section 4 applies the approach to a case study in the auto-
motive domain. Section 5 compares our work with related works. Section 6 concludes
the paper and highlights future research directions.

2 Interoperability via Pivot Languages

It is becoming common practice to use different ALs to model or to analyze differ-
ent architectural aspects of the system under development. The Q-Impress project, for
example, enables interoperability through a rich pivot language that unifies common
aspects of the used ALs. The ATESST project provides means to integrate different
model-based tools to develop automotive embedded systems. In the domain of reliabil-
ity modeling and prediction, Klaper is a kernel language which can be used as the start-
ing point to carry out performance or reliability analysis. DUALLY [7] exploits model

28 D. Di Ruscio et al.

transformation techniques and any transformation among ALs is defined by passing
through A0, a kernel pivot metamodel defined as general as possible.

All the projects and research efforts described above adopt a pivot solution for sup-
porting the interoperability among different description languages. Figure 1 shows the
main difference between the use of a rich pivot language and a kernel one: filled circles
represent modeling concepts, solid lines denote correspondences among AL and pivot
language concepts, and finally dashed boxes and dashed lines represent added ALs and
correspondences, respectively. A rich pivot language is built with the aim of including
the highest number of concepts contemplated by all the interoperating ALs. As shown
in Figure 1.a, each concept in any AL finds its correspondence with a rich pivot lan-
guage element. Differently, a kernel language contains only a core set of concepts (as
shown in Figure 1.b), and is kept as small as possible. Such a difference has positive and
negative impacts on the way interoperability is realized. In the following we provide a
summary of the main strengths and limitations of both solutions.

Interoperability Accuracy: the rich pivot is built with the intent to match any concept
coming from the interoperating ALs. Thus, in principle, as soon as a correspondence
exists among two ALs, it is caught by the pivot-based transformation. The kernel lan-
guage solution, being minimal, may instead discard some correspondence, thus limiting
the interoperability accuracy. For instance, see a1 and a2 in Figure 1.b: while a corre-
spondence among them is found in the rich pivot, it is missing in the kernel-based
solution. Information loss is thus introduced. The kernel-based approach is particularly
limiting when domain-specific ALs are introduced in the star topology. Overall: the rich
pivot solution is more accurate;

Pivot Scalability: as soon as a new AL has to be considered, the rich pivot needs to be
revised in order to avoid information loss. As shown in Figure 1.a, the insertion of AL4

implies the addition of the link between AL4 and the already existing element b1 in the
rich pivot, and the addition of b2. This may require a strong revision of the entire rich
pivot to solve possible conflicts and to avoid inconsistencies. When AL4 is added to the
kernel language in Figure 1.b, instead, only a new correspondence with b1 is created.
Overall: the kernel language approach scales better.

Fig. 1. Interoperability via a: a) rich pivot, b) kernel pivot

In summary, the rich
pivot solution is more
accurate in terms
of interoperability corre-
spondences, but it is less
scalable and might re-
quire adjustments when
a new notation is in-
cluded. Contrariwise, the
kernel solution shows

complementary strengths and limitations. A new solution is needed to support both
interoperability accuracy and pivot scalability.

An approach that is being used consists in making the kernel pivot extensible, thus
adaptable to new ALs. Language extensibility in the software architecture domain has

Model-Driven Techniques to Enhance Architectural Languages Interoperability 29

been adopted in the xADL [9] XML-based architecture description language (based on
XML extension mechanisms), in AADL [10] (through its annexes), in UML (with its
profiles), and in our approach for ALs interoperability named DUALLY [7]. However,
DUALLY, which is at the best of our knowledge the most mature framework to sup-
port interoperability among various ALs, has shown a certain number of shortcomings.
Firstly, it is not clear how to manage the extension process when two (or more) ex-
tensions are required. Let us suppose that both real-time and behavior extensions are
needed. So far, three alternative solutions can be applied: i) extend the kernel with real-
time concepts first, then with behavior, ii) extend the kernel with behavior concepts first,
then with real-time ones, iii) extend the kernel with both concepts at the same time. The
three scenarios may produce different kernel pivots, and so far there is no guideline on
how to manage such a multiple extension. Secondly, current solutions tend to create
ad-hoc extensions, not engineered to be reusable. Even when applying scenarios i) or
ii) above, the intermediate kernels are typically lost and not stored for reuse. The ex-
tension itself is not considered as a first class element, but simply as an improvement
to the original pivot.

The approach we propose in this paper satisfies the requirements of i) a systematic
extension process, which provides clear guidelines on how and what to extend, ii) a
compositional and reuse-oriented approach, where kernels are re-used and extended,
iii) supporting both interoperability accuracy and pivot scalability.

