Predicate Analysis with BLAST 2.7

(Competition Contribution)

Pavel Shved, Mikhail Mandrykin, and Vadim Mutilin

Institute for System Programming of the Russian Academy of Sciences
{shved,mandrykin,mutilin}@ispras.ru

Abstract. We present the software verification tool BLAST 2.7, which
we submitted for the Competition on Software Verification. The tool is
an improvement over BLAST 2.5, and its development is mostly targeted
at its performance and usability in the Linux Driver Verification project.
The paper overviews the tool and outlines our contribution to it.

1 Verification Approach

BLAST uses the CounterExample-Guided Abstraction Refinement approach (CE-
GAR) with “lazy abstraction” [I], a decision procedure to explore all possible paths
from the entry point, abstracting away from the realizable memory states as far as
possible to prove the unreachability of the error label. BLAST marks each loca-
tion with a conjunction of predicates over program variables in a path-sensitive
way, such conjunctions being overapproximations of the set of feasible memory
states at the locations. Path validity is checked with formula satisfiability solvers;
interpolating provers automatically retrieve predicates to track. The concepts of
BLAST are more thorougly described in [I] and [2]. BLAST may also combine the
predicate domain with lattice-based explicit-value dataflow analysis [3], which we
used in the competition setup.

This has been implemented in BLAST 2.5, which was maintained by Dirk
Beyer et al. [2]. In this paper, we present the improvements that we added
to BLAST since the release of version 2.5 in 2008; we assigned version 2.7 to
the competition release. Most of the improvements are merely more efficient
implementations of already known algorithms.

The tool as of version 2.7 is capable to track states that may be expressed
in terms of logical formulae over atomic predicates that only contain linear
(in)equalities over program variables, including aliases of pointers to scalar or
structure variables. The analysis may be unsound if the unreachability proof
requires reasoning about bit-vectors, bounded integers, or arrays.

2 Tool Architecture

The tool first converts the program into a set of per-function control flow au-
tomata with aid of the CIL C frontend (integrated into the tool). It converts

C. Flanagan and B. Konig (Eds.): TACAS 2012, LNCS 7214, pp. 525-p27] 2012.
© Springer-Verlag Berlin Heidelberg 2012



526 P. Shved, M. Mandrykin, and V. Mutilin

the structure of C source code directly into OCaml memory structures, and helps
to perform transformations that simplify the semantics of individual operators.

Having built the CFAs, BLAST starts the abstract-check-refine loop, inlining
each function call it encounters on demand, and skipping recursive calls. In the
forward search phase, it uses an SMTIib solver to compute the abstract post-
condition for predicates (CVC3 is shipped alongside the tool, but any other
decent SMTIib solver would work), and updates symbolic execution lattice ele-
ments [3]. The predicates are stored as BDDs over atomic predicate symbols.
A potential error path is converted to a path formula (weakest precondition of
each operator starting from the end with explicit substitution, see section 5.3
of [1). It is checked for satisfiability with SMTIib solver, then filtered with mul-
tiple SMTIib solver calls to get unsatifiability cores, which then undergo Craig
interpolation with CSIsat (or any other tool that supports the FOCI format)
to get the predicates to track.

Both forward exploration and path analysis are supplemented with inter-
procedural points-to may-alias information provided by an subset-based An-
dersen analysis with BDDs as a storage and querying mechanism.

BLAST is implemented in OCaml.

3 Tool Improvements and Benchmarking

As BLAST 2.5 demonstrated some success in verifying drivers, we used it in the
Linux Driver Verification (LDV) project [4], and improved it further to make
the tool faster for Linux drivers. The rules instrumented into drivers used states
expressed as simple integers, but the drivers themselves used structures and
pointers to maintain data flow; therefore, we focused on improving implemen-
tations of the existing theoretical achievements, and did not try to extend the
abstract domain.

