Effective Characterizations of Simple Fragments
of Temporal Logic Using Prophetic Automata

Sebastian Preugschat and Thomas Wilke

Christian-Albrechts-Universitat zu Kiel
{preugschat,wilke}@ti.informatik.uni-kiel.de

Abstract. We present a framework for obtaining effective character-
izations of simple fragments of future temporal logic (LTL) with the
natural numbers as time domain. The framework is based on prophetic
automata (also known as complete unambiguous Biichi automata), which
enjoy strong structural properties, in particular, they separate the “fini-
tary fraction” of a regular language of infinite words from its “infinitary
fraction” in a natural fashion. Within our framework, we provide char-
acterizations of all natural fragments of temporal logic, where, in some
cases, no effective characterization had been known previously, and give
lower and upper bounds for their computational complexity.

1 Introduction

Ever since propositional linear-time temporal logic (LTL) was introduced into
computer science by Amir Pnueli in [18] it has been a major object of research.
The particular line of research we are following here is motivated by the question
how each individual temporal operator contributes to the expressive power of
LTL. More precisely, our objective is to devise decision procedures that determine
whether a given LTL property can be expressed using a given subset of the
set of all temporal operators, for instance, the subset that includes “next” and
“eventually”, but not “until”.

As every LTL formula interpreted in the natural numbers (the common time
domain) defines a regular language of infinite words (w-language), the aforemen-
tioned question can be viewed as part of a larger program: classifying regular
w-languages, that is, finding effective characterizations of subclasses of the class
of all regular w-languages. Over the years, many results have been established
and specific tools have been developed in this program, the most fundamental
result being the one that says that a regular w-language is star-free or, equiv-
alently, expressible in first-order logic or in LTL if, and only if, its syntactic
semigroup is aperiodic [T023]16].

The previous result is a perfect analogue of the same result for regular lan-
guages of finite words, that is, of the classical theorems by Schiitzenberger [19],
McNaughton and Papert [I3], and Kamp [I0]. In general, the situation with in-
finite words is more complicated as with finite words; a good example for this
is given in [0], where, for instance, tools from topology and algebra are used to
settle characterization problems for w-languages.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 135-[[49, 2012.
© Springer-Verlag Berlin Heidelberg 2012

136 S. Preugschat and T. Wilke

The first characterization of a fragment of LTL over finite linear orderings was
given in [4], another one followed in [7], both following a simple and straightfor-
ward approach: to determine whether a formula is equivalent to a formula in a
certain fragment, one computes the minimum reverse DFA for the correspond-
ing regular language and verifies certain structural properties of this automaton,
more precisely, one checks whether certain “forbidden patterns” do not occur.
The first characterization for infinite words (concerning stutter-invariant tempo-
ral properties) [15] used sequential relations on w-words; the second (concerning
the nesting depth in the until/since operator) [22] used heavy algebraic machin-
ery and did not shed any light on the computational complexity of the decision
procedures involved.

In this paper, we describe a general, conceptually simple paradigm for charac-
terizing fragments of LTL when interpreted in the natural numbers, combining
ideas from [4I7] for finite words with the work by Carton and Michel on un-
ambiguous Biichi automata [23]. The approach works roughly as follows. To
determine whether a given formula is equivalent to a formula in a given frag-
ment, convert the formula into what is called a “prophetic automaton” in [17],
check that the automaton, when viewed as an automaton on finite words, sat-
isfies certain properties, and check that languages of finite words derived from
the accepting loops (“loop languages”) satisfy certain other properties. In other
words, we reduce the original problem for w-languages to problems for languages
of finite words. We show that the approach works for all reasonable fragments
of future LTL and yields optimal upper bounds for the complexity of the corre-
sponding decision procedures for all but one fragment.

A note on terminology. As just explained, we work with a variant (for details,
see below) of the automaton model introduced by Carton and Michel in [2/3]
and named CUBA model (Complete Unambiguous Biichi Automata). In [I7],
Pin uses “prophetic automata” to refer to CUBA’s. We suggest to henceforth
refer to these automata as “Carton-Michel automata” (CMA).

Structure of this extended abstract. In Section 2, we provide background on the
topics relevant to this paper, in particular, CMA’s and propositional linear-time
temporal logic. In Section 3, we explain that a translation from temporal logic
into CMA’s is straightforward. In Section 4, we present our characterizations.
In Section 5, we give a proof of the correctness of one of our characterizations,
and in Section 6, we explain how our characterizations can be used effectively
and deal with complexity issues. We conclude with open problems.

