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Abstract. We propose a new approach to the computer-assisted veri-
fication of functional programs. We work in first order theories of func-
tional programs which are obtained by extending Aczel’s first order
theory of combinatory formal arithmetic with positive inductive and
coinductive predicates. Rather than building a special purpose system
we implement our theories in Agda, a proof assistant for dependent type
theory which can be used as a generic theorem prover. Agda provides
support for interactive reasoning by encoding first order theories using
the formulae-as-types principle. Further support is provided by off-the-
shelf automatic theorem provers for first order logic which can be called
by a program which translates Agda representations of first order for-
mulae into the TPTP language understood by the provers. We show
some examples where we combine interactive and automatic reasoning,
covering both proof by induction and coinduction.

1 Introduction

The goal of this paper is to show a simple way to build a system for reasoning
about programs in functional languages with higher order functions, general
recursion and lazy evaluation in the style of Haskell [23]. Building a mature
proof assistant from scratch for this purpose is a daunting task, although there
are some attempts in this direction [15,20]. Here we suggest to achieve this goal
by building on existing state-of-the-art systems in interactive and automatic
theorem proving. Our solution combines the following three strands of research:

– Using a logic for general recursive functional programs [9,10,11] which is
based on Aczel’s first order theory of combinatory arithmetic [3]; we extend
this theory to deal in a seamless way with full general recursion, higher order
functions, termination proofs, and inductive and coinductive predicates.

– Using automatic theorem provers for proving properties of functional pro-
grams by translating them into first order logic as proposed by Claessen and
Hamon in their work on “The Cover Translator” (Chalmers, 2003).

– Using automatic theorem provers for first order logic for proof assistants
based on dependent type theory, see Tammet and Smith’s Gandalf [27], and
Abel, Coquand, and Norell’s AgdaLight [1].
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We use the Agda system [28] as our interactive theorem prover. It is simul-
taneously a dependently typed functional programming language and a proof
assistant. It is an extension of Martin-Löf type theory with numerous pro-
gramming language features which facilitate programming and interactive proof
construction.

Like Martin-Löf type theory, Agda has the strong normalisation property. This
property is ensured by only allowing restricted forms of recursion. A consequence
is that one cannot write programs by arbitrary general recursion. It is the goal of
the dependently typed programming community to turn this restricted discipline
of programming into a practical methodology.

In this paper we directly verify mainstream general recursive functional pro-
grams. To this end we use Agda as a logical framework in much the same way as
the Edinburgh logical framework [14], that is, as a meta-logical system which is
used as a basis for the implementation of a range of special purpose logics. Our
logic is a first order theory of combinators (FOTC) based on Aczel’s theory [3].
When implementing FOTC in Agda we get access to advanced features for in-
teractively building proofs in the proof assistant, such as, commands for refining
proof terms, definition by pattern matching, flexible mixfix syntax accepting
Unicode, etc.

Furthermore, we provide a translation of Agda representations of formulae
in the FOTC into the TPTP language [26] so that we can call off-the-shelf
automatic theorem provers (ATPs) when proving properties of our programs.

A key point of our approach is that Martin-Löf type theory is a subsystem of
our theory through a natural interpretation [3]. However, our theory is strictly
more general; in particular, we can write arbitrary general recursive functional
programs. This extra generality comes at a price: since we can now reason about
programs which do not terminate, we can no longer make use of the automatic
type-checking in the same way as before. To compensate for this loss we use
automatic first order theorem proving, although it does not fully replace the
type-checking algorithm as we shall see. On the other hand, the ATPs can prove
theorems automatically which would otherwise require manual proofs.

Overview of the paper. Section 2 introduces our FOTC for Plotkin’s PCF lan-
guage. In Section 3 we explain how to encode first order theories in Agda and
how to instruct the proof assistant to call the ATPs. Section 4 shows how to
encode FOTC for PCF in Agda and how this enables us to combine interactive
and automatic theorem proving. In Section 5 we extend FOTC by adding induc-
tive and coinductive predicates and we present an example using both. Finally,
Section 6 contains some discussion of future and related work.

