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Abstract. We build an open-source RTL framework, QuteRTL, which can 
serve as a front-end for research in RTL synthesis and verification. Users can 
use QuteRTL to read in RTL Verilog designs, obtain CDFGs, generate hierar-
chical or flattened gate-level netlist, and link to logic synthesis/ optimization 
tools (e.g. Berkeley ABC). We have tested QuteRTL on various RTL designs 
and applied formal equivalence checking with third party tool to verify the cor-
rectness of the generated netlist. In addition, we also define interfaces for the 
netlist creation and formal engines. Users can easily adopt other parsers into 
QuteRTL by the netlist creation interface, or call different formal engines for 
verification and debugging by the formal engine interface. Various research op-
portunities are made possible by this framework, such as RTL debugging, 
word-level formal engines, design abstraction, and a complete RTL-to-gate tool 
chain, etc. In this paper, we demonstrate the applications of QuteRTL on con-
strained random simulation and property checking. 

Keywords: Synthesis, Verification, Open Source, Framework.  

1 Introduction 

In a typical EDA (Electronic Design Automation) software, a quality front-end is 
necessary for reading in complex design and extracting significant information for 
later executions. A quality front-end should be capable of reading in all the defined 
descriptions and translating them into efficient data structures. Traditional academic 
tools, such as SIS [1], VIS [2], and MVSIS [3], focus on the Boolean-level 
optimization algorithms that can improve the quality of circuits in various aspects. 
They are robust enough and, at the same time, scalable for practical use. In the past 
decades, people from industry and academia have adopted and developed their 
synthesis and verification tools from these tools. However, as the design paradigm 
moves to Register-Transfer-Level (RTL) and up, most of the new research have to 
deal with the high-level design constructs, syntax, and semantics. Without a robust 
front-end, the applicability of these tools will be limited. 

Recently, Berkeley ABC [4], which is a software system for synthesis and 
verification, has become very popular in both academia and industry. It proposes: (1) 
fast and scalable logic optimization based on And-Inverter Graphs (AIGs), (2) 
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optimal-delay DAG-based technology mapping for standard cells and FPGAs, and (3) 
innovative algorithms for integrated sequential optimization and verification. 
However, it still has incomplete support on design formats; for example, it cannot 
read in most of the descriptions in RTL Verilog, hierarchical BLIF and BLIF-MV, 
and it mainly handles the specialized format－BLIF, which is bit-level. Therefore, we 
need to resort to other tools to translate the RTL design into the BLIF format. 
Consequently, we will then lose most of the high-level design intents such as FSM, 
counter, and control/data separation, etc., which can be useful in guiding the design 
verification. 

On the other hand, there are also some open-source front-ends, including VIS and 
Icarus Verilog [5]. The front-end of VIS acts as an intermediate role to translate 
designs into BLIF format. It does not completely keep the high-level design intents 
and does not have complete support for HDL. On the other hand, Icarus Verilog aims 
at simulation and FPGA synthesis. It still has some known and unknown bugs and the 
author continues releasing patches. 

We implement a quick and quality RTL front-end (QuteRTL) which supports most 
of the synthesizable RTL Verilog with different library formats and can synthesize the 
design to word-level circuit netlist. The key features of QuteRTL include: (1) 
complete Verilog support, (2) flexible design view: word-level or bit level; 
hierarchical or flatten, (3) formally verified by commercial equivalent checker, and 
(4) complete netlist creation interface for other parsers (e.g. VHDL/System Verilog 
parser) and engine interface for external solvers (e.g. BDD, MiniSAT [6], and 
Boolector [7]).  

As an exemplar application of the QuteRTL framework, we publish an Automatic 
Target Constraint Generation (ATCG) technique in [8] to address the bottleneck in 
the constrained random simulation flow. Instead of focusing on the constraint solving 
techniques as other research [9, 10] do, we propose an alternative approach to 
alleviate the burden of the users by automatically generating high-quality constraints 
with the support of QuteRTL. In another application, we devise a property-specific 
sequential invariant extraction algorithm in [11] to improve the performance of the 
SAT-based unbounded model checking (UMC). We first utilize QuteRTL to extract 
the property-related predicates and their corresponding high-level design constructs 
such as FSMs and counters. Thus, we can quickly identify the sequential invariants 
and then utilize them to refine the inductive hypothesis [12] in induction-based UMC, 
and to improve the accuracy of reachable state approximation in interpolation-based 
UMC [13, 14]. 