2 Basic Notation and Background

2.1 Reverse Deterministic Biichi Automata

A Biichi automaton with a reverse deterministic transition function is a tuple
(A,Q,1,-, F) where A is a finite set of symbols, @ is a finite set of states, I € @
is a set of initial states, - is a reverse transition function Ax@Q — @, and F € Q is

Characterizing Fragments of LTL Using CUBA’s 137

D0 0.
8o 68

b

Fig. 1. CMA which recognizes (a + b)*b*

a set of final states. As usual, the transition function is extended to finite words
by setting e-¢=q and au-qg=a-(u-q) for g€ Q, a € A, and u € A*. For ease
in notation, we write ug for u- ¢ when the transition function - is clear from the
context.

A run of an automaton as above on an w-word u over A is an w-word r over ()
satisfying the condition r(7) = u(i)r(i + 1) for every i < w. Such a run is called
initial if r(0) € I; it is final if there exist infinitely many 4 such that r(i) € F;
it is accepting if it is initial and final. The language of w-words recognized by
such an automaton, denoted L(A) when A stands for the automaton, is the set
of w-words for which there exists an accepting run.

An automaton as above is called a Carton-Michel automaton (CMA) if for
every w-word over A there is exactly one final run. Such an automaton is trim,
if every state occurs in some final run.— The original definition of Carton and
Michel in [213] is slightly different, but for trim automata—the interesting ones—
the definitions coincide.

As an example, consider the automaton depicted in Figure [I which is a
CMA for the language denoted by (a + b)*b¥. Note that we depict p = aq as
®——@

An initial state has an incoming edge —, a final state has a double circle O.

The fundamental result obtained by Carton and Michel is the following.

Theorem 1 (Carton and Michel [2)J3]). Every regular w-language is recog-
nized by some CMA. More precisely, every Biichi automaton with n states can
be transformed into an equivalent CMA with at most (12n)" states.

Let A be a CMA over an alphabet A and u € A*. The word u is a loop at q if
q = uq and there exist v,w € A* satisfying vw = u and wq € F'. The set of loops
at ¢ is denoted S(¢). What Carton and Michel prove about loops is:

Lemma 1 (Carton and Michel [2/3]). Let A be a CMA over some alpha-
bet A. Then, for every u e A", there is exactly one state q, denoted u) and called
anchor of u, such that u is a loop at q.

In other words, the S(q)’s are pairwise disjoint and Ugzeq S(q) = A*.

A generalized Carton—Michel automaton (GCMA) is defined as expected. It is
the same as a CMA except that the set F' of final states is replaced by a set
& < 29 of final sets, just as with ordinary generalized Biichi automata. For such

138 S. Preugschat and T. Wilke

an automaton, a run r is final if for every F € § there exist infinitely many i
such that r(¢) € F.

The above definitions for CMA’s can all be adapted to GCMA’s in a natural
fashion and all the statements hold accordingly. For instance, a word is a loop
at some state ¢ in a GCMA if ¢ = uq and for every F' € F there exist v,w € A*
such that v = vw and wq € F. It is a theorem by Carton and Michel that every
GCMA can be converted into an equivalent CMA.

2.2 Temporal Logic

In the following, it is understood that temporal logic refers to propositional
linear-time future temporal logic where the natural numbers are used as the
domain of time. For background on temporal logic, we refer to [6] and [§].

Given an alphabet A, the set of temporal formulas over A, denoted TL 4, is
typically inductively defined by:

(i) for every a € A, the symbol a is an element of TL 4,
if pe TLy, so is -,
if p,10 € TL4, so are ¢ v 1) and ¢ A,
if o e TL 4, so is Xp (“next ¢”),
if o€ TL4, so are Fp and Gy (“eventually ¢” and “always ¢”),
(vi) if ¢, € TL4, so are pUy and Ry (“p until ¥” and “p releases ¥”).
Often, the operators XF (“strictly eventually”) and XG (“strictly always”) are part
of the syntax of temporal logic; we view them as abbreviations of XF and XG.
(Obviously, F and G can be viewed as abbreviations of (a Vv -a)U and (a A -a)R,
respectively.)
Formulas of TL 4 are interpreted in w-words over A. For every such word u,
we define what it means for a formula to hold in w, denoted u £ ¢, where we
omit the straightforward rules for Boolean connectives:
— ukaif u(0) =aq,
— ukE Xy ifu[l,*) = ¢, where, as usual, u[1, *) denotes the word u(1)u(2)...,
— u E Fp if there exists ¢ > 0 such that u[i,*) £ ¢, similarly, u = Gy if
uli, *) = for all i > 0,

— u E U if there exists j > 0 such that u[j, *) £ and u[i, *) E ¢ for all i < j,
similarly, u = @R if there exists j > 0 such that u[j, *) = ¢ and u[i, *) = ¢
for all j <i or if u[i, *) =1 for all 4> 0.

Clearly, a formula of the form -Fy is equivalent to G-¢, and a formula of the
form =(pUv) is equivalent to ~¢R-1, which means F and G as well as U and R
are dual to each other; X is self-dual.