The programs and the examples described in the paper are available at
www1.eafit.edu.co/asicard/code/fossacs-2012/.

2 First Order Theories of Combinators

As we mentioned before, Aczel showed how to interpret Martin-Löf type theory in
traditional first order logic. He gave an abstract realisability interpretation, where

www1.eafit.edu.co/asicard/code/fossacs-2012/
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the proof objects are interpreted as terms in combinatory logic and types are
interpreted as unary predicates. Aczel’s first order theory only has two constants
(K and S) and one binary function symbol (for application). This is because
all the term formers of Martin-Löf type theory can be encoded in the usual
way using bracket abstraction, Church encodings, and fixed point operators.
The theory also has three unary predicate symbols N , P , and T meaning that
a combinatory term encodes a natural number, an internal proposition, and
an internal true proposition, respectively. Aczel’s paper was the first of several
papers on realisability interpretations of Martin-Löf type theory; see for example
Aczel [4] and Smith [25].

A Logic for PCF with Totality Predicates. Dybjer [9] showed that one of these
logics for realisability interpretations, the so called Logical Theory of Construc-
tions (LTC) is appropriate for practical verification of functional programs. This
logic is closely related to Aczel’s first order theory, but is based on the λ-calculus,
and is hence not a first order theory.

For the purpose of this paper we begin by considering an LTC-style logic for
Plotkin’s PCF language [24]. PCF does not have internal propositions, hence
we do not need the predicate symbols P and T . On the other hand, we have
two unary predicate symbols Bool and N , where Bool(t) means that t is a to-
tal boolean value (true or false), and N (t) that t is a total natural number.
We will use these predicates to assert that a certain (possibly non-terminating)
PCF program terminates with a total boolean value or a total natural number,
respectively.

In a previous paper [7] we showed how to use Agda for implementing this
LTC-style logic. The aim of the present paper is to make use of off-the-shelf
automatic theorem provers for first order logic. Hence, we must make our logic
first order by removing λ-abstraction. Instead, we work in an extensible theory
and add a new function symbol for each recursive function definition of the form

f x1 · · · xn = e[f, x1, . . . , xn].

It is well-known how to translate such definitions into terms using λ-abstraction
and fixed point operators. For convenience, we might actually define function
symbols by pattern matching, whenever it is clear that this pattern matching
can be replaced by a single recursive equation by using if, pred and iszero.

The grammar for terms is now first order:

t ::= x | t t | true | false | if | 0 | succ | pred | iszero | f

where f ranges over new combinators defined by recursive equations as above.
The axioms can be classified into three groups: (i) conversion rules for the com-
binators, (ii) discrimination rules expressing that terms beginning with different
constructors are not convertible, and (iii) introduction and elimination rules for
Bool and N . We show these axioms in Section 4.
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3 Combining Interactive and Automatic Proofs in First
Order Logic

3.1 First Order Logic in Agda

The encoding of intuitionistic first order logic in dependent type theory using
the formulae-as-types principle is of course well-known; below we briefly show
what it looks like in Agda. For example, to implement disjunction we encode it
as the disjoint union; note that below, we declare the constants as postulates.

postulate _∨_ : Set → Set → Set

inl : {A B : Set} → A → A ∨ B

inr : {A B : Set} → B → A ∨ B

case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C

The first constant declares the syntax of disjunction as an infix binary set
former. The second and third constants declare the introduction rules, and the
fourth the elimination rule. Note that these rules are axiom schemata that is,
they are sets of first order formulae, one for each instance of A, B and C. Agda
is a higher order logic; to express the schematic nature of these rules we use
(implicit) quantification over Set. Curly brackets {,} declare implicit arguments,
that is, arguments that do not appear explicitly in the proof terms.