3 The Extension Mechanisms

In this section we propose the mechanisms to extend an existing kernel A with a kernel
extension e. In our approach the extension e is a metamodel, that can be re-used for
extending different kernels. The proposed mechanisms rely on the adoption of weaving
models [11] which relate a kernel A with an extension e. A weaving model wm contains
links between elements of a kernel A and elements of an extension e.

Fig. 2. Example of extensions of A0

The generation of a kernel Ae,
which is an extension of A with
e, is performed by executing
a transformation tr. tr is de-
fined once forever and applies
the extension e to A according
to the extension operators used
in wm (see Section 3.1). Fig-
ure 2 shows a small fragment
of A0 consisting of the meta-
classes Comp and Port that rep-
resent a generic component and
port, respectively (see [7] for a
complete description of A0).
Let us assume that y is a kernel

extension containing the metaclasses SoftComp and HardComp to model software and
hardware components, respectively. This extension can be applied to A0 by means of

30 D. Di Ruscio et al.

the transformation tr which takes as input the weaving model wmA0y , the kernel A0,
and the extension y, and generates the new kernel Ay . The kernel Ay is shown in Fig-
ure 2 and contains the generic component concept specialized in software and hardware
components. Let us assume also that x is another extension consisting of the perfor-
mance annotations p1 and p2. This extension can be applied to A0 by means of the
transformation tr which takes as input another weaving model wmA0x, the kernel A0,
and the extension x. The obtained kernel called Ax is shown in Figure 2 and represents
an extension of A0 in which the p1 annotation is added to Comp and the p2 annotation
is added to Port.

As previously said, weaving models are used to apply given extensions to existing
kernels by specifying the metaclasses which are involved in the operation. Formally, a
weaving model can be defined as in Def. 1.

Definition 1 (Weaving Model). Let A be the set of all the possible kernels, let E be
the set of all the possible extensions, and let W be the set of all the possible weaving
models. We denote with wmAe∈W a weaving model defined between the kernel A∈A
and the extension e∈E. A weaving model wmAe={wl1Ae, wl2Ae, · · · , wlnAe} can be seen
as a set of weaving links each establishing a correspondence between elements of A and
elements of e. Each link is realized by means of extension operators.

Referring to Figure 2, the weaving model wmA0x defined for A0 can be used also to
extend Ay , since Ay contains the metaclasses involved in wmA0x. In fact, Ay contains
the metaclasses Comp and Port which are considered in the weaving model wmA0x to
attach the annotation p1 to Comp, and p2 to Port. In the same way, wmA0y can be used
to extend Ax by applying the extension y to the metaclass Comp, and specializes it with
the metaclasses SoftComp and HardComp. These two independent extension journeys
converge in a kernel called Ayx or Axy . Focusing on the left-hand side of Figure 2, the
weaving model wmAyx is another application of the extension x to the kernel Ay to add
the annotation p2 to Port and the annotation p1 to SoftComp. In this case we obtain
a kernel different from Axy . Specifically, this kernel permits to add p1 exclusively to
software components.

Extension hierarchies, like the one in Figure 2, contain three types of elements: ker-
nels, extensions, and weaving models that apply extensions to kernels. In order to reg-
ulate how kernels and extensions can be involved in specific weaving models, we make
use of a type system for kernels and extensions. In other words, a weaving model de-
fined for a kernel can be re-used also for applying extensions to other kernels, under
the assumption that these kernels have the metaclasses involved in the weaving model.
Def. 2 defines our notion of model type substitutability, which is based on the following
notion of model typing: the type of a model is defined “as a set of MOF classes (and,
of course, the references that they contain)” [12]. We denote with T the set of all the
possible model types. In our context T can be partitioned in TA and TE which denote
the types of kernels and extensions, respectively.

Definition 2 (Model Type Substitutability). Let TA∈TA be the type of a given kernel
A, and let Te∈TE be the type of an extension e, then a weaving model wmAe can be
used by the model transformation tr to extend a kernel typed with either TA or any of
its subtypes.

