
C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 377–391, 2012.
© Springer-Verlag Berlin Heidelberg 2012

QuteRTL: Towards an Open Source Framework
for RTL Design Synthesis and Verification

Hu-Hsi Yeh1, Cheng-Yin Wu2, and Chung-Yang (Ric) Huang1,2

1 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
2 Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

Abstract. We build an open-source RTL framework, QuteRTL, which can
serve as a front-end for research in RTL synthesis and verification. Users can
use QuteRTL to read in RTL Verilog designs, obtain CDFGs, generate hierar-
chical or flattened gate-level netlist, and link to logic synthesis/ optimization
tools (e.g. Berkeley ABC). We have tested QuteRTL on various RTL designs
and applied formal equivalence checking with third party tool to verify the cor-
rectness of the generated netlist. In addition, we also define interfaces for the
netlist creation and formal engines. Users can easily adopt other parsers into
QuteRTL by the netlist creation interface, or call different formal engines for
verification and debugging by the formal engine interface. Various research op-
portunities are made possible by this framework, such as RTL debugging,
word-level formal engines, design abstraction, and a complete RTL-to-gate tool
chain, etc. In this paper, we demonstrate the applications of QuteRTL on con-
strained random simulation and property checking.

Keywords: Synthesis, Verification, Open Source, Framework.

1 Introduction

In a typical EDA (Electronic Design Automation) software, a quality front-end is
necessary for reading in complex design and extracting significant information for
later executions. A quality front-end should be capable of reading in all the defined
descriptions and translating them into efficient data structures. Traditional academic
tools, such as SIS [1], VIS [2], and MVSIS [3], focus on the Boolean-level
optimization algorithms that can improve the quality of circuits in various aspects.
They are robust enough and, at the same time, scalable for practical use. In the past
decades, people from industry and academia have adopted and developed their
synthesis and verification tools from these tools. However, as the design paradigm
moves to Register-Transfer-Level (RTL) and up, most of the new research have to
deal with the high-level design constructs, syntax, and semantics. Without a robust
front-end, the applicability of these tools will be limited.

Recently, Berkeley ABC [4], which is a software system for synthesis and
verification, has become very popular in both academia and industry. It proposes: (1)
fast and scalable logic optimization based on And-Inverter Graphs (AIGs), (2)

378 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

optimal-delay DAG-based technology mapping for standard cells and FPGAs, and (3)
innovative algorithms for integrated sequential optimization and verification.
However, it still has incomplete support on design formats; for example, it cannot
read in most of the descriptions in RTL Verilog, hierarchical BLIF and BLIF-MV,
and it mainly handles the specialized format－BLIF, which is bit-level. Therefore, we
need to resort to other tools to translate the RTL design into the BLIF format.
Consequently, we will then lose most of the high-level design intents such as FSM,
counter, and control/data separation, etc., which can be useful in guiding the design
verification.

On the other hand, there are also some open-source front-ends, including VIS and
Icarus Verilog [5]. The front-end of VIS acts as an intermediate role to translate
designs into BLIF format. It does not completely keep the high-level design intents
and does not have complete support for HDL. On the other hand, Icarus Verilog aims
at simulation and FPGA synthesis. It still has some known and unknown bugs and the
author continues releasing patches.

We implement a quick and quality RTL front-end (QuteRTL) which supports most
of the synthesizable RTL Verilog with different library formats and can synthesize the
design to word-level circuit netlist. The key features of QuteRTL include: (1)
complete Verilog support, (2) flexible design view: word-level or bit level;
hierarchical or flatten, (3) formally verified by commercial equivalent checker, and
(4) complete netlist creation interface for other parsers (e.g. VHDL/System Verilog
parser) and engine interface for external solvers (e.g. BDD, MiniSAT [6], and
Boolector [7]).