The proof of commutativity of disjunction can now be written as

commOr : {A B : Set} → A ∨ B → B ∨ A

commOr c = case inr inl c

By using postulates we can encode all of classical first order logic. The ade-
quacy problem —the question of whether such an encoding gives rise to exactly
the same provable formulae as the original theory— is studied by Gardner [12].

However, to make the most of the proof assistant it is preferable to use Agda’s
data declarations for inductively defined types, whenever appropriate. Hence, we
declare the syntax and the introduction rules for disjunction as follows:

data _∨_ (A B : Set) : Set where

inl : A → A ∨ B

inr : B → A ∨ B

We can now write proofs by pattern matching; for example the proof of commu-
tativity of disjunction becomes

commOr : {A B : Set} → A ∨ B → B ∨ A

commOr (inl a) = inr a

commOr (inr b) = inl b

When we encode our theory using data rather than postulate we get a new
adequacy problem, since we have a more general language where we can write
proofs by pattern matching. Here, we should only use pattern matching in ways
which are reducible to the case combinator, encoding disjunction elimination.

We shall use data for all logical constants, the equality relation (denoted as ≡),
and the totality predicates in our FOTC (with the same remark as above).
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Furthermore, to define the quantifiers we postulate a domain of individuals:

postulate D : Set

The universal quantifier is implemented by the dependent function type
(x : D) → P. If the domain D can be deduced by the type checker, we use the
alternative notation ∀ x → P for this type.

Finally, since the automatic theorem provers implement classical first order
logic we need to include (a postulate for) the law of excluded middle:

postulate lem : {A : Set} → A ∨ ¬ A

3.2 Combining Agda with Automatic Theorem Provers

We have modified Agda by adding pragmas containing information to be used by
the ATPs. These pragmas instruct the system to add information in an interface
file which is generated after type-checking a file. In this way we tell the ATPs to
prove a certain formula, or that a certain formula is an axiom or a general hint,
or that a certain constant is a definition.

We tell the ATPs that the formula name is an axiom by the pragma

{-# ATP axiom name #-}

To prove a property automatically we first postulate it and add the pragma that
instructs the ATPs to prove this conjecture. For example, to prove commutativity
of disjunction automatically we write

postulate commOr : {A B : Set} → A ∨ B → B ∨ A

{-# ATP prove commOr #-}

After type-checking we run the program agda2atp, which first translates all ax-
ioms, definitions and conjectures in the generated interface file into the TPTP
language, and then tries to prove the conjectures calling independently the auto-
matic theorem provers E, Equinox, SPASS, Metis, or Vampire. In the terminal,
we get information about which property is being proved and which ATP was
able to prove a property first, if any.

Proving the conjecture in /tmp/Examples.commOr_7.tptp ...

Vampire 0.6 (...) proved the conjecture in /tmp/Examples.commOr_7.tptp

If no ATP could prove a conjecture within five minutes (by default), the process
is cancelled and the ATPs will continue and try to prove the next conjecture.

It is possible to specify local hints in the pragma {-# ATP prove ... #-} by
giving their names after the name of the conjecture to be proved.

4 Implementing FOTC for PCF in Agda

We first declare the syntax of PCF terms as the following postulates:

postulate if_then_else_ : D → D → D → D

_·_ : D → D → D

succ pred isZero : D → D

zero true false : D
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Note that if we were faithful to the syntax of PCF given in Section 2, if, succ,
pred and isZero would have type D. However, the above versions are definable,
and easier to use with the theorem prover (and easier to read for humans).