Model-Driven Techniques to Enhance Architectural Languages Interoperability 31

In our context subtyping depends on a type’s hierarchy obtained by means of the ex-
tension mechanism that produces a kernel typed TB by exclusively adding new ele-
ments to an existing one, typed TA (i.e., the deletion of elements from a kernel is not
allowed). It is worth mentioning that our extension mechanism ensures that all the el-
ements of an extension e are added to the kernel being extended. This type hierar-
chy introduces a strict partial order < among kernel types: TA<TB if TB is obtained
by extending TA and then TB can be substituted to TA. Figure 3 is a generalization

Fig. 3. A hierarchy of kernels

of Figure 2 and shows a sim-
ple hierarchy of extensions
involving a generic ker-
nel Ak and two extensions
called x and y. The ker-
nel extensions are regulated
by four different weaving
models (wmAkx, wmAky ,
wmAxy, and wmAyx), thus
producing five different new
kernels. More specifically,
Ax and Ay are obtained ex-

tending Ak with x and y and by means of the weaving models wmAkx and wmAky ,
respectively. The weaving model wmAkx takes as input a kernel typed TAk

and the ex-
tension x typed Tx. Similarly, the weaving model wmAky takes as input a kernel typed
TAk

and the extension y typed Ty.
Let us focus now on Ax which is extended by applying the extension y in two differ-

ent ways. The first way considers the weaving model wmAxy used by tr to apply the
extension typed Ty to elements of a kernel typed TAx . This kernel contains the elements
of Ak and those of x added by using wmAkx. The weaving model wmAxy can affect
all of them since it considers a kernel typed TAx . This is not the case of wmAkx, which
can only operate on elements of Ak . This justifies why the sequential compositions
tr(wmAky , tr(wmAkx,Ak,x), y) and tr(wmAkx, tr(wmAky ,Ak,y), x) lead to the same
target metamodel Axy , i.e., there is a confluence in the extension journeys. The genera-
tion of the target metamodel Axy is performed by using a new weaving model wmAkxy

which is the union of wmAkx and wmAky . The execution of tr(wmAkxy,Ak,xy), where
xy is a metamodel consisting of the union of the elements of x and y, produces Axy .
Formally, the union of two weaving models is defined as in Def. 3.

Definition 3 (Union of Weaving Models). Let wmAx∈W a weaving model defined
between the kernel A∈A and the extension x∈E, and wmAx={wl1Ax,wl2Ax,· · · ,wlnAx}.
Let wmAy∈W a weaving model defined between the kernel A∈A and the extension
y∈E, and wmAy={wl1Ay ,wl2Ay ,· · · ,wlmAy}. The weaving models union
wmAx∪wmAy={wl1Ax, wl2Ax, · · · ,wlnAx,wl1Ay ,wl2Ay ,· · · ,wlmAy} is the set of all the
weaving links in wmAx and wmAy .

It is important to note that in general the confluence cannot be ensured since it depends
on how the extensions have been applied, i.e., on the involved weaving models. In the
following we explain why in our approach we have a confluence (see Section 3.1) and

32 D. Di Ruscio et al.

how to identify transformation paths from one AL to another by passing through the
kernels hierarchy (see Section 3.2).

3.1 Extension Operators

The extension operators used to create weaving models are Inherit, Reference, Expand,
and Match. These operators are defined by constraining the composition operators pre-
sented in [13] to exclusively enable extensions and avoid conflicts when structural fea-
tures of the kernel and the extension being applied overlap. They always extend a kernel
and then, in case of conflicts during the extension, the kernel element will be the one to
be considered. Each operator is always applied on two metaclasses (one belonging to
the kernel and one to the extension) that we refer to as source (s) and target (t) in the re-
mainder of this section. The application of the operators consists of executing the trans-
formation tr that, as explained before, takes as input a weaving model, a kernel, and
an extension, and produces an extended kernel according to the applied operators. The
extension operators are:
Inherit: This operator specifies that the concept s will be a subtype of t in the resulting
extended kernel. If its application results in a cycle in the inheritance tree, then it is not
executed and a warning is raised. The t metaclass must belong to the kernel metamodel.
Reference: In the extended kernel, s has a reference to t. The metaclasses s and t belong
to the kernel or to the extension.
Expand: all the attributes of s are copied into t. Attributes with the same name are
merged. The t metaclass must belong to the kernel metamodel.
Match: s and t represent the same concept; they are merged into a single metaclass
which contains the union of all the structural features (i.e., both attributes and refer-
ences) of s and t. Their supertype and subtype references are merged as well. The t
metaclass must belong to the kernel metamodel.

The proposed extension operators have the following properties that underpin the
construction of the type hierarchy previously presented.

Property 1 (Monotonicity - kernel preservation). Each operator can only add elements
to the kernel being extended. The deletion of kernel elements is forbidden.

Property 2 (Extension integrity). All the elements of the extension metamodel
are added to the kernel metamodel according to the operator semantics. In other words,
it is not possible to use only a fragment of an extension. This is ensured by the default
behavior of the extension mechanism which copies all the extension elements that are
not considered by the used operators.

Property 3 (Parallel independence). An operator can be applied only if conflicts1

among the structural features of the involved metaclasses do not occur. For instance,
it is not possible to match a kernel metaclass A containing an attribute p : Int with
an extension metaclass B containing an attribute p : String because of the conflicting
types of the attribute p.