As an exemplar application of the QuteRTL framework, we publish an Automatic
Target Constraint Generation (ATCG) technique in [8] to address the bottleneck in
the constrained random simulation flow. Instead of focusing on the constraint solving
techniques as other research [9, 10] do, we propose an alternative approach to
alleviate the burden of the users by automatically generating high-quality constraints
with the support of QuteRTL. In another application, we devise a property-specific
sequential invariant extraction algorithm in [11] to improve the performance of the
SAT-based unbounded model checking (UMC). We first utilize QuteRTL to extract
the property-related predicates and their corresponding high-level design constructs
such as FSMs and counters. Thus, we can quickly identify the sequential invariants
and then utilize them to refine the inductive hypothesis [12] in induction-based UMC,
and to improve the accuracy of reachable state approximation in interpolation-based
UMC [13, 14].

The rest of the paper is organized as follows: in Section 2, we first give an
introduction of the architecture and interfaces of QuteRTL. Section 3 presents the tool
implementation and data structure, and Section 4 presents the applications of
QuteRTL. In Section 5, we give a user guide and some demo examples for general
users. Finally, we conclude the paper in Section 6.

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 379

2 Architecture of QuteRTL Framework

In this section, we will present our RTL synthesis and verification framework ―
QuteRTL. Section 2.1 gives an overview of the framework while Section 2.2
describes the design and engine interfaces of QuteRTL. Finally, Section 2.3 provides
a comparison between QuteRTL and other open-source front-ends

2.1 Overview of QuteRTL Framework

Figure 1 shows the architecture of QuteRTL framework, which can be separated into
two parts, RTL synthesis and circuit verification/debugging. In the RTL synthesis
part, the RTL design is first translated into some intermediate representations, for
example, Control-Data Flow Graph (CDFG). Then, QuteRTL resolves such
temporary models by elaborating an equivalent circuit netlist and extracting plenty of
design intents, including hierarchy information, FSM, counter structures, etc. These
intents can help both test pattern generation and safety/liveness property checking in
the circuit verification/debugging part. For general users, we release the source code
of our parsers, netlist creation procedure and interface functions.

Fig. 1. Architecture of QuteRTL

Synthesis

Engine
Interface

Verilog Parser Netlist Creation Interface BLIF Parser

Design Intent
Extraction

Circuit De-
bugging

Model
Checking

Safety / Liveness

Coverage-
Driven TPG

PGM / ATPG

BDD MiniSAT

Boolector MiniSAT+

FORMAL ENGINES

Flatten

DESIGN

Simulator

Control Data
Flow Graph

Hierarchical
Word-level Circuit

Flattened

Word-level Circuit

Open Source

Applications
VERIFY/ DEBUG

380 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

In the view of design, we have both hierarchical and flattened word-level circuit
structure in QuteRTL. Using the hierarchical structure, we can analyze designs more
systematically and identify predicates easily in the original RTL. For example,
QuteRTL can determine the independence between modules with the hierarchy, and
then the information is utilized to alleviate design complexity. For formal engines, the
search space can be pruned significantly; for simulators, the efficiency can be
improved by the divide-and-conquer algorithm. On the other hand, for circuit
redundancy elimination and global optimization, QuteRTL can flatten the design into
a single circuit netlist. When flattening the hierarchical design, it will collect the
necessary cells in depth first search from PO to PI, and remove redundant cells, which
come from bad coding styles or function-less buffers.

In the view of circuit netlist, most logic optimization tools perform their algorithm
on bit-level logic netlist, but they rarely handle the word-level netlist. The proposed
tool in the paper can completely translate netlist into what logic optimization tools
support. That is, QuteRTL can output both the word-level or the bit-level netlist, or
even the mixed-level netlist. In addition, it can utilize some word-level circuit
components to assist logic optimization tools. For example, QuteRTL can use high-
speed adders, says carry look-ahead adders, to substitute carry ripple adders, or
Booth’s multipliers for high speed designs.

2.2 Supported Features of QuteRTL

Various features are supported by QuteRTL. To illustrate them more clearly and suc-
cinctly, we categorize them as follows:

Design Formats. As shown in Figure 1, QuteRTL supports several kinds of design
input formats, which include not only Verilog but also other well-known word-level
or Boolean network, for instance BLIF and BTOR. Moreover, we provide a complete
set of interface functions for interactive netlist creation. The biggest advantage is that
anyone can simply call our netlist creation functions to build up a hierarchical word-
level network in QuteRTL despite what input formats of the designs are. Hence, any
word-level or Boolean network can be intuitively constructed in QuteRTL with the
help of these interface functions. On the contrary, QuteRTL also supports
corresponding design output formats, including both hierarchical and flattened
structural Verilog, and BLIF.