Given a TLy4 formula ¢, we write L(p) for the set of w-words over A where
© holds, that is, L(p) = {u € A%:u E ¢}. This w-language is called the language
defined by .

Fragments of LTL. An operator set is a subset of the set of all basic temporal
operators, {X,F,XF,U}. If A is an alphabet and O an operator set, then TL4[O]
denotes all LTL formulas that can be built from A using Boolean connectives

Characterizing Fragments of LTL Using CUBA’s 139

and the operators from O. We say a language L ¢ A% is O-expressible if there
is a formula ¢ € TL4[O] such that L(y) = L. The O-fragment is the set of all
LTL-formulas ¢ such that L(y) is O-expressible.

Observe that several operator sets determine the same fragment: {X} and
{F,XF}; {U} and {F,U}; {XF, U} and {F,XF,U}; {X F}, {X, X} and {X,F,XF};
{X,U} and every superset of this.

What we are aiming at are decision procedures for each fragment except for
the one determined by {XF,U}, as this is kind of unnatural: a strict operator
combined with a non-strict one.

Ehrenfeucht—Fraissé Games for LTL. The statements of our results
(Section €2)) do not involve Ehrenfeucht—Fraissé games (EF games), but we
use them extensively in our proofs. In this extended abstract, we make use of
them in Section [B

In the following, we recall the basics of EF games for temporal logic, see [7]
for details.

A play of a temporal logic EF game is played by two players, Spoiler and
Duplicator, on two w-words over some alphabet A, say u and v. The game
is played in rounds, where in every round, Spoiler moves first and Duplicator
replies. The basic idea is that Spoiler is trying to reveal a difference between
u and v which can be expressed in temporal logic, while Duplicator is trying
to show—by somehow imitating the moves of Spoiler—that there is no such
difference.

There are different types of rounds, corresponding to the temporal operators
considered. We explain the ones that we need:

X-round. Spoiler chooses either u or v, say v, and chops off the first letter of
v, that is, he replaces v by v[1,). Duplicator does the same for u.

F-round. Spoiler chooses either u or v, say v, and chops off an arbitrary finite
(possibly empty) prefix, that is, he replaces v by v[i, *) for some ¢ > 0. Duplicator
replaces u (the other word) by u[j, *) for some j > 0.

XE-round. Spoiler chooses either u or v, say v, and chops off an arbitrary non-
empty finite prefix, that is, he replaces v by v[i, *) for some ¢ > 0. Duplicator
replaces u (the other word) by u[j, *) for some j > 0.

Before the first round, «(0) and v(0) are compared. If they are distinct, then
this is a win (an early win) for Spoiler. After each round, the same condition
is verified, and, again, if the two symbols are distinct, then this is a win for
Spoiler. If, by the end of a play, Spoiler hasn’t won, then this play is a win for
Duplicator. For a fixed n, Duplicator wins the n-round game, if Duplicator has
a strategy to win it.

When only rounds are allowed that correspond to operators in a temporal
operator set O € {X,F,XF}, then we speak of an O-game.

The fundamental property of EF games we are going to use is the following,
which was essentially proved in [7].

Theorem 2. Let L be a language of w-words over some alphabet A and O <
{X,F,XF} a temporal operator set. Then the following are equivalent:

140 S. Preugschat and T. Wilke

(A) L is O-expressible.
(B) There is some k such that for all words u,v € AY with ue€ L < v € L,
Spoiler has a strategy to win the O-game on u and v within k rounds.

3 From Temporal Logic to CMA’s

Several translations from temporal logic into Biichi and generalized Biichi au-
tomata are known, see, for instance, [24I2T/9]. Here, we follow the same ideas
and “observe” that the resulting automaton is a GCMA. This is supposed to be
folkloreﬂ but—to the best of our knowledge—has not been made precise yet.

First note that every formula can be assumed to be in negation normal form,
which means (ii) from above is not used. So, without loss of generality, we only
work with formulas of this form in what follows.

Let ¢ € TL4 and let sub(p) denote the set of its subformulas. We define a
GCMA A[g] = (A,25P() . F). Our goal is to construct the automaton in
such a way that in the unique final run r of this automaton on a given word u
the following holds for every i and every ¢ € sub(p):

uli, *) E Y it Yer(d) . (1)

First, we set I = {® C sub(y):p €} (which is motivated directly by ().
Second, we define a - @ to be the smallest set ¥ satisfying the following
conditions:
(i) aeV,
il) ifpe¥ and y e ¥, then Yy A x € ¥,
i) ifpeWor xeW, thenypvye?,
v) if 1) € P, then X¢p € ¥,
) if Y eW or Fip € @, then Fyp e ¥,
) if Y e ¥ and Gy € &, then Gy € ¥,
(vii) if x e ¥ or if) e ¥ and Uy € P, then YUy € ¥,
(viii) if x € ¥ and if 1) € ¥ or ¥Ry € @, then Ry € ¥.
This definition reflects the “local semantics” of temporal logic, for instance, Fy
is true now if, and only if, v is true now or Fv is true in the next point in time.
Observe, however, that the fulfillment of Fi) must not be deferred forever, which
means that local conditions are not enough to capture the entire semantics of
temporal logic. This is taken care of by the final sets.
Third, for every formula Fi € sub(y) the set {® < sub(p):1) € § or Fip ¢ &}
is a member of §. Similarly, for every formula 1)Uy the set {® < sub(p):x €
@ or YUy ¢ &} is a member of F. No other set belongs to §.