1 According to the classification in [14], the conflicts that are considered in the parallel inde-
pendence property are the so-called syntactic conflicts.

Model-Driven Techniques to Enhance Architectural Languages Interoperability 33

By referring to Figure 3, Properties 1, 2, and 3 ensure the confluence of the extension
mechanism (see Theorem 1).

Theorem 1 (Confluence). Given two weaving models wmAkx and wmAky between
the kernel Ak and the extensions x and y, respectively, and wmAkx ∪ wmAky does not
contain weaving links that refer to elements in x and y which are in conflict, then:

tr(wmAkxy ,Ak,xy)=tr(wmAkx,tr(wmAky,Ak,y),x)=tr(wmAky,tr(wmAkx,Ak,x),y)

where wmAkxy is the weaving between the kernel Ak and the extension xy is given as
the union of wmAkx and wmAky .

The proof of the theorem is given in Appendix.

3.2 Identification of transformation paths

ALs can be bound to different kernels of the built hierarchy. To better explain both the
problematics of the transformation path identification and the provided solution, we use
the example presented before.

Fig. 4. AL-to-AL transformation management

Figure 4 describes two
generic ALs, AL1 and
AL2, bound to A′

yx and
Ayx, respectively. As de-
scribed before, A′

yx is an
extension of Ay that con-
tains the performance an-
notation p1 added to
SoftComp and the per-
formance annotation p2
added to Port. Whereas,
Ayx contains the perfor-
mance annotation p1
added to Component and
the performance annota-
tion p2 added to Port.
In this simple example the

performance annotation p2 is present both in A′
yx and in Ayx; therefore, when trans-

forming from a model specified with AL1 to a model conforming to AL2, it is desirable
to maintain also the p2 annotation. In a transformation realized by passing through Ay

we lose such an information. For this reason our approach automatically builds a work-
ing kernel, Awork

yx in Figure 4, which contains also the p2 annotation. This working
kernel contains the metaclass Port with the annotation p2, while p1 is ignored since in
A′

yx p1 is attached to SoftComp and in Ayx it is attached to Comp. Thus, p1 represents
information that cannot be automatically translated. Notice that once transforming from
AL1 to AL2 and back, the values of the p1 annotations possibly attached to SoftComp

instances of AL1 are preserved by means of the lost-in-translation mechanism
described in [7].

34 D. Di Ruscio et al.

Formally, let Al and Am be the kernels which AL1 and AL2 are bound to, respec-
tively. Moreover, let TAl

and TAm the types of Al and Am, respectively. To identify the
transformation path between Al and Am that minimizes the loss of information, we
look for the most “specialized” common ancestor Aanc of Al and Am such that:

((TAanc<TAl
)∧(TAanc<TAm))∧(�A′∈A|(TA′<TAl

)∧(TA′<TAm)∧(TAanc<TA′))

To understand if we can build a kernel useful to reduce the loss of information, we
consider the extensions that have been applied from Aanc to Al and from Aanc to Am.
The functions in Def. 4 and Def. 5 are introduced to construct such a kernel.

Definition 4 (extensionApplications). extensionApplications: A × A → 2W is a
function that given as input the kernels Ai∈A and Aj∈A, such that TAj < TAi (i.e.,
Aj is an ancestor of Ai) returns a set containing all the weaving models that have been
applied to Aj for building the kernel Ai.

Definition 5 (usedExtensions). usedExtensions: A × A → 2E is a function that
given as input the kernels Ai∈A and Aj∈A, such that TAj < TAi (i.e., Aj is an ances-
tor of Ai) returns a set containing all the extensions that have been used to extend Aj

for building the kernel Ai.

The transformation path that minimizes the loss of information between Al and Am is
calculated by means of the pathIdentification algorithm shown in the left-hand side
of Figure 5. In particular, pathIdentification gets as input Al and Am and calculates
the common ancestor Aanc (see line 1). Then the next step is to find a kernel that
while transforming can reduce the loss of information. To this purpose the algorithm
checks if there is an intersection between (i) the extensions that have been applied (i.e.,
weaving models) to Aanc to build Al, and (ii) those that have been applied to Aanc

to build Am. The extension applications are calculated in two steps. Firstly, the sets
of weaving models applied to Aanc for building the kernels Al and Am are calculated
(lines 2 and 3, respectively). Secondly, for each set, the union of all the weaving models
is calculated. More precisely wmL and wmM are the weaving models that have been

Aanc

Al

Awork

AL1

Al

AL AL2 AL

 lm

Am A

tr(…)

tr(…) tr(…)

tr(…)

tr(wmwork ,Aanc,E) lm

…

Awork
lm)) tttt

Fig. 5. Working kernel generation

Model-Driven Techniques to Enhance Architectural Languages Interoperability 35

obtained from the union of all the weaving models contained in L and M , respectively
(lines 4 and 5). To understand if we can refine the hierarchy by building a new kernel
that can reduce the loss of information, the intersection between wmL and wmM is
calculated (line 6). If the intersection is empty, then all the information that is common
to Al and Am is already contained into Aanc; consequently, the path that minimizes the
loss of information between Al and Am starts from Al, navigates the hierarchy up to
Aanc, and then navigates the hierarchy down to Am (see line 7).