Design Intent Extraction. Design intents contain useful information to help
optimization or verification tools improve design and dependability, but many tools
and research abandon the information when they proceed. In QuteRTL, the
synthesized circuit can be easily annotated to the original RTL structure before logic
optimization. Thus, we can extract some design intents from the circuit netlist and
CDFG. These design intents include local FSMs, counters, constraints, and invariants.

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 381

Interface for Verification and Debugging. After constructing the target design, we
can adopt the following interface functions to verify or debug the properties. We split
these functions into two parts:

1. Property Specification Interface: We support various types of assertion
specifications. These assertions including simple CTL safety and liveness
properties in either AG(p) or EG(p) format, where p can be specified as an
auxiliary Boolean output signal formulated from the design; for instance a + b < c
or x * y > 10. Besides, part of System Verilog Assertions (SVA) semantics is also
supported for common industrial instances.

2. Engine Interface: Formal engines are crucial to both verification and debugging,
especially in formal approaches. However, every engine embraces its individual
interface functions, so users need to use the respective interface functions when
applying different solvers. It causes maintainability problems in the interfaces for
the solvers. Therefore, we integrate those interfaces into a union set of functions
that are conformable to different verification and debugging needs in QuteRTL.
The integrated engine interface makes the usage of formal engines simple and
unified. That is, users can specify which formal engine they expect to adopt in their
applications.

2.3 Comparison with other Open Source RTL Front-End

In this subsection, we discuss the comparison between QuteRTL and other open-
source front-ends, including VIS and Icarus Verilog. The VIS group releases a
Verilog HDL front-end VL2MV, which compiles a subset of Verilog into an
intermediate format BLIF-MV (a multi-valued extension of BLIF). With the support
of VL2MV, VIS is able to synthesize finite state systems and verify properties of such
system. Besides, VL2MV extracts a set of interacting FSMs which preserve the
behavior of the source Verilog defined in terms of the simulated results. However, the
front-end does not guarantee the extracted FSMs are optimal, and is not able to handle
full set Verilog language due to its dynamic nature.

Another open source RTL front-end Icarus Verilog aims at simulation and FPGA
synthesis. It can support richer syntax for simulation in RTL language, and generate
the text or waveform output of the simulation results. Icarus Verilog is intended to
work mainly as a simulator, although its synthesis capabilities are improving.
However, the tool focuses on generating specific netlist format for FPGA synthesis,
and it is hard to utilize novel formal techniques on the specific netlist.

To apply modern formal techniques to industrial RTL design, we implement a
quick and quality RTL front-end QuteRTL. It can synthesize most of the
synthesizable RTL with different library (Verilog and Liberty) formats into word-
level circuit netlist. For design verification, QuteRTL also supports other design input
formats, for example BLIF and BTOR, etc. Besides, users can easily implement novel
formal techniques on the word-level circuit netlist, for example UMC, property
directed reachability (PDR) [15], etc.

382 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

3 Tool Implementation

In this section, we describe the implementation of QuteRTL, which consists of a Veri-
log parser, an RTL synthesizer, and a circuit flattening procedure.

3.1 Parser and Preprocessor

Verilog Parser. We use Lex and Yacc to implement the Verilog parser. If the syntax
of the design conforms to Verilog Backus-Naur Form (BNF), the parser will parse
corresponding syntax trees for a start. It also checks the grammars of the syntaxes and
lints for Verilog. Then we construct CDFG of the design from the syntax trees for
each module. For the purpose of design synthesis and verification, we focus on the
synthesizable Verilog subset, which includes synthesizable “for loop”, “task” and
“function” declarations, etc.