The rest of the paper is organized as follows: in Section 2, we first give an 
introduction of the architecture and interfaces of QuteRTL. Section 3 presents the tool 
implementation and data structure, and Section 4 presents the applications of 
QuteRTL. In Section 5, we give a user guide and some demo examples for general 
users. Finally, we conclude the paper in Section 6. 
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2 Architecture of QuteRTL Framework 

In this section, we will present our RTL synthesis and verification framework ―
QuteRTL. Section 2.1 gives an overview of the framework while Section 2.2 
describes the design and engine interfaces of QuteRTL. Finally, Section 2.3 provides 
a comparison between QuteRTL and other open-source front-ends 

2.1 Overview of QuteRTL Framework 

Figure 1 shows the architecture of QuteRTL framework, which can be separated into 
two parts, RTL synthesis and circuit verification/debugging. In the RTL synthesis 
part, the RTL design is first translated into some intermediate representations, for 
example, Control-Data Flow Graph (CDFG). Then, QuteRTL resolves such 
temporary models by elaborating an equivalent circuit netlist and extracting plenty of 
design intents, including hierarchy information, FSM, counter structures, etc. These 
intents can help both test pattern generation and safety/liveness property checking in 
the circuit verification/debugging part. For general users, we release the source code 
of our parsers, netlist creation procedure and interface functions. 

 

Fig. 1. Architecture of QuteRTL 
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In the view of design, we have both hierarchical and flattened word-level circuit 
structure in QuteRTL. Using the hierarchical structure, we can analyze designs more 
systematically and identify predicates easily in the original RTL. For example, 
QuteRTL can determine the independence between modules with the hierarchy, and 
then the information is utilized to alleviate design complexity. For formal engines, the 
search space can be pruned significantly; for simulators, the efficiency can be 
improved by the divide-and-conquer algorithm. On the other hand, for circuit 
redundancy elimination and global optimization, QuteRTL can flatten the design into 
a single circuit netlist. When flattening the hierarchical design, it will collect the 
necessary cells in depth first search from PO to PI, and remove redundant cells, which 
come from bad coding styles or function-less buffers.  

In the view of circuit netlist, most logic optimization tools perform their algorithm 
on bit-level logic netlist, but they rarely handle the word-level netlist. The proposed 
tool in the paper can completely translate netlist into what logic optimization tools 
support. That is, QuteRTL can output both the word-level or the bit-level netlist, or 
even the mixed-level netlist. In addition, it can utilize some word-level circuit 
components to assist logic optimization tools. For example, QuteRTL can use high-
speed adders, says carry look-ahead adders, to substitute carry ripple adders, or 
Booth’s multipliers for high speed designs.  

2.2 Supported Features of QuteRTL 

Various features are supported by QuteRTL. To illustrate them more clearly and suc-
cinctly, we categorize them as follows: 

Design Formats. As shown in Figure 1, QuteRTL supports several kinds of design 
input formats, which include not only Verilog but also other well-known word-level 
or Boolean network, for instance BLIF and BTOR. Moreover, we provide a complete 
set of interface functions for interactive netlist creation. The biggest advantage is that 
anyone can simply call our netlist creation functions to build up a hierarchical word-
level network in QuteRTL despite what input formats of the designs are. Hence, any 
word-level or Boolean network can be intuitively constructed in QuteRTL with the 
help of these interface functions. On the contrary, QuteRTL also supports 
corresponding design output formats, including both hierarchical and flattened 
structural Verilog, and BLIF. 

Design Intent Extraction. Design intents contain useful information to help 
optimization or verification tools improve design and dependability, but many tools 
and research abandon the information when they proceed. In QuteRTL, the 
synthesized circuit can be easily annotated to the original RTL structure before logic 
optimization. Thus, we can extract some design intents from the circuit netlist and 
CDFG. These design intents include local FSMs, counters, constraints, and invariants. 
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Interface for Verification and Debugging. After constructing the target design, we 
can adopt the following interface functions to verify or debug the properties. We split 
these functions into two parts:  

1. Property Specification Interface: We support various types of assertion 
specifications. These assertions including simple CTL safety and liveness 
properties in either AG(p) or EG(p) format, where p can be specified as an 
auxiliary Boolean output signal formulated from the design; for instance a + b < c 
or x * y > 10. Besides, part of System Verilog Assertions (SVA) semantics is also 
supported for common industrial instances. 