If the intersection is not empty, then we have to refine the hierarchy as shown in Fig-
ure 5 in order to perform transformations (from AL1 to AL2 and vice versa) via a kernel
more specific than Aanc. In other words, the idea is to extend Aanc with the informa-
tion shared between Al and Am that is not contained in Aanc. The ad-hoc kernel is
called Awork

lm and is automatically generated by using a working weaving model called
wmwork

lm . This wmwork
lm is obtained from the intersection of wmL and wmM (line 9).

As shown in the right-hand side of Figure 5, the weaving model wmwork
lm applies the

working extension E to Aanc then generating Awork
lm (line 11). E is obtained by suitably

merging the extensions that have been used to extend Aanc for building the kernel Al

and those that have been used to extend Aanc for building the kernel Am (line 10). The
merging of extensions is realized by means of the function createWorkingExtension
that considers only the portion of the extensions involved in at least one of the weaving
links in wmwork

lm . createWorkingExtension does not add new conflicts into Awork
lm

since each weaving link added in Awork
lm belongs both to Al and Am; indeed having a

conflict in Awork
lm would imply to have a conflict in both Al and Am. This is not pos-

sible since Property 3 of the extension operators ensures that Al and Am do not have
conflicts (by construction).

It is worth noting that Awork
lm is a working kernel since it is exclusively used for

transformation purposes and we do not allow ALs to be bound to Awork
lm . Finally, as

shown in Figure 5, the path that minimizes the information loss between Al and Am

starts from Al, directly passes through Awork
lm and ends to Am.

4 Case Study and Discussion

In Section 4.1 we present a case study to show how two real ALs can interoperate by
means of the proposed approach. The scale of the considered case study does not allow
us to show all technical aspects of the approach. Thus, we show the most automated
parts, while more complex technicalities are better described by using small examples
as done in Section 3. Then, Section 4.2 discusses issues related to the approach.

4.1 Putting the approach in practice

According to its business needs, an organization decided to draw and analyze the ar-
chitecture of a system in the vehicular domain by using AADL [10] (with its be-
havioral annex), complemented with SaveCCM [15] (helpful to support the develop-
ment of resource-efficient systems and to perform structural preventive analysis). The
case study starts from an already existing kernel hierarchy (see the uppermost part
of Figure 6) composed of three extensions of the root kernel A0, namely Behaviour,
Embedded systems, and Real-time. Due to space limitations, we do not describe the

36 D. Di Ruscio et al.

concepts contained into the extension metamodels. We assume that two ALs are al-
ready bound to the hierarchy: Acme [16] is bound to A0 and Darwin/FSP [17] to the
Behaviour kernel. In order to apply the proposed approach, we need to identify the
suitable kernel on which each AL can be profitably bound. Focusing on SaveCCM,

Fig. 6. SaveCCM and AADL into the hierarchy

it contains both real-time
and embedded systems con-
cepts. A satisfying kernel
does not exist but two ex-
isting kernels, namely the
Embedded systems and the
Real-time, can be suitably
used to obtain a new ker-
nel on which SaveCCM can
be bound. In this example
the kernel can be produced
by reusing both the existing
weaving models wmA0E

and wmA0RT . The ob-
tained kernel, named RT+E,
is shown in Figure 6. This
kernel metamodel is auto-

matically obtained, as explained in Sections 3.1. It is important to note that during this
extension a new weaving model, wmA0RT+E , is automatically generated by compos-
ing wmA0E and wmA0RT . As explained in Section 3.1 this weaving model is extremely
important to support further extensions of the kernel RT+E.