Preprocessor. The preprocessor mainly handles macro substitution, hierarchy
construction, and parameter overriding. After generating the CDFGs, we first perform
a simple substitution and expand the occurrence of each argument in macro using the
replacement text. For the modules containing macros, we revise their CDFGs. Next,
we construct a hierarchical tree to represent the relation of the module instances in the
design, and then perform parameter overriding from top to down in the hierarchical
tree to set up the overridden parameter for each module instance. After the steps, the
CDFGs and hierarchical tree are ready for synthesis.

3.2 RTL Synthesis and Circuit Flattening

Data Structure of Circuit Netlist. Figure 2 shows the data structure of circuit netlist
in QuteRTL. We use three components–Cell, InPin, and OutPin to describe a circuit.
The Cell contains OutPin(s) to fan out to other cells and an InPin list to receive
multiple fanins from other Cells to construct the circuit netlist. The pins can be
multiple bits to describe word-level netlist.

Fig. 2. The data structure of circuit netlist in QuteRTL

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 383

The types of cells can be classified as follows:

• Operator cell: arithmetic, relational, equality, logical, bit-wise, reduction, shift cell,
and multiplexer

• IO cell: primary input, primary output, and primary inout
• Sequential cell: flip-flop and latch
• Module cell: module instantiation
• Modeling cell: bit-merging, bit-splitting, bus, memory, bufif, etc.

The operator cells are synthesized from the common operators in Verilog. For
example, the multiplexers are synthesized from conditional operator (?:) or
conditional block (if, case, etc.). For the instances used in a module, we model them
as module cells in the hierarchical view of design. Besides, to support the specific
elements in circuit, we create some modeling cells for net, bus, memory, and high
impedance. Please note that the pins in word-level netlist are multiple bits, so we use
bit-merging (bit-splitting) cells to concatenate (slice) pins to form specific fanins to
other cells.

RTL Synthesis Procedure. The synthesis procedure translates CDFGs to the circuit
netlist data structures we defined above. The synthesizer first traverses the CDFG of
each module and flattens each variable to the data structure “SynVar”. Figure 3 gives
an example to show the relations between RTL and SynVar. In the data structure,
each node contains the data and conditional fanins, which are respectively synthesized
from data predicate list (DPL) and control predicate list (CPL) of the variable. The
tree structure represents the priority of control predicates in nodes, and then we
connect these pins with multiplexers. If the variable is in a sequential block or is not
fully assigned in a combinational block in the original Verilog code, the output of the
last multiplexer will be connected to a sequential cell (flip-flop/latch). Finally, the
synthesized circuit netlist is illustrated in Figure 4. In order to back-annotate the
netlist information to the original RTL code, we just synthesize the RTL design to an
equivalent circuit netlist without optimizing the netlist during this procedure.

Circuit Flattening. The circuit flattening is to generate a flattened circuit netlist
which is functionally equivalent to the hierarchical netlist. The implementation
includes the concretion of instance models (i.e. module cells) and the removal of
redundant cells (ex. buffers, non-fan-out cells). First, we traverse the hierarchical tree
built in preprocessor, and duplicate the non-IO cells (except top level module) to a
new flattened module. Simultaneously, we make the connections between cells within
the same hierarchical module, and record the connections between different
hierarchical modules. After duplicating all necessary cells, we connect the cells in
different hierarchical and then traverse the flattened netlist to remove the redundant
cells.

384 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

Fig. 3. RTL synthesis procedure

Fig. 4. The synthesized circuit

4 Applications of QuteRTL

In this section, we introduce two applications of QuteRTL, which include intent
extraction in Section 4.1 and model checking in Section 4.2.

4.1 Intent Extraction

For FSM extraction, we categorize the types of FSM as either explicit FSMs or
implicit FSMs according to the definition of state values. In an explicit FSM, its state
values are explicit defined as parameters or constants, while there are no explicit state
values defined in an implicit FSM, where the state values are implicitly embedded in
conditions or expressions. In our implementation of the extractor, we extract both of

always@ (posedge clk) begin
 if (rst) begin
 x <= 1;
 y <= 0;
 end
 else begin
 y <= x;
 if (x < 100)
 x <= y+x;
 end
end

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 385

them and identify counters. Note that we extract the explicit FSMs based on the
coding styles [16] and implicit FSMs from the transition relations computed by BDDs
[17]. The extraction algorithm is mainly performed in the three steps: candidate state
variable extraction, state transition extraction, and state transition graph (STG)
construction. We briefly express these steps as follows:

1. Candidate state variable identification: In sequential blocks of Verilog, we first
treat the variables in left hand side of assignments as possible state variables. Then,
we traverse the data dependency list of the possible state variable to find a loop of
assign statements to identify the candidate state variables.

