
Proving Reachability Using FShell�

(Competition Contribution)

Andreas Holzer1, Daniel Kroening2, Christian Schallhart2,
Michael Tautschnig2, and Helmut Veith1

1 Vienna University of Technology, Austria
2 University of Oxford, United Kingdom

Abstract. FShell is an automated white-box test-input generator for
C programs, computing test data with respect to user-specified code
coverage criteria. The pillars of FShell are the declarative specification
language FQL (FShell Query Language), an efficient back end for com-
puting test data, and a mathematical framework to reason about cover-
age criteria. To solve the reachability problem posed in SV-COMP we
specify coverage of ERROR labels. As back end, FShell uses bounded
model checking, building upon components of CBMC and leveraging the
power of SAT solvers for efficient enumeration of a full test suite.

1 Overview

FShell implements automatic white-box test-input generation according to a
user-defined coverage specification given in the declarative language FQL [5,6].
To resemble formal verification and solve the reachability problem presented in
the SW Verification Competition we specify coverage of all ERROR labels.

FQL is built on top of a concise mathematical framework for formalising
code coverage criteria. This framework enables automatic processing of FQL
queries and together with FQL makes our approach oblivious to the algorithmic
details of test-input generation. As this overall architecture is analogous to that
of databases, we refer to our approach as query-driven program testing [4].

As back end for solving FQL queries, i.e., computing test inputs, FShell
uses components of the C bounded model checker (CBMC) [1], which enables
support for full C syntax and semantics, and makes efficient use of SAT solving
(using MiniSat 2.2.0 [2]). An overview of the architecture is presented in the next
section. The technical approach was first sketched in [3], further refined in [4]
and full details of the current implementation can be found in [7].

2 Architecture

FShell comprises two main parts: The front end handles user interactions with
a command-line interface. There, control commands such as loading source files,

� This research is supported by the FWF research network RiSE, the WWTF grant
PROSEED and EPSRC project EP/H017585/1.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 538–541, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Proving Reachability Using FShell 539

C Source

FQL Query

Test Suite

CBMC Com-
ponents

Automata
Construction

Guided
SAT Enu-
meration

Test Suite
Minim-
isation

Fig. 1. Query processing

macro definitions, and FQL queries are entered by the user. The back end per-
forms the actual test case generation. Figure 1 sketches the conceptual steps:

1. We use the code base of CBMC to first obtain an intermediate representation
(GOTO functions) of the program under test.

2. We translate the given FQL query into automata over statements in the
GOTO functions. We refer to these automata as trace automata.

3. CBMC builds a Boolean equation describing all states yielding a violation of
a given property (assertion) of the input program. It is then able to produce
an example of such a violation (counterexample).
In test case generation, we use this scheme by adding the property stat-
ing that no program execution accepted by the trace automata exists. Any
counterexample (i.e., test case) then describes a path that fulfills the query.
We efficiently enumerate test cases using guided SAT enumeration [4]. The
resulting test suite satisfies the given coverage specification by construction.

4. To remove redundant test cases, we perform test suite minimisation. This
problem is an instance of the minimum set cover problem, which we reduce
to a series of SAT instances.

5. We display the generated test suite as a list of initial values of variables.

3 Strengths and Weaknesses

The main advantage of FShell over its underlying back end CBMC is com-
puting counterexamples for all reachable error locations. Apart from this fact,
however, FShell mainly acts as bounded model checker in this competition. As
such, FShell was successful as it was, together with SatAbs, one of only two
competition participants that never reported a spurious “UNSAFE”.

As bounded model checking is necessarily incomplete for all benchmarks with
unbounded loops, a choice had to be made how to handle those. Without further
options, FShell performs an additional step to prove given loop unwindings (see
below) to be sufficient. This step would ensure that FShell does not return
“SAFE” without having properly proved safety, but instead aborts early.

As consequence, however, FShell would not have scored any points on pro-
grams with unbounded loops. Therefore we decided to disable the early abort and
instead perform verification under the assumption that the given loop bounds
suffice. On the one hand, this is helpful in bug finding and permitted to prove un-
safety on several benchmarks with unbounded loops. Whenever this loop bound



540 A. Holzer et al.

is insufficient for finding paths to the error location, however, FShell wrongly
reports “SAFE” and becomes unsound.

This is the classic bounded model checking setting, but proved to be even
less successful under the presented scoring system: in the categories “Control-
FlowInteger” and “DeviceDrivers” FShell correctly determined the result in
more than 70% of the instances, but scored only 19% of the possible points. For
all other categories (except for “Concurrency”, which is presently unsupported)
problems in the back end caused verification to fail; these have mostly been fixed
by now and future versions are expected to perform much better.

4 Tool Setup

The competition participant is FShell version 1.3, which can be downloaded
from http://code.forsyte.de/fshell. To avoid the interactive operation of FShell,
a file “query” should first be set up containing the following statements:

cover @label(ERROR)

quit

Then, FShell can be run as

fshell --unwind 10 --no-unwinding-assertions --query-file query FOO.c

for a source file “FOO.c”. By default, FShell will assume a 64-bit memory
model as this is the competition platform. For those benchmarks written with a
32-bit memory model in mind, the option --32 must be given in addition.

By definition, FShell produces test inputs instead of full counterexample
traces; each set of inputs uniquely determines a single execution, however. An
instance is found to be “SAFE” if no test inputs are found. In this case, FShell
prints Test cases: 0 – an “UNSAFE” instance yields a non-zero count.

Software Project. FShell is maintained by Michael Tautschnig as an extension
of CBMC. FShell was jointly designed by the authors. FShell is released at
the above web site as binary for several platforms under an Apache 2.0 license.

References

1. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004)

2. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case
Generation for Dynamic Analysis and Measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-Driven Program Test-
ing. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.
151–166. Springer, Heidelberg (2009)

http://code.forsyte.de/fshell


Proving Reachability Using FShell 541

5. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite? In: ASE, pp. 407–416. ACM (2010)

6. Holzer, A., Tautschnig, M., Schallhart, C., Veith, H.: An Introduction to Test Spe-
cification in FQL. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp. 9–22. Springer,
Heidelberg (2010)

7. Tautschnig, M.: Query-Driven Program Testing. Ph.D. thesis, Vienna University of
Technology (2011)


	Proving Reachability Using FShell
	Overview
	Architecture
	Strengths and Weaknesses
	Tool Setup
	References