We now postulate the conversion rules, and add a pragma which declare them
to be axioms for the ATPs:

postulate if-true : ∀ d1 {d2} → if true then d1 else d2 ≡ d1
if-false : ∀ {d1} d2 → if false then d1 else d2 ≡ d2
pred-S : ∀ d → pred (succ d) ≡ d

isZero-0 : isZero zero ≡ true

isZero-S : ∀ d → isZero (succ d) ≡ false

{-# ATP axiom if-true if-false pred-S isZero-0 isZero-S #-}

We omit the discrimination rules.
Then we define a predicate for total natural numbers as a data type, and the

induction schema for natural numbers by pattern matching:

data N : D → Set where

zN : N zero

sN : ∀ {n} → N n → N (succ n)

{-# ATP axiom zN sN #-}

indN : (P : D → Set) → P zero →
(∀ {n} → P n → P (succ n)) → ∀ {n} → N n → P n

indN P P0 h zN = P0

indN P P0 h (sN Nn) = h (indN P P0 h Nn)

Note that since induction is a schema we cannot declare it as an axiom until it
is instantiated. There are analogous rules for total Booleans.

Let us now add a combinator for addition. We postulate a binary infix oper-
ation on D and the (recursive) equations as axioms for the ATPs.

postulate _+_ : D → D → D

+-0x : ∀ d → zero + e ≡ e

+-Sx : ∀ d e → succ d + e ≡ succ (d + e)

{-# ATP axiom +-0x +-Sx #-}

We can show that addition is a total function on natural numbers by induction
on the first argument. If we manually instantiate the induction schema, then both
cases can be proved automatically (using a hint in the proof of +-N1):

indN-instance : ∀ x → N (zero + x) →
(∀ {n} → N (n + x) → N (succ n + x)) →
∀ {n} → N n → N (n + x)

indN-instance x = indN (λ i → N (i + x))

postulate +-N1 : ∀ {m n} → N m → N n → N (m + n)

{-# ATP prove +-N1 indN-instance #-}

A more convenient way to instantiate the induction schema is to instruct Agda
to do pattern matching on the first argument:
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+-N : ∀ {m n} → N m → N n → N (m + n)

+-N {n = n} zN Nn = prf

where postulate prf : N (zero + n)

{-# ATP prove prf #-}

+-N {n = n} (sN {m} Nm) Nn = prf (+-N Nm Nn)

where postulate prf : N (m + n) → N (succ m + n)

{-# ATP prove prf #-}

To prove commutativity of addition we proceed in the same way: we do pattern
matching on one of the arguments, then we prove the base case and the step
case of the induction automatically.

+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m

+-comm {n = n} zN Nn = prf

where postulate prf : zero + n ≡ n + zero

{-# ATP prove prf +-rightIdentity #-}

+-comm {n = n} (sN {m} Nm) Nn = prf (+-comm Nm Nn)

where postulate prf : m + n ≡ n + m → succ m + n ≡ n + succ m

{-# ATP prove prf x+Sy≡S[x+y] #-}

Here we used the following hints, which both were proved automatically:

+-rightIdentity : ∀ {n} → N n → n + zero ≡ n

x+Sy≡S[x+y] : ∀ {m n} → N m → N n → m + succ n ≡ succ (m + n)

4.1 An Example with Nested Recursion

McCarthy’s 91-function is defined by the following axiom:

postulate mc91 : D → D

mc91-eq : ∀ n → mc91 n ≡
if n > 100 then n −· 10 else mc91 (mc91 (n + 11))

{-# ATP axiom mc91-eq #-}

We shall show that it has the following property:

mc91-res≯100 : ∀ {n} → N n → n ≯ 100 → mc91 n ≡ 91

The proof is done interactively by well-founded induction on the relation
101 −· m < 101 −· n. Most of the auxiliary properties are proved with the help
of the ATPs. We show only a few of them.

First we show that mc91 100 ≡ 91 by using the ATPs

postulate mc91-res-100 : mc91 100 ≡ 91

{-# ATP prove mc91-res-100 100+11>100 100+11−· 10>100
101≡100+11−· 10 91≡100+11−· 10−· 10 #-}

where the hints are arithmetic properties which are proved automatically. To
prove the remaining cases, we use a lemma that is proved automatically:

postulate mc91x-res≯100 : ∀ m n → m ≯ 100 → mc91 (m + 11) ≡ n →
mc91 n ≡ 91 → mc91 m ≡ 91

{-# ATP prove mc91x-res≯100 #-}
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Let m < 100. To compute mc91 m we use mc91-eq, for which we first need to
compute mc91 (m + 11). Which branch of the definition of mc91 we use for this
computation depends of the value of m.