Proposition 1. Let A be an alphabet and g € TLa. Then A, is a GCMA and
L(Ay) =L(yp).
! Personal communication of the second author with Olivier Carton: the observation

can already be found in the notes by Max Michel which he handed over to Olivier
Carton in the last millennium.

Characterizing Fragments of LTL Using CUBA’s 141

Proof. We first show that A, is a GCMA. To this end, let u be an w-word over A.
We show that the word r defined by (), for every i and every i € sub(y), is a
final run on u and the only one.

The w-word r is a run on u. To see this, let ¢ > 0 be arbitrary and observe
that if we define @ and ¥ by & = {¢) € sub(p):u[i +1,%) E ¢} and ¥ = {¢) €
sub(y):u[é,*) E 1}, then the implications (i)—(viii) not only hold, but also hold
in the opposite direction. That is, r(¢) = u(i)-r(i+1) for every 4, in other words,
r is a run on w.

The run r is final. Obvious from the semantics of temporal logic.

The run r is the only possible final run. Let s be a final run. We need to
show s = r. To this end, one shows by an inductive proof on the structure of the
elements of sub(y) that for every 7 and every v € sub(y) condition () holds
for s and hence s = r. The interesting part is the inductive step for formulas of
the form Fiy and ¥Uy. We only show how the proof works for Fi).

If Fip € s(i), then uli,*) = Fi. Suppose Fi) € s(i). Then, by definition of -,
¥ e s(i) or Fip € s(i+1). In the first case, we have u[i, *) =1 by the induction
hypothesis, so u[i, *) = Fi by the semantics of temporal logic, and we are done.
In the second case, we can apply the same argument to the next point in time and
get u[i+ 1,%) = Fi, hence u[i, ») = Fy, or we get Fi € s(i +2). Continuing like
this, we eventually (!) get u[i, *) = Fi or that Fi € s(j) for every j >i. Because
s is final, one of the states of the final set for F¢» must occur somewhere, that is,
we get ¢ € s(j) for some j > i, thus u[j,*) = ¢ by induction hypothesis, hence
uli, *) E Fy.

If Fi ¢ s(i), then uli,*) ¥ Fu. If Fy ¢ s(i), then, because of the definition
of -, 1 ¢ s(i) and Fy ¢ s(i +1). Continuing like this, we get ¥ ¢ s(j) for every
J > 1, so, by induction hypothesis, u[j, *) # 1 for every j >4, hence u[i, *) # Fi).

Correctness of the construction, that is, L(p) = L(A,). This follows immedi-
ately from what was shown before because of the way I is defined.]

4 General Approach and Individual Results

This section has two purposes: it explains our general approach and presents the
characterizations we have found.

4.1 The General Approach

To describe our general approach, we first need to explain what we understand
by the left congruence of a (G)CMA.

Let A be a (G)CMA. For every ¢ € @, let L, denote the set of words u € A*
such that uq € I. The relation =4 on @, which we call the left congruence of A,
is defined by g =4 ¢’ when L, = L. The terminology is justified:

Remark 1. Let A be a (G)CMA. Then =4 is a left congruence, that is, uq =4 uq’
whenever u € A* and q,q’ € A are such that ¢=4 ¢'.

142 S. Preugschat and T. Wilke

In other words, we can define the left quotient of A with respect to =4 to be the
reverse semi DFA A /=4 given by

A/EA = (A7QI/EA3I/EA7O) (2)

where

— @' is the set of all states that occur in some final run of A (active states),
and
—ao(q/za)=(a-q)/za for allae A and g€ Q.
As usual, the attribute “semi” refers to the fact that this automaton has no final
states nor final sets.
Next, we combine the left congruence of a (G)CMA with its loops. The loop
language of a state q of a (G)CMA A is denoted LL(g) and defined by

LL(g)= U S(¢) . (3)

q"q'=aq

that is, LL(g) contains all loops at ¢ and at congruent states.

Our general approach is to characterize a fragment of LTL as follows. To check
whether a given formula ¢ is equivalent to a formula in a given fragment, we
compute the GCMA A, and check various conditions on its left quotient and its
loop languages. It turns out that this is sufficient; intuitively, the left quotient
accounts for the “finitary fraction” of L(A,), whereas the loop languages account
for its “infinitary fraction”.