2. Engine Interface: Formal engines are crucial to both verification and debugging, 
especially in formal approaches. However, every engine embraces its individual 
interface functions, so users need to use the respective interface functions when 
applying different solvers. It causes maintainability problems in the interfaces for 
the solvers. Therefore, we integrate those interfaces into a union set of functions 
that are conformable to different verification and debugging needs in QuteRTL. 
The integrated engine interface makes the usage of formal engines simple and 
unified. That is, users can specify which formal engine they expect to adopt in their 
applications. 

2.3 Comparison with other Open Source RTL Front-End 

In this subsection, we discuss the comparison between QuteRTL and other open-
source front-ends, including VIS and Icarus Verilog. The VIS group releases a 
Verilog HDL front-end VL2MV, which compiles a subset of Verilog into an 
intermediate format BLIF-MV (a multi-valued extension of BLIF). With the support 
of VL2MV, VIS is able to synthesize finite state systems and verify properties of such 
system. Besides, VL2MV extracts a set of interacting FSMs which preserve the 
behavior of the source Verilog defined in terms of the simulated results. However, the 
front-end does not guarantee the extracted FSMs are optimal, and is not able to handle 
full set Verilog language due to its dynamic nature. 

Another open source RTL front-end Icarus Verilog aims at simulation and FPGA 
synthesis. It can support richer syntax for simulation in RTL language, and generate 
the text or waveform output of the simulation results. Icarus Verilog is intended to 
work mainly as a simulator, although its synthesis capabilities are improving. 
However, the tool focuses on generating specific netlist format for FPGA synthesis, 
and it is hard to utilize novel formal techniques on the specific netlist. 

To apply modern formal techniques to industrial RTL design, we implement a 
quick and quality RTL front-end QuteRTL. It can synthesize most of the 
synthesizable RTL with different library (Verilog and Liberty) formats into word-
level circuit netlist. For design verification, QuteRTL also supports other design input 
formats, for example BLIF and BTOR, etc. Besides, users can easily implement novel 
formal techniques on the word-level circuit netlist, for example UMC, property 
directed reachability (PDR) [15], etc. 
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3 Tool Implementation 

In this section, we describe the implementation of QuteRTL, which consists of a Veri-
log parser, an RTL synthesizer, and a circuit flattening procedure. 

3.1 Parser and Preprocessor 

Verilog Parser. We use Lex and Yacc to implement the Verilog parser. If the syntax 
of the design conforms to Verilog Backus-Naur Form (BNF), the parser will parse 
corresponding syntax trees for a start. It also checks the grammars of the syntaxes and 
lints for Verilog. Then we construct CDFG of the design from the syntax trees for 
each module. For the purpose of design synthesis and verification, we focus on the 
synthesizable Verilog subset, which includes synthesizable “for loop”, “task” and 
“function” declarations, etc. 

Preprocessor. The preprocessor mainly handles macro substitution, hierarchy 
construction, and parameter overriding. After generating the CDFGs, we first perform 
a simple substitution and expand the occurrence of each argument in macro using the 
replacement text. For the modules containing macros, we revise their CDFGs. Next, 
we construct a hierarchical tree to represent the relation of the module instances in the 
design, and then perform parameter overriding from top to down in the hierarchical 
tree to set up the overridden parameter for each module instance. After the steps, the 
CDFGs and hierarchical tree are ready for synthesis. 

3.2 RTL Synthesis and Circuit Flattening 

Data Structure of Circuit Netlist. Figure 2 shows the data structure of circuit netlist 
in QuteRTL. We use three components–Cell, InPin, and OutPin to describe a circuit. 
The Cell contains OutPin(s) to fan out to other cells and an InPin list to receive 
multiple fanins from other Cells to construct the circuit netlist. The pins can be 
multiple bits to describe word-level netlist. 

 
Fig. 2. The data structure of circuit netlist in QuteRTL 
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The types of cells can be classified as follows: 

• Operator cell: arithmetic, relational, equality, logical, bit-wise, reduction, shift cell, 
and multiplexer 

• IO cell: primary input, primary output, and primary inout 
• Sequential cell: flip-flop and latch 
• Module cell: module instantiation 
• Modeling cell: bit-merging, bit-splitting, bus, memory, bufif, etc. 
 