If 90 ≤ m ≤ 99 then m + 11 > 100, so we apply the true-branch and obtain
(m + 11) −· 10 and we apply mc91 again to the result of mc91 (m + 11). We now
use mc91x-res≯100 to prove that mc91 m returns 91. For the case of 98 we have:

postulate mc91-res-109 : mc91 (98 + 11) ≡ 99

mc91-res-99 : mc91 99 ≡ 91

{-# ATP prove mc91-res-109 98+11>100 x+11−· 10≡Sx #-}

{-# ATP prove mc91-res-99 mc91x-res≯100 mc91-res-110 mc91-res-100 #-}

On the other hand, if m ≤ 89 then m + 11 ≯ 100. Hence, our inductive hy-
pothesis tells us that mc91 (m + 11) ≡ 91. Using mc91x-res≯100 on the inductive
hypothesis and on the proof that mc91 91 ≡ 91 we obtain the desired result.

Additionally, using well-founded induction on the relation 101 −· m < 101 −· n

and with the help of the ATPs, we proved that mc91 is a total function, we prove
that mc91 n ≡ n −· 10 when n > 100, and we prove that ∀ n. n < (mc91 n + 11).

5 Adding Inductive and Coinductive Predicates

5.1 Inductive Predicates

Note that FOTC for PCF is not one first order theory; it is a family of first order
theories. When we add a new recursive function, we extend the theory with a
new function symbol and one (or several) equational axioms. As we already
remarked, it is easy to extend the model accordingly, since the model is based
on Scott domains with a fixed point operator.

Furthermore, in addition to our inductively defined totality predicates N and
Bool, we may add other inductively defined predicates. For example, we may
add a new inductively defined unary predicate symbol Even with axioms stating
the introduction rules that zero is an even number and that even numbers are
closed under the function which adds 2 to a natural number; and the induction
schema stating that Even is the least predicate with those properties.

A schema for (intuitionistically valid) inductive predicates in first order logic
is given by Martin-Löf [18]. However, since we work in classical logic, nothing
prohibits us from adding inductively generated predicates by arbitrary (not nec-
essarily strictly) positive operators, since they can easily be modelled as least
fixed points of monotone operators on subsets of the domain [2].

5.2 An Example with Higher-Order Recursion

Here we define the mirror function for general trees in FOTC. First we extend
our language with constructors for lists and trees:

postulate [] : D

_::_ node : D → D → D
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Then we mutually define predicates for total forests and trees.

mutual data Forest : D → Set where

nilF : Forest []

consF : ∀ {t ts} → Tree t → Forest ts → Forest (t :: ts)

data Tree : D → Set where

treeT : ∀ d {ts} → Forest ts → Tree (node d ts)

(For space reasons we will omit the pragmas instructing the ATPs about axioms.)
Furthermore, we define the map function for lists

postulate map : D → D → D

map-[] : ∀ f → map f [] ≡ []

map-:: : ∀ f d ds → map f (d :: ds) ≡ f · d :: map f ds

and the mirror function for trees:

postulate mirror : D

mirror-eq : ∀ d ts → mirror · (node d ts) ≡
node d (reverse (map mirror ts))

We prove the following property:

mirror2 : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t

We do induction on the proof that the tree is total and then on its underlying
forest; we obtain two cases depending on whether the forest is empty or not.

mirror2 (treeT d nilF) = prf

where postulate prf : mirror · (mirror · node d []) ≡ node d []

{-# ATP prove prf #-}

mirror2 (treeT d (consF {t} {ts} Tt Fts)) = prf

where postulate prf : mirror · (mirror · node d (t :: ts)) ≡
node d (t :: ts)

{-# ATP prove prf helper #-}

The hint helper is the following lemma:

helper : ∀ {ts} → Forest ts →
reverse (map mirror (reverse (map mirror ts))) ≡ ts

It follows by induction on forests. Both cases are proved automatically.