4.2 Characterization of the Individual Fragments
The formal statement of our main result is as follows.

Theorem 3. Let A be some alphabet, o an LTL-formula, and O a temporal
operator set as listed in Table[d. Then the following are equivalent:

(A) The formula ¢ belongs to the O-fragment.
(B) The left quotient of A, and its loop languages satisfy the respective con-
ditions listed in Table[D. (Information on how to read this table follows.)

Conditions on the left quotient of A, are phrased in terms of “forbidden pat-
terns” (also called “forbidden configurations” in [4]). To explain this, let A =
(A,Q, I,0) be any reverse semi DFA. Tts transition graph, denoted T(A), is the
A-edge-labeled directed graph (Q, F) where E ={(aoq,a,q):ac A,qeQ}.

Now, the conditions depicted in the second column of Table [l are to be read
as follows: the displayed graph(s) do not (!) occur as subgraphs of the transition
graph of the left quotient of A, that is, as subgraphs of T(A,/=a,). Vertices
filled gray must be distinct, the others may coincide (even with gray ones);
dashed arrows stand for non-trivial paths.

For instance, the condition for the left quotient in the case of the {X}-fragment
requires that the following is not true for T(A,/=a,,): there exist distinct states
g and ¢’ and a word x € A* such that g=zoqgand ¢’ =xoq’.

Characterizing Fragments of LTL Using CUBA’s 143

Table 1. Characterizations of the individual fragments of LTL

fragment left quotient loop languages

X -~ -~z no condition

F — 1-locally testable
/7\ \\
1 1
1
\ /
a X
O—
O -
—_C ——
xF O a 1-locally testable
N
! \
1 1
\ 1
\ /
a X
O—

X, F T __ _x locally testable
1

- “\/C/"WO/”_ 5
NPT 7 S O S
U O a O a O stutter-invariant

Note that for the {X}-fragment one forbidden pattern consisting of two strongly
connected components is listed, whereas for the {F }-fragment two forbidden pat-
terns (indicated by the horizontal line) are listed.

The conditions listed in the third column of Table [are conditions borrowed
from formal language theory, which we explain in what follows. For a word
ueA* and k > 0, we let prf, (u), sfixg(u), and occi (u) denote the set of prefixes,
suffixes, and infixes of u of length < k, respectively. For words u,v € A*, we write
w =41 v if priy (u) = pri(v), occk1(u) = occge1 (v), and stixy (u) = sfixg(v). A
language L is called (k + 1)-locally testable if uw € L < v € L, whenever u =, v,
and it is called locally testable if it is k-locally testable for some k, see [I].

A language L ¢ A* is stutter-invariant if uav € L < uaav € L holds for all
acA, uve A,

144 S. Preugschat and T. Wilke

4.3 Proof Techniques

For each fragment dealt with in Theorem [3] we have a separate proof, some of
them are similar, others are completely different. In this section, we give a brief
overview of our proofs.

For the operator set {X}, the proof is more or less a simple exercise, given
that {X}-expressibility means that there is some k such that u = ¢ is determined
by prfy(u).

For the operator sets {F}, {dF}, and {X F}, we use similar proofs. As an
example, we treat the simplest case, {XF}, in the next section.

For {U}, we use a theorem from [I4], which says that an LTL formula over
some alphabet A is equivalent to a formula in TL4[U] if the language defined
by the formula is stutter-invariant, where stutter invariance is defined using an
appropriate notion of stutter equivalence on w-words.

5 Characterization of the {XF}-Fragment

We present the characterization of the {XF}-fragment in detail. Since every
GCMA can obviously be turned into an equivalent trim GCMA, all GCMA
are assumed to be trim subsequently.

We start with a refined version of Theorem [for the {XF}-fragment.

Theorem 4. The following are equivalent for a given GCMA A:

(A) L(A) is XF-expressible.
(B) (a) The transition graph T(A[=a) doesn’t have a subgraph of the following
form (in the above sense):

a
%

®
T (T1)

VX

@——©®

(b) For all u,v e A* with occ(u) = occ(v), it holds that u) =4 v).
(C) (a) The same as in (B)(a).

(b) (i) For all u,ve A*, ac A, it holds that uav) =4 uaav).
(ii) For all u,ve A*, a,be A, it holds that uabv) =4 ubav}.

Observe that (B)(b) means that the loop languages are 1-locally testable. In
other words, the above theorem implies that the characterization of the {XF}-
fragment given in Theorem [3is correct.

Before we get to the proof of Theorem M we provide some more notation and
prove some useful lemmas. For ease in notation, we often write g for ¢/=a. When
u € A¥, then u - oo denotes the first state of the unique final run of A on u, and
inf(u) = {a € A:3%i(u(i) =a)}. For a € A and u € A*, |u|, denotes the number
of occurrences of a in u.