Fig. 7. AADL model of the HCI process

Similarly to SaveCCM,
AADL contains both real-
time and embedded sys-
tems concepts; however,
AADL contains also be-
havioral concepts since we
are considering also its be-
havior annex. In this spe-
cific situation we look for
a candidate kernel with
real-time, embedded sys-
tems, and behavioral con-
cepts. Building on the
kernel RT+E and by con-
sidering also the extension
B, we can build a new
RT+E+B kernel by reusing
both the wmA0B weaving
model already used to ex-
tend A0 with B and the

Model-Driven Techniques to Enhance Architectural Languages Interoperability 37

generated weaving model wmA0RT+E . Once the extension metamodel RT+E+B has
been generated, AADL can be bound to the hierarchy. RT+E+B contains real-time, em-
bedded systems, and behavioral concepts. Finally, suitable model transformations are
generated from each weaving model as described in Sections 3.2. Now that the kernel
hierarchy is ready to be used, we can proceed by modeling the system of interest. It is
a cruise control system, i.e., a system that automatically controls the speed of a vehicle
according to the driver settings [18]. In this paper we focus on the Human Control Inter-
face (HCI) subsystem, which is the front-end to the driver. Figure 7 shows the HCI pro-
cess modeled in AADL. This process is composed of four threads managing the driving
mode (DrivingModeManager), the reference speed (ReferenceSpeedManager), the
buttons panel (DriverConsole), and a console (InstrumentConsole) for special
settings of the system.

In order to transform the AADL model to the corresponding SaveCCM model, the
transformation chain is calculated as described in Sections 3.2. In this case the calcu-
lated path passes through the kernel RT+E that is the most specific common ancestor
of RT+E and RT+E+B. By means of this transformation chain we ensure that both
real-time and embedded system concepts are accurately translated. Therefore, the infor-
mation that is lost while transforming is limited to behavioral concepts or to concepts
specific to AADL; they cannot be translated to SaveCCM even by using an ad-hoc trans-
formation. However, without a systematically defined extension process SaveCCM and
AADL could have been bound to two extensions of A0 with potential but unexpressed
similarities. This may lead to the loss of real-time and embedded system concepts.

Fig. 8. SaveCCM model of the HCI component

Figure 8 shows the model
of the HCI process auto-
matically generated for
SaveCCM. SaveCCM does
not provide specific model-
ing constructs for processes
and threads and then, as can
be seen in the figure, both
processes and threads be-
come components; in par-
ticular the HCI process be-
comes a Composite com-
ponent. This is because the
generic component meta-
class of AADL (which is
a superclass of thread,
process, memory, etc.) is
linked to the component
metaclass of the kernel
RT+E+B, and the SaveCCM

component metaclass is linked to the component metaclass of the kernel RT+E. We
clearly have a loss of information when transforming from AADL to SaveCCM. How-
ever, the generated transformations are instrumented to maintain the information which

38 D. Di Ruscio et al.

is lost so to recover it when transforming back from SaveCCM to AADL. Data, Event,
and EventData ports are linked to the corresponding concepts in RT+E+B, which are
linked in turn with Data, Trigger, and Combined ports of SaveCCM, respectively.
Therefore, the semantics of the modeled ports is maintained when transforming from
AADL to SaveCCM. This is obtained thanks to the kernel hierarchy. Without such a
hierarchy, i.e., by passing directly through A0, we loose the specific information related
to ports since A0 has only the concept of generic port.

4.2 Discussion

In this section we discuss the following aspects: (i) generalization of the approach, (ii)
its scalability, and (iii) overhead added by the kernel hierarchy to the transformation.

Generalization: the overall approach is applied to the software architecture domain
and specifically to ALs. However, the kernel hierarchy and transformation management
can be easily applied to different domains by simply substituting A0 with a different
root kernel metamodel. The definition of the root kernel metamodel is strategic and re-
quires particular attention. Please refer to the discussion section in [19] for more details
about the process we followed for defining A0. Finally, we believe that the proposed ap-
proach could be used as a new “profiling” mechanism able to support the extensibility
mechanisms envisioned by Jacobson and Cook in the UML of the future [20].

Approach Scalability: according to Section 3, a kernel can be extended in several
different ways depending on the specified weaving model. As described in Section 3.2,
some “working” metamodels need to be added to the hierarchy in order to properly
manage the transformations. Thus, from the scalability point of view it is important
to understand the order of magnitude of the hierarchy. As reported in [7] the number
of available architecture description languages is around 50 or 60. An estimation of
the possible extensions is more difficult to be performed but based on the number of
available ALs we are confident that this will not compromise the approach applicability.