The operator cells are synthesized from the common operators in Verilog. For 
example, the multiplexers are synthesized from conditional operator (?:) or 
conditional block (if, case, etc.). For the instances used in a module, we model them 
as module cells in the hierarchical view of design. Besides, to support the specific 
elements in circuit, we create some modeling cells for net, bus, memory, and high 
impedance. Please note that the pins in word-level netlist are multiple bits, so we use 
bit-merging (bit-splitting) cells to concatenate (slice) pins to form specific fanins to 
other cells. 

RTL Synthesis Procedure. The synthesis procedure translates CDFGs to the circuit 
netlist data structures we defined above. The synthesizer first traverses the CDFG of 
each module and flattens each variable to the data structure “SynVar”. Figure 3 gives 
an example to show the relations between RTL and SynVar. In the data structure, 
each node contains the data and conditional fanins, which are respectively synthesized 
from data predicate list (DPL) and control predicate list (CPL) of the variable. The 
tree structure represents the priority of control predicates in nodes, and then we 
connect these pins with multiplexers. If the variable is in a sequential block or is not 
fully assigned in a combinational block in the original Verilog code, the output of the 
last multiplexer will be connected to a sequential cell (flip-flop/latch). Finally, the 
synthesized circuit netlist is illustrated in Figure 4. In order to back-annotate the 
netlist information to the original RTL code, we just synthesize the RTL design to an 
equivalent circuit netlist without optimizing the netlist during this procedure. 

Circuit Flattening. The circuit flattening is to generate a flattened circuit netlist 
which is functionally equivalent to the hierarchical netlist. The implementation 
includes the concretion of instance models (i.e. module cells) and the removal of 
redundant cells (ex. buffers, non-fan-out cells). First, we traverse the hierarchical tree 
built in preprocessor, and duplicate the non-IO cells (except top level module) to a 
new flattened module. Simultaneously, we make the connections between cells within 
the same hierarchical module, and record the connections between different 
hierarchical modules. After duplicating all necessary cells, we connect the cells in 
different hierarchical and then traverse the flattened netlist to remove the redundant 
cells. 
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Fig. 3. RTL synthesis procedure 

 

Fig. 4. The synthesized circuit 

4 Applications of QuteRTL 

In this section, we introduce two applications of QuteRTL, which include intent 
extraction in Section 4.1 and model checking in Section 4.2.  

4.1 Intent Extraction 

For FSM extraction, we categorize the types of FSM as either explicit FSMs or 
implicit FSMs according to the definition of state values. In an explicit FSM, its state 
values are explicit defined as parameters or constants, while there are no explicit state 
values defined in an implicit FSM, where the state values are implicitly embedded in 
conditions or expressions. In our implementation of the extractor, we extract both of  
 

always@ (posedge clk) begin 
   if (rst) begin 
      x <= 1; 
      y <= 0; 
   end 
   else begin 
      y <= x; 
      if (x < 100) 
         x <= y+x; 
   end 
end 
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them and identify counters. Note that we extract the explicit FSMs based on the 
coding styles [16] and implicit FSMs from the transition relations computed by BDDs 
[17]. The extraction algorithm is mainly performed in the three steps: candidate state 
variable extraction, state transition extraction, and state transition graph (STG) 
construction. We briefly express these steps as follows: 

1. Candidate state variable identification: In sequential blocks of Verilog, we first 
treat the variables in left hand side of assignments as possible state variables. Then, 
we traverse the data dependency list of the possible state variable to find a loop of 
assign statements to identify the candidate state variables. 

3. State transition extraction: In this step, we extract the state transition relation from 
each candidate state variable. For explicit FSM, we can extract a set of state pair 
(Si, Sj), which represents the state transition from Si to Sj. While for implicit FSM, 
we traverse the assignments of the candidate state variables to build the state 
transition relation in binary decision diagram (BDD). 

4. State transition graph construction: For explicit FSM, we use the set of state pair to 
construct the STG. In order to extract the STG of implicit FSM, we will traverse 
the BDD to enumerate all transition conditions and relations. 

Further, these extracted FSMs are utilized to identify the sequential invariants and 
then improve the property proving capabilities in [11]. On the other hand, for 
constrained random simulation, we proposed an ATCG technique [8] based on 
QuteRTL. In that work, we extract compact constraints for a set of coverage holes 
from the circuit netlist and CDFG. The experimental results show that the extracted 
constraints indeed help simulation achieves the highest coverage and smallest runtime 
when compared to both random and directed simulations. 