3. State transition extraction: In this step, we extract the state transition relation from
each candidate state variable. For explicit FSM, we can extract a set of state pair
(Si, Sj), which represents the state transition from Si to Sj. While for implicit FSM,
we traverse the assignments of the candidate state variables to build the state
transition relation in binary decision diagram (BDD).

4. State transition graph construction: For explicit FSM, we use the set of state pair to
construct the STG. In order to extract the STG of implicit FSM, we will traverse
the BDD to enumerate all transition conditions and relations.

Further, these extracted FSMs are utilized to identify the sequential invariants and
then improve the property proving capabilities in [11]. On the other hand, for
constrained random simulation, we proposed an ATCG technique [8] based on
QuteRTL. In that work, we extract compact constraints for a set of coverage holes
from the circuit netlist and CDFG. The experimental results show that the extracted
constraints indeed help simulation achieves the highest coverage and smallest runtime
when compared to both random and directed simulations.

4.2 Model Checking

The powerful characteristics of our QuteRTL that retain word-level information with
high-level design intent provide us an adequate circuit abstraction level for
researching on word-level verification and debugging problems. With the prosperous
SMT solvers, it becomes practical and ideal to apply model checking on our word-
level netlist with a word-level solver.

There are basically two approaches to implement a model checking algorithm on
QuteRTL. First, we can adopt the provided engine interface functions to realize a new
model checking algorithm. This is commonly used by almost all the verification
algorithms we have implemented. Second, we can dump out word-level netlist from
QuteRTL and then call the solvers by their supported interfaces. When transforming
word-level functions into CNF for Boolean SAT engines, such as adder, multiplier,
comparators, etc., we perform naïve bit-blasting technique with better encodings.

Traditional SAT-based model checking algorithms, including bounded model
checking (BMC), k-induction, and their extensions such as simple-path and
interpolation-based, can be simply implemented with circuit traversal and
transforming individual gate function into corresponding solver input formula (e.g.
CNF). Without loss of generosity, all the Boolean model checking algorithms can be

386 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

implemented on QuteRTL. Moreover, our word-level framework provides even better
capability in coping with more complex designs and realistic properties by abstraction
and refinement techniques, for instance, predicate abstraction, interpolation, design
intent extraction, and probabilistic inferences.

5 Availability for General Users

For general users, we release our RTL front-end source code and the compiled
QuteRTL executable in the following website:

http://dvlab.ee.ntu.edu.tw/~publication/QuteRTL/

In this section, we first give a brief overview to the command-line interface of
QuteRTL. Then we show some examples related to what QuteRTL can do for general
users through our user-friendly command-line interface. Users can also download
these examples in our website, which include a general RTL to gate synthesis flow, an
example to construct hierarchical word-level netlist, and a property checking instance.

5.1 A Brief Description to QuteRTL Command-Line Interface

Similar to most tools from EDA vendors, QuteRTL supports friendly command-line
interface for users. Our commands are usually composed by one or two mandatory
key words followed by a set of required/optional parameters. For example, command
to parse an input design from a single file or filelist is “REAd DEsign [-
Verilog | -Blif] <[-Filelist] (string filename)>”. We can see the command is named by
“REAd DEsign”, where the upper case letters are mandatory for command-line
parser. Parameters in square brackets indicate optional arguments, and those in angle
brackets indicate required arguments. More detailed description to our command rules
can be found in our website, and we will mention some of them in our examples later.

Besides, there is a command “HELp” for showing all available commands, or
showing detailed usage of each command (for instance, “HELp REAd DEsign”).