Characterizing Fragments of LTL Using CUBA’s 145

Lemma 2. Assume T(A/=a) has a subgraph of type (T1). Then for every k
there exist words u,v € A¥ such that Duplicator wins the k-round XF-game on u
and v, but ue L(A) +» veL(A).

Proof. Assume T(A/=4) has a subgraph of type (T1). That is, there are states
p#q,7,5, words x,y € A*, and a letter a € A such that p=a-7, §=a-5, 5=y 7
and 7 = x - 5. We find states rg,r1,..., and sg, $1,... such that

— ;=7 and §; =5 for all 7 <w, and

—x-8;=r; and y-r; = 841 for all i < w.
Because @ is a finite set, we find [> 0 and i such that r; = r;,;. Since A is trim,
we find v such that v- oo = r; and u such that ua-r; € I iff ua-s; ¢ I. This means
that ua(yz)™v € L «» uax(yz)™v e L for all m > 1.

Clearly, if we choose Im > k, then the two resulting words cannot be distin-

guished in the k-round XF-game.]

Lemma 3. Let A be a GCMA such that T(A/=4) doesn’t have a subgraph of
type (T1). Further, let r and s be the unique final runs of A on words u,v € A“
and define 7 and 5 by 7(i) =r(i)/=a and 5(i) = s(i)/=a for all i < w.

If #(0) # 5(0) and inf(7) Nninf(3) + @, then Spoiler wins the k-round XF-game
on u and v where k is twice the number of states of A/=a.

Proof. In the following, we use SCC as an abbreviation for strongly connected
component. In our context, a state which is not reachable by a non-trivial path
from itself is considered to be an SCC by itself. For every i < w, let R; and S;
be the SCC’s of 7(i) and 5(i) in A/=a, respectively. Observe that because of
inf(7) ninf(5) # @ there is some ! such that the R;’s and S,’s are all the same
for 4,5 > 1.

Let R={R;:i >0}, & ={5;:i >0}, m=|R|-1, and n = |&| - 1. We show that
Spoiler wins the XF-game in at most m +n rounds. The proof is by induction on
m+n.

Base case. Let m =n =0. Then R; = S;. Because of the absence of (T1), we
have u(0) # v(0), and Spoiler wins instantly.

Induction step. Note that if r is the unique final run of A on u, then r[i, *)
is the unique final run of A on u[i, *) for every i.

Let m+n > 0. If u(0) # v(0), then Spoiler wins instantly. If «(0) = v(0), we
proceed by a case distinction as follows.

Case 1, Ry = S1. This is impossible because of the absence of (T1).

Case 2, Ry + 51, R1 ¢ S. Since Ry ¢ © and inf(7) ninf(s) + @ we have m > 0.
So there must be some i > 1 such that 7#(i) € R; and #(i+1) ¢ Ry. Spoiler chooses
the word u and replaces u by [, *).

Now Duplicator has to replace v by v[j,*) for some j > 0. Since Ry ¢ & we
have 7(4) # §(j) and the induction hypothesis applies.

Case 3, Ry + 51, S1 ¢ R. Symmetric to Case 2.

Case 4, Ry #+ S1, Ry € &, and S1 € R. Impossible, because Ry would be
reachable from S; and vice versa, which would mean R; and S; coincide. O

146 S. Preugschat and T. Wilke

Lemma 4. Let A be a (G)CMA. Then the following are equivalent:

(A) For all u,v e A" with occ(u) = occ(v), it holds that u) =4 v).
(B) (a) For all u,ve A*, a€ A, it holds that uav) =4 uaavy.
(b) For all u,ve A*, a,be A, it holds that uabv) = o ubavy.

Proof. That (A) implies (B) is obvious. For the converse, let u,v € A* with
oce(u) = oce(v). Let oce(u) = {ap,a1,...,a,}. Now, we have

uY) =4 a‘;l“oa‘lul” ...alff‘“”‘)EA al(;)‘“‘) a‘fl” ...alff‘“”‘) =2 0) ,
where the first and the last equivalence are obtained by iterated application
of (b), and the second equivalence is obtained by iterated application of (a). O

In what follows, we need more notation and terminology. A word u € A% is an
infinite loop at q if ¢ = u- oo and ¢ € inf(r) where r is the unique final run of A
on u.

Proof of Theorem[4} The implication from (A) to (B)(a) is Lemma 2l We prove
that (A) implies (B)(b) by contraposition. Assume (B)(b) does not hold, that is,
there are u,v € A* with occ(u) = occ(v), and u) #4 v). Then there exists © € A*
such that x-u) € I <» x-v) € I, that is, xu” € L <» xv* € L. It is easy to see that
Duplicator wins the XF-game on xu® and xv* for any number of rounds, which,
in turn, implies L is not XF-expressible.