In version 2.6, we improved folmulee conversion between the internal OCaml
representation and SMTIib format, making its overhead negligible, tuned the
CVC3 solver to work faster for quantified formulae, decreased the asymptotics of
pre-interpolation trace filtering from O(N) to O(log N) solver calls, and imple-
mented stop*P and merge-pred-join for combining predicate analysis with lat-
tices. We thorougly described these and many other improvements of 2.6 over 2.5
in [B]. The speedup we achieved on Linux drivers, compared with version 2.5,
ranged from a factor of 5-8 on average to 30 on the most complex drivers. Our
tool performed well on all driver-related benchmarks.

In the competition version 2.7, we also dramatically improved alias and struc-
ture analysis that are used to generate additional variable updates at assignment
preconditions. We noticed that updates of indexed variables that are not used in
the bottom part of the path formula were useless, and, while they would be ruled
out by solvers anyway, BLAST spent a lot of time generating them. We revamped
the generation algorithms so that only the variables that are in the already built
part of a formula are considered as potential aliases or targets for structure up-
dates; this made alias analysis overhead negligible. The new analysis is sound,



Predicate Analysis with BLAST 2.7 527

but sometimes incomplete for variable-depth shapes. It improved the results
on list-properties benchmarks, but the heap-manipulation benchmarks are
analyzed with errors due to abuse of low-level-style accesses to structure fields
via casts and raw pointer shifts.

Other benchmarks, such as SystemC or synthetic locks, involved state ex-
plosions that should be mitigated by verification algorithms that automatically
merge states without loss of precision. BLAST does not merge paths with differ-
ent predicate states assigned, so it times out on most of such benchmarks, which
more recent tools should pass.

4 Downloading and Using BLAST

To use the tool, download binaries, unpack, add the bin/ folder to your PATH,
and run: ocamltune pblast.opt —alias bdd -enable-recursion -noprofile
-cref -sv-comp -lattice -include-lattice symb FILE NAME.c. Download:
http://forge.ispras.ru/attachments/download /1157 /blast-2.7-bin-x86 64.tgz.

Visit http://forge.ispras.ru/projects/blast/ to get the source code and 32-bit
binaries. BLAST is licensed under Apache-2.0, and all external tools it relies on
during compilation or at runtime are free software.

The verdict and the error trace, if any, are written to standard output. For
more information on the tool usage, please, refer to the README file.

The binary distribution of the tool does not require external tools except for
the Perl interpreter, C and C++ runtime libraries. BLAST is compatible with
most modern Linux distributions, including Ubuntu 8.04 or newer.

Acknowledgements. BLAST 2.7 was prepared as a part of the Linux Driver
Verification project with the help of our colleagues at ISPRAS. A number of
people contributed to BLAST, including its former maintainers Dirk Beyer, Ru-
pak Majumdar, Ranjit Jhala, and Thomas Henzinger, and the others mentioned
in the README file.

References

1. Henzinger, T.A., Jhala, R., Majumdar, R.: Lazy abstraction. In: Symposium on
Principles of Programming Languages, pp. 58-70. ACM Press (2002)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST: Applications to software engineering. Int. J. Softw. Tools Technol.
Transt. 9(5), 505-525 (2007)

3. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. SIGSOFT
Softw. Eng. Notes 30, 227-236 (2005)

4. Khoroshilov, A., Mutilin, V., Novikov, E., Shved, P., Strakh, A.: Towards an open
framework for C verification tools benchmarking. In: Proceedings of PSI (2011)

5. Shved, P., Mutilin, V., Mandrykin, M.: Static verfication “under the hood”: Im-
plementation details and improvements of BLAST. In: Proceedings of SYRCoSE,
vol. 1, pp. 54-60 (2011)


http://forge.ispras.ru/attachments/download/1157/blast-2.7-bin-x86_64.tgz
http://forge.ispras.ru/projects/blast/

	Predicate Analysis with BLAST 2.7

	Verification Approach
	Tool Architecture
	Tool Improvements and Benchmarking
	Downloading and Using BLAST
	References