Overhead: the kernel hierarchy adds some overhead to the transformations. In order
to quantify this overhead it is important to understand the operations that need to be
performed during the transformations and to identify the operations that are performed
once forever. In Section 3.2 we explained the need of having a working metamodel and
the procedure to build it. This metamodel and related weaving models are created once
forever. Therefore, this cannot be considered as overhead of the transformation from
one AL to another. The overhead that is added to each transformation from one AL to
another is related to the fact that the transformation is actually a chain of transformations
instead of a direct transformation from one AL to another. Assuming a constant time t
for each transformation, the overhead can be quantified as (t×x) − t, where x is the
number of transformations composing the considered chain. In the case study presented
in this work, we used an Intel Pentium D-3.2Ghz, with 4GB DDR-II of RAM, running

Model-Driven Techniques to Enhance Architectural Languages Interoperability 39

Windows 7 Professional. The generation of the transformation chain and its execution
took less than four seconds with a source AADL model consisting of 603 modeling
elements. The experience we had with the case study was encouraging from the point
of view of the efficiency of the overall approach.

5 Related work

State-of-the-art approaches on ALs interoperability have been discussed in Section 2
outlining what is missing and then motivating the proposed approach. In this section
we compare our work with existing work in the area of model-driven engineering.

Over the last years a number of work has been proposed to cope with the prob-
lem of tool integration and interoperability in MDE. Such works can be classified into
Transformation-based approaches and Metamodel integration approaches [21]. The
former approaches, like [22,6], propose the adoption of model transformations which
aim to serve as a bridge between the various tools that have to interoperate. In particular,
model transformations are used to transform data required by heterogeneous tools. Dif-
ferently to our work, such approaches rely on manually written transformations defined
with respect to the notations adopted by the considered tools. Metamodel integration
approaches, like [23], rely on the definition of a common metamodel to establish tool
interoperability. Even though such approaches are similar to our work, they do not pro-
vide mechanisms supporting the extension of the common metamodel.

The problem of interoperability has been tackled also in the context of model-to-
model transformation languages. In [24] the authors propose an approach based on a
Common Intermediate Language to support interoperability between different model
transformation languages. Differently from our approach the authors analyze a set of
well-known transformation languages and identify common characteristics which are
captured in a common metamodel which is not extensible.

In [25] the authors propose an approach based on consistency rules, and bidirec-
tional model transformations to automate the synchronizations of AUTOSAR (Auto-
motive Open System ARchitecture)and SysML (System Modeling Language) model-
sEven though the approach is general and can be applied on any couple of modeling
languages, it differs from our work since the used model transformations which under-
pin the synchronization mechanism are manually written and are not organized in an
extension hierarchy as proposed in this paper.

Going back to the nineties, a family of works have been proposed to exploit a single
formal kernel language to integrate specifications written in different languages. One of
the most prominent work in this family is the one by Jackson and Zave [26] in which Z
is used as a common semantic domain for the composition of partial specifications de-
fined in different languages. The resulting composed specification is then used to check
the consistency of the initial partial specifications. Our goal is quite different since we
consider the kernels hierarchy as an intermediate means for transforming models across
different languages, rather then a way to check their global consistency.

40 D. Di Ruscio et al.

6 Conclusion and Future Work

Approaches to support architectural interoperability typically choose to organize the
different notations in a star topology with an intermediate central pivot. In a context in
which the set of involved notations cannot be a-priori established, the pivot assumes
the form of a small kernel. Since the transformations are always performed through
the small kernel that can be very abstract, important information can be lost during the
transformation. This calls for kernel extensions. This paper proposes a model-driven
approach to (i) build the extensions and organize them in a hierarchy, (ii) realize the
interoperability (through the hierarchy) by means of model transformations, and (iii)
manage the overall hierarchy. The extension is performed through operators that have
properties that ensure the extension confluence.

We realized a prototype automatizing the overall approach: it is a plugin for Eclipse
that allowed us to perform experiments on some systems. As future work we plan to
release the tool as an open source project and to experiment it on industrial case studies.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons (2009)

2. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE TSE 26(1) (2000)

3. Giese, H., Neumann, S., Niggemann, O., Schätz, B.: 2 Model-Based Integration. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2010. LNCS,
vol. 6100, pp. 17–54. Springer, Heidelberg (2010)

4. Q-ImPrESS consortium, http://www.q-impress.eu (last access, September 2011)
5. ATESST2 consortium, http://www.atesst.org/ (last access, September 2011)
6. Sun, Y., Demirezen, Z., Jouault, F., Tairas, R., Gray, J.: A Model Engineering Approach to

Tool Interoperability. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 178–187. Springer, Heidelberg (2009)

7. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing Architectural Lan-
guages and Tools Interoperability through Model Transformation Technologies. IEEE TSE
36(1) (2010)

8. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and performance/relia-
bility models of component-based systems: A model-driven approach. J. Syst. Softw. 80(4),
528–558 (2007)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the develop-
ment of modular software architecture description languages. TOSEM 14(2) (2005)