5.3 Coinductive Predicates

We shall now show how to prove the correctness of a functional programming
version of the alternating bit protocol (ABP). The purpose of this protocol is to
ensure safe communication over an unreliable transmission channel. The sender
tags the message with an (alternating) bit which is checked by the receiver. In
the case of proper transmission the receiver sends the bit back to the sender as
an acknowledgment. Otherwise, it sends the opposite bit back to signal that the
message needs to be resent.
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We follow Dybjer and Sander [11] who showed how to represent the ABP as
a Kahn network, that is, as a network of communicating stream transformers,
written in the lazy functional programming language Miranda [30] (a precursor
of Haskell). They proved it correct in Park’s μ-calculus [21]. This is an extension
of first order classical logic with a μ-operator: for any positive formula Φ[X ]
with a free predicate variable X , we can form μX.Φ[X ], with axioms which
express that (i) μX.Φ[X ] is a prefixed point of Φ[X ] (the introduction rule for the
inductive predicate), and (ii) that it is the least prefixed point (the elimination
rule or induction principle). Since we work in classical logic we automatically
have coinductive predicates, since greatest fixed points of Φ[X ] can be defined as
special least fixed points by dualisation.

Dybjer and Sander implemented the μ-calculus in the Isabelle system [22],
and the proof was mechanically checked using Isabelle’s tactics.

We here show how to modify Dybjer and Sander’s approach so that it fits
within first order logic. Rather than using the μ-operator (a second order con-
struct) for inductive and coinductive predicates, we add new predicate symbols
to our first order theories with axioms and axiom schemata corresponding to the
least and greatest fixed point properties, respectively. In the previous section
we showed how to add some inductive predicates. Now we will also add some
coinductive predicates which will be used in the proof of the correctness of the
alternating bit protocol.

Our first example is the coinductive definition of the predicate expressing that
a certain list is infinite or productive. We add a unary predicate symbol Stream
and two axioms expressing (i) that it is a postfixed point of a certain operator,
and (ii) that it is the greatest such postfixed point:

Stream-gfp1 : ∀ {xs} → Stream xs →
∃[ x’ ] ∃[ xs’ ] Stream xs’ ∧ xs ≡ x’ :: xs’

Stream-gfp2 : (P : D → Set) →
(∀ {xs} → P xs → ∃[ x’ ] ∃[ xs’ ]

P xs’ ∧ xs ≡ x’ :: xs’) →
∀ {xs} → P xs → Stream xs

Similarly, we coinductively define when two streams are bisimilar :

≈-gfp1 : ∀ {xs ys} → xs ≈ ys → ∃[ x’ ] ∃[ xs’ ] ∃[ ys’ ] xs’ ≈ ys’

∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’

≈-gfp2 : (_R_ : D → D → Set) → (∀ {xs ys} → xs R ys →
∃[ x’ ] ∃[ xs’ ] ∃[ ys’ ] xs’ R ys’

∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’) →
∀ {xs ys} → xs R ys → xs ≈ ys

In order to express the correctness property of the ABP we need a certain fairness
property of the unreliable transmission channels. This property will be encoded
in terms of oracle bit streams, where the bits T and F represent proper and
improper transmission, respectively. Fairness here means that the bit stream
contains an infinite number of Ts and is defined as follows:

Fair-gfp1 : ∀ {fs} → Fair fs →
∃[ ft ] ∃[ fs’ ] F*T ft ∧ Fair fs’ ∧ fs ≡ ft ++ fs’
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Fig. 1. The alternating bit protocol