5.2 Example: RTL to Gate Synthesis Flow

In the first example, we are going to show the synthesis flow of QuteRTL. The adopted
designs are “i2c” and “usb_phy” from OpenCore [18]. We present the commands of the
flow in Figure 5. Note that users can run the series of commands from a batch file using
“dofile” command or execute argument “-f” to specify the batch file.

In the first line of Figure 5, we record the commands we are going to execute
throughout the program into a log file, which can be used as batch file in the future
run. Then we parse the Verilog design from the file list. Note that users must write all
related files in the file list for QuteRTL once. After the Verilog design is parsed, the
command “syn” performs synthesis procedure to transform the design into a word-
level circuit netlist, and the command “flat” flatten the design into a single flattened
module. Note that internal signals in the flattened module will be renamed.

 QuteRTL: Towards

After our front-end proc
using the command “write
ckt”. As shown in Figur
hierarchical word-level ne
flattened one (i2c_ckt.v) in
design (i2c_ckt.blif). The
Boolean network, and easily
Accompanied with the m
Conformal LEC [19] equi
original design and all g
synthesized word-level cir
ellipses respectively represe

Fig. 5. Batc

Fig. 6. T

set log -cmd flow_
read des -f fileli
syn
flat
write des i2c_desig
write ckt i2c_ckt.v
write ckt -blif i2c
q -f

1.
2.
3.
4.
5.
6.
7.
8.

// Example : flow_i2c.d

s an Open Source Framework for RTL Design Synthesis

cessing, QuteRTL can output either hierarchical design
design” or flattened circuit by using the command “w

re 5, after performing circuit flattening, we outpu
etlist in Verilog format (i2c_design.v) in line 5, and

line 6. Besides, we can also output the BLIF format of
BLIF format is a suitable input for other research

y transformed into other related formats, for instance, A
macro library file “lib2.v”, users can run the Cade
ivalence checker script to check the equivalence amo
generated output designs. Figure 6 shows the par
rcuit of “i2c”. In the figure, rectangles, trapezoids,
ent flip-flops, multiplexers, and other operating gates.

ch files for RTL to gate synthesis flow example

The part synthesis word-level circuit of i2c

i2c.dofile
st

gn.v
v
c_ckt.blif

dofile
set logfile -cmd flow_usb.dofil
read design -f filelist
synthesis
flatten
write design usb_design.v
write ckt usb_ckt.v
write ckt usb_ckt.blif -blif
quit -f

1.
2.
3.
4.
5.
6.
7.
8.

// Example : flow_usb.dofile

387

n by
write
ut a
d a

f the
on

AIG.
ence
ong
rtial
and

le

388 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

5.3 Example: Hierarchical Word-Level Netlist Creation

As shown in Fig 1, QuteRTL has a complete set of interface functions for netlist
creation. Especially, we also support users to construct design through our command-
line interface. It is especially convenient to build small designs for instant
experiments.

Fig. 7. An example of circuit netlist

Suppose we want to construct the circuit netlist in Figure 7. We present two
scripts: “construct_flat.dofile” for constructing the design with only one module, and
“construct_hier.dofile” for constructing a hierarchical design, which is functionality
identical to the former. The batch files are shown in Figure 8 and 9, respectively. (A
portion of commands in “construct_hier.dofile” is omitted in Figure 9 due to space
concerns.)

Fig. 8. Batch file for design construction with single module

Fig. 9. Batch file for hierarchical design construction with multiple modules

define net a[3:0] 4
define net a[7:4] 4
define cell SLICE a[7:4] a 7 4
define cell SLICE a[3:0] a 3 0
define cell ADD plus_out a[7:4] a[3:0]
define cell AND conj_out plus_out b
define cell DFF prev_out conj_out clk reset
define cell OR out prev_out

10.
11.
12.
13.
14.
15.
16.
17.

create design flat_design
define net -PI clk 1
define net -PI reset 1
define net -PI a 8
define net -PI b 4
define net -PO out 1
define net prev_out 4
define net plus_out 4
define net conj_out 4

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_flat.dofile

define net -PI clk 1
define net -PI reset 1
…
define cell or out prev_out
define inst sub_test hier_inst a[7:4] a[3:0] plus_out
flat
write des
write ckt
write ckt -blif

10.
11.