4.2 Model Checking 

The powerful characteristics of our QuteRTL that retain word-level information with 
high-level design intent provide us an adequate circuit abstraction level for 
researching on word-level verification and debugging problems. With the prosperous 
SMT solvers, it becomes practical and ideal to apply model checking on our word-
level netlist with a word-level solver.  

There are basically two approaches to implement a model checking algorithm on 
QuteRTL. First, we can adopt the provided engine interface functions to realize a new 
model checking algorithm. This is commonly used by almost all the verification 
algorithms we have implemented. Second, we can dump out word-level netlist from 
QuteRTL and then call the solvers by their supported interfaces. When transforming 
word-level functions into CNF for Boolean SAT engines, such as adder, multiplier, 
comparators, etc., we perform naïve bit-blasting technique with better encodings. 

Traditional SAT-based model checking algorithms, including bounded model 
checking (BMC), k-induction, and their extensions such as simple-path and 
interpolation-based, can be simply implemented with circuit traversal and 
transforming individual gate function into corresponding solver input formula (e.g. 
CNF). Without loss of generosity, all the Boolean model checking algorithms can be 
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implemented on QuteRTL. Moreover, our word-level framework provides even better 
capability in coping with more complex designs and realistic properties by abstraction 
and refinement techniques, for instance, predicate abstraction, interpolation, design 
intent extraction, and probabilistic inferences. 

5 Availability for General Users 

For general users, we release our RTL front-end source code and the compiled 
QuteRTL executable in the following website: 

http://dvlab.ee.ntu.edu.tw/~publication/QuteRTL/ 

In this section, we first give a brief overview to the command-line interface of 
QuteRTL. Then we show some examples related to what QuteRTL can do for general 
users through our user-friendly command-line interface. Users can also download 
these examples in our website, which include a general RTL to gate synthesis flow, an 
example to construct hierarchical word-level netlist, and a property checking instance. 

5.1 A Brief Description to QuteRTL Command-Line Interface 

Similar to most tools from EDA vendors, QuteRTL supports friendly command-line 
interface for users. Our commands are usually composed by one or two mandatory 
key words followed by a set of required/optional parameters. For example, command 
to parse an input design from a single file or filelist is “REAd DEsign        [-
Verilog | -Blif] <[-Filelist] (string filename)>”. We can see the command is named by 
“REAd DEsign”, where the upper case letters are mandatory for command-line 
parser. Parameters in square brackets indicate optional arguments, and those in angle 
brackets indicate required arguments. More detailed description to our command rules 
can be found in our website, and we will mention some of them in our examples later. 

Besides, there is a command “HELp” for showing all available commands, or 
showing detailed usage of each command (for instance, “HELp REAd DEsign”). 

5.2 Example: RTL to Gate Synthesis Flow 

In the first example, we are going to show the synthesis flow of QuteRTL. The adopted 
designs are “i2c” and “usb_phy” from OpenCore [18]. We present the commands of the 
flow in Figure 5. Note that users can run the series of commands from a batch file using 
“dofile” command or execute argument “-f” to specify the batch file. 

In the first line of Figure 5, we record the commands we are going to execute 
throughout the program into a log file, which can be used as batch file in the future 
run. Then we parse the Verilog design from the file list. Note that users must write all 
related files in the file list for QuteRTL once. After the Verilog design is parsed, the 
command “syn” performs synthesis procedure to transform the design into a word-
level circuit netlist, and the command “flat” flatten the design into a single flattened 
module. Note that internal signals in the flattened module will be renamed. 
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5.3 Example: Hierarchical Word-Level Netlist Creation 

As shown in Fig 1, QuteRTL has a complete set of interface functions for netlist 
creation. Especially, we also support users to construct design through our command-
line interface. It is especially convenient to build small designs for instant 
experiments.  

 

Fig. 7. An example of circuit netlist 

Suppose we want to construct the circuit netlist in Figure 7. We present two 
scripts: “construct_flat.dofile” for constructing the design with only one module, and 
“construct_hier.dofile” for constructing a hierarchical design, which is functionality 
identical to the former. The batch files are shown in Figure 8 and 9, respectively. (A 
portion of commands in “construct_hier.dofile” is omitted in Figure 9 due to space 
concerns.) 