10. Feiler, H.P., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Language
(AADL) Standard. In: RTAS Workshop on Model-driven Embedded Systems, pp. 1–10
(2003)

11. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4(2),
171–188 (2005)

12. Steel, J., Jézéquel, J.M.: On model typing. Software and System Modeling 6(4), 401–413
(2007)

13. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next
generation ADLs through MDE techniques. ACM/IEEE ICSE 2010, 85–94 (2010)

http://www.q-impress.eu
http://www.atesst.org/

Model-Driven Techniques to Enhance Architectural Languages Interoperability 41

14. Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering 28(5), 449–462 (2002)

15. Kerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J., Möller, A., Pettersson,
P., Tivoli, M.: The SAVE approach to component-based development of vehicular systems.
Jour. Syst. Softw. 80(5), 655–667 (2007)

16. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange Language.
In: CASCON 1997, pp. 169–183 (1997)

17. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT Softw. Eng.
Notes 21(6) (1996)

18. Varona-Gomez, R., Villar, E.: Aads+: Aadl simulation including the behavioral annex. In:
Proceedings of the 2010 15th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2010, pp. 379–384. IEEE Computer Society, Washington, DC
(2010)

19. Eramo, R., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: A model-driven ap-
proach to automate the propagation of changes among Architecture Description Languages.
In: Software and Systems Modeling, SoSyM (2010)

20. Jacobson, I., Cook, S.: The Road Ahead for UML (2010),
http://www.drdobbs.com/architecture-and-design/224701702

21. Seifert, M., Wende, C., Assmann, U.: Anticipating unanticipated tool interoperability using
role models. In: Proc. of MDI 2010, pp. 52–60. ACM (2010)

22. Ehrig, K., Taentzer, G., Varró, D.: Tool Integration by Model Transformations based on the
Eclipse Modeling Framework. EASST Newsletter 12 (2006)

23. Baumgart, A.: A common meta-model for the interoperation of tools with heterogeneous
data models. In: Proc. of MDTPI 2010 (2010)

24. Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation languages.
Sci. Comput. Program. 68(3), 114–137 (2007)

25. Giese, H., Hildebrandt, S., Neumann, S.: Towards integrating sysml and autosar modeling
via bidirectional model synchronization. In: MBEES, pp. 155–164 (2009)

26. Zave, P., Jackson, M.: Conjunction as composition. ACM Trans. Softw. Eng. Methodol. 2,
379–411 (1993)

Appendix: Proof of Theorem 1

Let us assume (ad absurdum) that:

– tr(wmAkxy , Ak,xy) = A′,
– tr(wmAkx,tr(wmAky ,Ak,y),x) = A′′, and
– A′ �=A′′

(the symmetric, i.e., tr(wmAkxy ,Ak,xy) = A′, tr(wmAky , tr(wmAkx, Ak , x), y) =
A′′, and A′ �=A′′ will directly follow). This can happen in four cases:
1. a metaclass C exists in A′ and does not in A′′. This means that C exists in Ak, in x,
or in y. In case C exists in Ak, this implies that the application of wmAkx or wmAky

deletes it. This is absurd for Property 1. In case C exists in x or in y, this implies that
wmAkx or wmAky do not add it during the extension. This is absurd for Property 2.

2. a metaclass C exists in A′′ and does not in A′. In case C exists in Ak, this implies that
wm′ deletes it. This is absurd since the operators that we use in wm′ have to respect
Property 1. In case C exists in xy, this implies that wm′ does not add it during the

http://www.drdobbs.com/architecture-and-design/224701702

42 D. Di Ruscio et al.

extension. This is absurd since wm′ is basically the union of wmAkx and wmAky and
then it respects Property 2.

3. a metaclass C exists both in A′ and A′′ and these two versions differ on some struc-
tural features, i.e., attributes and references. This can be caused exclusively due to dele-
tion or conflicting additions performed by either wmAkx and wmAky or wm′. This is
absurd since Property 1 forbids the deletion and Property 3 prevents conflicts.

4. a metaclass C exists both in A′ and A′′ and these two versions differ on some parent.
This can be caused by different applications of the inherit operator. This leads to an
absurd since: i) a weaving model cannot delete a class parent for Property 1, ii) the
sequential application of wmAkx and wmAky cannot add class parents in a different
way from wm′ (wm′ is the union of wmAkx and wmAky and its existence ensures that
Property 3 is satisfied).

	Model-Driven Techniques to Enhance Architectural
Languages Interoperability
	Introduction
	Interoperability via Pivot Languages
	The Extension Mechanisms
	Extension Operators
	Identification of transformation paths

	Case Study and Discussion
	Putting the approach in practice
	Discussion

	Related work
	Conclusion and Future Work
	References