25.
26.
27.
28.
29.
30.

create design hier_test
define module sub_test
define net a 3 0
define net a 4
define net -PI a 4
define net -PI b 4
define net -PO out 4
define cell add out a b
change module

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_hier.dofile

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 389

At first, we create a new design named “flat_design” (line 1) in Figure 8. Then we
use the command “DEFine NET” to create word-level nets with widths. Parameter
“[-PI | -PO | -PIO]” is used if such the net is also an I/O port. Note that some illegal
names to Verilog, e.g. “a[3:0]” in line 10, will be renamed by QuteRTL; hence it is
convenient for general users. Then we construct cells from line 12 to the end, which
include a register with synchronous reset in line 16 (we omit the reset value and use
default value). In this example, although all nets are defined before cells, actually the
only restriction is that all the I/O nets of the defined cell should be defined before.
Hence, users can construct a netlist with great flexibility in QuteRTL. Note that
commands for cell definition can be comparably complex, due to different type of
word-level cells. Users can type “HELp DEFine CELL” to see the detailed usages in
the command line mode.

Next, we construct a hierarchical design with the batch file “construct_hier.dofile”
in Figure 9. After constructing design “hier_test” in line 1, we define a sub-module
“sub_test” in line 2. Now, our current scope is transformed into module “sub_test”.
Hence all nets and cells defined in line 3-8 will be constructed in module “sub_test”.
After “sub_test” is constructed, a simple command “CHAnge MODule” will bring us
back to the parent module, which is “hier_test” in the case. Note that it is impossible
to enter into sub-module “sub_test” again for incremental construction further. Once a
sub-module is defined, we expect that it will eventually be instantiated in other
modules. The command for module instantiation is “DEFine INST”, as shown in line
26, where an instance named “hier_inst” is constructed. In this command, I/O nets
defined after the instance name, namely, “a[7:4], a[3:0], and plus_out”, will be
connected to I/O ports of module “sub_test” in the order identical to the I/O port
defined in “sub_test” previously. Hence, I/O relation of “hier_inst” will be “plus_out”
= “a[7:4]” + “a[3:0]”.

Note that when building a hierarchical design through those commands, users can
write out the hierarchical Verilog directly, or write out circuit after flatten, as
introduced in Section 5.2.

5.4 Example: Property Checking

One of the important applications to QuteRTL is word-level verification and
debugging. In the last example, we utilize QuteRTL to perform safety property
checking on a simple traffic light controller. We simplify the design to only two
primary inputs (clock and reset) and only one output (time_left), which shows clock
cycles left before the light changes to the next. As light is changed, we reset
“time_left” to the number of cycles, which is the time to keep the same light: 60 for
RED, 40 for GREEN and 5 for YELLOW. Initially, light is RED and time_left is
zero, so the light will turn GREEN in the next cycle. We illustrate the state transition
graph of the design in Figure 10.

390 H.-H. Yeh, C.-Y. Wu

Fig. 10. State

We adopt three safety p
assert that time_left should
60. Second, we assert the
false for this design. Final
which is encoded as “2’d3”

Figure 11 show the batch
formulas as the three safety
will call the formal engine t
see the first and third prop
42-cycle trace from initial s

Fig. 11. Batch file

In this example, we do
however, QuteRTL allows
setting parameters in the co
dump in Value Change Dum
counterexample for the sec
trace from initial state.

Fig. 12. Th

read des Traffic.v
syn
fla
set formula 1 "time_le
set formula 2 "Light_S
set formula 3 "Light_S

1.
2.
3.
4.
5.
6.

// Example : traffic_light

u, and C.-Y. Huang

e transition graph for traffic light design example

properties for verifying the traffic light design: First,
d never exceed 60, as the longest time in the same ligh
light will never turn YELLOW, which should be pro
lly, we assert light will never turn to an unknown st

” in the design.
h file for property checking. In line 4, 5, and 6, we set th
y properties, and then three “MODel CHecking” comma
to check whether these properties are true or not. Users

perties are proved, and the second one is disproved wit
state.

 for property checking on traffic light design example

o not specify anything but property to model check
users to change solvers and model checking algorithms

ommand, or even to specify a file for counter-example tr
mp (VCD) file format. Figure 12 shows the waveform o
cond property. It disproves the property with a 42-cy

he waveform of a counterexample of formula 2

// Property Checking : AG(formula 1)
model check 1
// Property Checking : AG(formula 2)
model check 2
// Property Checking : AG(formula 3)
model check 3

7.