 

Fig. 8. Batch file for design construction with single module 

 

Fig. 9. Batch file for hierarchical design construction with multiple modules 

define net a[3:0] 4
define net a[7:4] 4
define cell SLICE a[7:4] a 7 4
define cell SLICE a[3:0] a 3 0
define cell ADD plus_out a[7:4] a[3:0]
define cell AND conj_out plus_out b
define cell DFF prev_out conj_out clk reset
define cell OR out prev_out

10.
11.
12.
13.
14.
15.
16.
17.

create design flat_design
define net -PI clk 1
define net -PI reset 1
define net -PI a 8
define net -PI b 4
define net -PO out 1
define net prev_out 4
define net plus_out 4
define net conj_out 4

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_flat.dofile

define net -PI clk 1
define net -PI reset 1
…
define cell or out prev_out
define inst sub_test hier_inst a[7:4] a[3:0] plus_out
flat
write des
write ckt
write ckt -blif

10.
11.

25.
26.
27.
28.
29.
30.

create design hier_test
define module sub_test
define net a 3 0
define net a 4
define net -PI a 4
define net -PI b 4
define net -PO out 4
define cell add out a b
change module

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_hier.dofile
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At first, we create a new design named “flat_design” (line 1) in Figure 8. Then we 
use the command “DEFine NET” to create word-level nets with widths. Parameter  
“[-PI | -PO | -PIO]” is used if such the net is also an I/O port. Note that some illegal 
names to Verilog, e.g. “a[3:0]” in line 10, will be renamed by QuteRTL; hence it is 
convenient for general users. Then we construct cells from line 12 to the end, which 
include a register with synchronous reset in line 16 (we omit the reset value and use 
default value). In this example, although all nets are defined before cells, actually the 
only restriction is that all the I/O nets of the defined cell should be defined before. 
Hence, users can construct a netlist with great flexibility in QuteRTL. Note that 
commands for cell definition can be comparably complex, due to different type of 
word-level cells. Users can type “HELp DEFine CELL” to see the detailed usages in 
the command line mode. 

Next, we construct a hierarchical design with the batch file “construct_hier.dofile” 
in Figure 9. After constructing design “hier_test” in line 1, we define a sub-module 
“sub_test” in line 2. Now, our current scope is transformed into module “sub_test”. 
Hence all nets and cells defined in line 3-8 will be constructed in module “sub_test”. 
After “sub_test” is constructed, a simple command “CHAnge MODule” will bring us 
back to the parent module, which is “hier_test” in the case. Note that it is impossible 
to enter into sub-module “sub_test” again for incremental construction further. Once a 
sub-module is defined, we expect that it will eventually be instantiated in other 
modules. The command for module instantiation is “DEFine INST”, as shown in line 
26, where an instance named “hier_inst” is constructed. In this command, I/O nets 
defined after the instance name, namely, “a[7:4], a[3:0], and plus_out”, will be 
connected to I/O ports of module “sub_test” in the order identical to the I/O port 
defined in “sub_test” previously. Hence, I/O relation of “hier_inst” will be “plus_out” 
= “a[7:4]” + “a[3:0]”.  

Note that when building a hierarchical design through those commands, users can 
write out the hierarchical Verilog directly, or write out circuit after flatten, as 
introduced in Section 5.2. 

5.4 Example: Property Checking 

One of the important applications to QuteRTL is word-level verification and 
debugging. In the last example, we utilize QuteRTL to perform safety property 
checking on a simple traffic light controller. We simplify the design to only two 
primary inputs (clock and reset) and only one output (time_left), which shows clock 
cycles left before the light changes to the next. As light is changed, we reset 
“time_left” to the number of cycles, which is the time to keep the same light: 60 for 
RED, 40 for GREEN and 5 for YELLOW. Initially, light is RED and time_left is 
zero, so the light will turn GREEN in the next cycle. We illustrate the state transition 
graph of the design in Figure 10. 
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6 Conclusion 

We construct an open source framework for RTL design synthesis and verification, 
and verify the correctness and robustness of the framework with a third party tools ― 
Cadence Conformal LEC and Berkeley ABC. With the framework, various research 
directions on RTL can be made possible. In the future, we will develop some 
techniques on RTL design debugging with the extracted design intents. 
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