For the implication from (B) to (A), let n be the number of states of A/=4.
We show that whenever u,v € A“ such that u € L <» v € L, then Spoiler wins the
2n-round XF-game on v and v.

Assume u,v € A¥ are such that w e L <» v e L and let r and s be the unique
final runs of A on u and v, respectively, and 7 and 5 defined as in Lemma[3l We
distinguish two cases.

First case, inf(u) # inf(v). Then Spoiler wins within at most 2 rounds.

Second case, inf(u) = inf(v). Then there are i,4" and j, ;" such that

~ occ(uli,§]) = occ(o[i",§']),
— ufi,*) - oo is an infinite loop at u[7,7]), and
— v[i/, %) - 00 is an infinite loop at v[i’, j'].
From (B)(b), we conclude u[7, j]) =a v[i’, j']). As a consequence, inf (7)Ninf(3) #
@. Since 7(0) # 5(0), Lemma [3 applies: L is XF-expressible.
The equivalence between (B) and (C) follows directly from Lemma [l i

6 Effectiveness and Computational Complexity

To conclude, we explain how Theorem [3] can be used effectively. In general, we
have:

Theorem 5. Each of the fragments listed in Table[D is decidable.

Observe that for the fragment with operator set {F, U}, this is a result from [15],
and for the fragment with operator set {X,F}, this is a result from [22].

Characterizing Fragments of LTL Using CUBA’s 147

Proof (of Theorem [3). First, observe that A, can be constructed effectively.
Also, it is easy to derive the left quotient of A, from A, itself and DFA’s for
the loop languages, even minimum-state DFA’s for them.

Second, observe that the presence of the listed forbidden patterns can be
checked effectively. The test for the existence of a path between two states can
be restricted to paths of length at most the number of states; the test for the
existence of two paths with the same label (see forbidden patterns for {X} and
{X,F}) can be restricted to paths of length at most the number of states squared.

Third, the conditions on the loop languages can be checked effectively. For
1-local testability, this is because a language L ¢ A is not 1-locally testable if,
and only if, one of the following conditions holds:

1. There are words u,v € A* and there is a letter a € A such that uav € L «»
uaav € L.

2. There are words u € A*,v € A* and letters a,b € A such that uabv € L <«
ubav € L.

Again, v and v can be bounded in length by the number of states. For local
testability, we refer to [I1], where it was shown this can be decided in polynomial
time. For stutter invariance, remember that a language L ¢ A* is not stutter-
invariant if, and only if, the above condition 1. holds. So this can be checked
effectively, too. (One could also use the forbidden pattern listed.)]

As to the computational complexity of the problems considered, we first note:

Proposition 2. Each of the fragments listed in Table 1l is PSPACE-hard.

Proof. The proof is an adaptation of a proof for a somewhat weaker result given
in [I5]. First, recall that LTL satisfiability is PSPACE-hard for some fixed al-
phabet [20], hence LTL unsatisfiability for this alphabet is PSPACE-hard, too.
Let A denote such an alphabet in the following.

Second, note that (because all fragments considered are proper fragments of
LTL) there exists some alphabet B such that for each operator set O in question
there exists an LTL formula ao such that ap is not O-expressible.

We can now describe a reduction from LTL unsatisfiability to the O-fragment
using formulas over the alphabet Ax B. Let ag, be the formula which is obtained
from a by replacing every occurrence of a letter b by the formula Vg4 (a,b).
Given a formula ¢ over A, we first construct ¢, where ¢ is obtained from ¢ by
replacing every occurrence of a letter a by the formula Vy.p(a,b). Then ¢ is
satisfiable iff ¢ is satisfiable iff @ A oy, is satisfiable. Moreover, ¢ A oy, cannot
be expressed in the fragment in question, provided ¢ is satisfiable. Therefore,
@ Ay is equivalent to a formula in the fragment iff ¢ is unsatisfiable.]

Our upper bounds are as follows:

Theorem 6. The {X,F}-fragment is in E, the other fragments listed in Table[l
are in PSPACE.

Observe that the result for the {U}-fragment is not new, but was already ob-
tained in [15].

148 S. Preugschat and T. Wilke

Proof (sketch). Observe that each property expressed as forbidden pattern can
not only be checked in polynomial time (which is folklore), it can also be checked
non-deterministically in logarithmic space, even if we are given a GCMA and
need to check it on its left quotient. So if we compose the construction of A,
which has an exponential number of states, with the non-deterministic logarith-
mic-space tests for the existence of forbidden patterns, we obtain a polynomial-
space procedure for testing the conditions on T(A,/=4,).