8.

9.

ft <= 8'd60"
ign != 2'd2"
ign != 2'd3"

t_check.dofile

we
ht is
oven
tate,

hree
ands
can
th a

ker;
s by
race
of a
ycle

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 391

6 Conclusion

We construct an open source framework for RTL design synthesis and verification,
and verify the correctness and robustness of the framework with a third party tools ―
Cadence Conformal LEC and Berkeley ABC. With the framework, various research
directions on RTL can be made possible. In the future, we will develop some
techniques on RTL design debugging with the extracted design intents.

References

1. SIS,
http://embedded.eecs.berkeley.edu/pubs/
downloads/sis/index.html

2. VIS, http://vlsi.colorado.edu/~vis/
3. MVSIS,

http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/
4. Berkeley ABC, http://www.eecs.berkeley.edu/~alanmi/abc/
5. Icarus Verilog, http://iverilog.icarus.com/
6. MiniSAT, http://minisat.se/
7. Boolector, http://fmv.jku.at/boolector/
8. Yeh, H.-H., Huang, C.-Y.: Automatic Constraint Generation for Guided Random Simula-

tion. In: Asia and South Pacific Design Automation Conference, pp. 613–618 (2010)
9. Kitchen, N., Kuehlmann, A.: Stimulus generation forconstrained random simulation. In:

International Conference on Computer-Aided Design, pp. 258–265 (2007)
10. Wu, B.-H., Yang, C.-J., Tso, C.-C., Huang, C.-Y.: Toward an Extremely-High-Throughput

and Even-Distribution Pattern Generator for the Constrained Random Simulation Tech-
niques. In: International Conference on Computer-Aided Design, pp. 602–607 (2011)

11. Yeh, H.-H., Wu, C.-Y., Huang, C.-Y.: Property-Specific Sequential Invariant Extraction
for SAT-based Unbounded Model Checking. In: International Conference on Computer-
Aided Design, pp. 674–678 (2011)

12. Thalmaier, M., Nguyen, M.D., Wedler, M., Stoffel, D., Bormann, J., Kunz, W.: Analyzing
k-step induction to compute invariants for SAT-based property checking. In: Design Au-
tomation Conference, pp. 176–181 (2010)

13. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., So-
menzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

14. Vizel, Y., Grumberg, O.: Interpolation-Sequence Based Model Checking. In: Formal Me-
thods in Computer Aided Design, pp. 1–8 (2009)

15. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Directed Rea-
chability. In: Formal Methods in Computer Aided Design, pp. 125–134 (2011)

16. Liu, C.-N., Jou, J.-Y.: A FSM Extractor from HDL Description at RTL Level. In: Asia Pa-
cific Conference on Hardware Description Languages, pp. 33–38 (1998)

17. Touati, H., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit State
Enumeration of Finite State Machines using BDDs. In: International Conference on Com-
puter-Aided Design, pp. 130–133 (1990)

18. OpenCores, http://www.opencores.org
19. Cadence Conformal LEC, http://www.cadence.com/products/

	QuteRTL: Towards an Open Source Framework
for RTL Design Synthesis and Verification
	Introduction
	Architecture of QuteRTL Framework
	Overview of QuteRTL Framework
	Supported Features of QuteRTL
	Comparison with other Open Source RTL Front-End

	Tool Implementation
	Parser and Preprocessor
	RTL Synthesis and Circuit Flattening

	Applications of QuteRTL
	Intent Extraction
	Model Checking

	Availability for General Users
	A Brief Description to QuteRTL Command-Line Interface
	Example: RTL to Gate Synthesis Flow
	Example: Hierarchical Word-Level Netlist Creation
	Example: Property Checking

	Conclusion
	References