The situation is more complicated for the conditions on the loop languages.
We first deal with 1-local testability and stutter invariance. Observe that from
the automaton A, we can get reverse DFA’s of polynomial size in the size of
A, such that every loop language is the union of the languages recognized by
these reverse DFA’s. Moreover, 1. and 2. from the proof of Theorem [can be
transferred to this context as follows. There are two states p and g in A, that are
not equivalent with respect to =4 and such that one of the following conditions
is true:

1. There are words u,v € A* and there is a letter a € A such that uav € LL(p)
and uaav € LL(q).

2. There are words u,v € A* and letters a,b € A such that uabv € LL(p) and
ubav € LL(q).

From this, it follows that we can bound the length of u and v polynomially in
the size of A, which again yields polynomial-space procedures for both, 1-local
testability and stutter invariance.

For (general) local testability, we apply [11] to the product of the reverse DFA’s
mentioned above, which yields an exponential-time algorithm all together.]

7 Conclusion

We would like to state some questions:

1. Our lower and upper bounds for the complexity of the {X, F}-fragment
don’t match. What is the exact complexity of this fragment?

2. Clearly, from our proofs it can be deduced that if a formula ¢ is equivalent
to a formula in a fragment, an equivalent formula can be constructed effectively.
What is the complexity of this construction task?

3. It is not difficult to come up with examples where every equivalent formula
has exponential size (even exponential circuit size). What is the worst-case blow-
up?— Observe that, in terms of circuit size, there is a polynomial upper bound
for the {U}-fragment, see [12].

References

1. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discrete
Math. 4(3), 243-271 (1973)

2. Carton, O., Michel, M.: Unambiguous Biichi Automata. In: Gonnet, G.H.,
Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 407-416. Springer,
Heidelberg (2000)

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

Characterizing Fragments of LTL Using CUBA’s 149

. Carton, O., Michel, M.: Unambiguous Biichi automata. Theor. Comput. Sci. 297,

37-81 (2003)

. Cohen, J., Perrin, D., Pin, J-E.: On the expressive power of temporal logic. J.

Comput. System Sci. 46(3), 271-294 (1993)

. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. The-

ory Comput. Syst. 48(3), 486-516 (2011)

. Allen Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Com-

puter Science, vol. B, pp. 995-1072. Elsevier, Amsterdam (1990)

. Etessami, K., Wilke, T.: An until hierarchy and other applications of an

Ehrenfeucht-Fraissé game for temporal logic. Inf. Comput. 160(1-2), 88-108 (2000)

. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal logic: Mathematical Foun-

dations and Computational Aspects, vol. 1. Clarendon Press, New York (1994)

. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic veri-

fication of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Proto-
col Specification, Testing and Verification. IFIP Conference Proceedings, vol. 38,
pp. 3-18. Chapman & Hall (1995)

Kamp, H.: Tense logic and the theory of linear order. PhD thesis, University of
California, Los Angeles (1968)

Kim, S.M., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the
local testability problem of deterministic finite automata. IEEE Trans. Comput. 40,
1087-1093 (1991)

Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant
LTL. Inform. Process. Lett. 75(6), 261-263 (2000)

McNaughton, R., Papert, S.A.: Counter-free automata. MIT Press, Boston (1971)
Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inform. Process. Lett. 63(5), 243-246 (1997)

Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure
properties of temporal logic specifications and w-regular languages. Theor. Com-
put. Sci. 195(2), 183-203 (1998)

Perrin, D.: Recent Results on Automata and Infinite Words. In: Chytil,
M., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134-148. Springer, Heidel-
berg (1984)

Perrin, D., Pin, J.-E.: Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46-57. IEEE (1977)
Schiitzenberger, M.P.: On finite monoids having only trivial subgroups. Inform.
and Control 8(2), 190-194 (1965)

Prasad Sistla, A., Clarke, E.M.: The complexity of propositional linear temporal
logics. J. ACM 32, 733-749 (1985)

Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inform. and Com-
put. 115(1), 1-37 (1994)

Wilke, T.: Classifying discrete temporal properties. Post-doctoral thesis, Christian-
Albrechts-Universitat zu Kiel (1998)

Wolfgang, T.: Star-free regular sets of w-sequences. Inform. and Control 42(2),
148-156 (1979)

Wolper, P., Vardi, M.Y., Prasad Sistla, A.: Reasoning about infinite computation
paths (extended abstract). In: FOCS, pp. 185-194. IEEE (1983)

	Effective Characterizations of Simple Fragments
of Temporal Logic Using Prophetic Automata
	Introduction
	Basic Notation and Background
	Reverse Deterministic Büchi Automata
	Temporal Logic

	From Temporal Logic to CMA's
	General Approach and Individual Results
	The General Approach
	Characterization of the Individual Fragments
	Proof Techniques

	Characterization of the {XF}-Fragment
	Effectiveness and Computational Complexity
	Conclusion
	References