Fair-gfp2 : (P : D → Set) → (∀ {fs} → P fs →
∃[ ft ] ∃[ fs’ ] F*T ft ∧ P fs’ ∧ fs ≡ ft ++ fs’) →

∀ {fs} → P fs → Fair fs

Here F*T ft is an inductive predicate expressing that ft is a finite list of Fs
followed by a final T. Note that we have added the constant symbols T and F

for bits, and a binary infix function symbol ++ for appending lists. In the proof
below we will also make use of the predicate Bit : D → Set. Moreover, we use
< , > for pairs, not for negation of bits, error for a corrupted message, and ok

for a constructor for a proper message.

5.4 A Kahn Network for the Alternating Bit Protocol

Dybjer and Sander model the sender as a stream transformer abpsend and the
receiver as a pair of stream transformers abpack, which returns the acknowl-
edgement stream cs, and abpout, which returns the output stream js. Moreover,
an unreliable transmission channel is modelled as a stream transformer, which
non-deterministically corrupts the messages in the stream. To stay within the
framework of deterministic lazy functional programming, we model the chan-
nels as a stream transformer corrupt : D which accepts an oracle stream as an
auxiliary argument as described above (see Fig 1). The axioms for corrupt are:

corrupt-T : corrupt · (T :: fs) · (x :: xs) ≡ ok x :: corrupt · fs · xs

corrupt-F : corrupt · (F :: fs) · (x :: xs) ≡ error :: corrupt · fs · xs

(Note that for space reasons we have omitted the universal quantifiers. We will
do so in the sequel as well. We will also omit the keyword postulate.)

The sender is written as a program which is mutually recursive with an aux-
iliary program await:

abpsend-eq : abpsend · b · (i :: is) · ds ≡ < i , b > :: await b i is ds

await-ok≡ : b ≡ b0 → await b i is (ok b0 :: ds) ≡
abpsend · (not b) · is · ds

await-ok
= : ¬ (b ≡ b0) → await b i is (ok b0 :: ds) ≡
< i , b > :: await b i is ds

await-error : await b i is (error :: ds) ≡ < i , b > :: await b i is ds
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The first order axioms for the receiver programs abpout and abpack are

abpack-ok≡ : b ≡ b0 → abpack · b · (ok < i , b0 > :: bs) ≡
b :: abpack · (not b) · bs

abpack-ok
= : ¬ (b ≡ b0) → abpack · b · (ok < i , b0 > :: bs) ≡
not b :: abpack · b · bs

abpack-error : abpack · b · (error :: bs) ≡ not b :: abpack · b · bs

abpout-ok≡ : b ≡ b0 → abpout · b · (ok < i , b0 > :: bs) ≡
i :: abpout · (not b) · bs

abpout-ok
= : ¬ (b ≡ b0) → abpout · b · (ok < i , b0 > :: bs) ≡
abpout · b · bs

abpout-error : ∀ b bs → abpout · b · (error :: bs) ≡ abpout · b · bs

We can now write a function abptransfer which computes the output js from
the input is, and accepts three more arguments: the initial bit b, and the two
oracle streams os0 and os1:

abptransfer-eq : abptransfer b fs0 fs1 is ≡
transfer (abpsend · b) (abpack · b) (abpout · b)

(corrupt · fs0) (corrupt · fs1) is

Here transfer is the general transfer function for the network topology of Fig. 2.
It simultaneously computes the output js and the streams as, bs, cs, ds given

g1 bs
�����

���

input
is �� f1

as 		������
f2,f3

js ��

cs

����
��

ouput

g2ds

��						

Fig. 2. Network topology for the alternating bit protocol

the stream transformers f1, f2, f3, g1, g2:

transfer-eq : transfer f1 f2 f3 g1 g2 is ≡ f3 · (hbs f1 f2 f3 g1 g2 is)

has-eq : has f1 f2 f3 g1 g2 is ≡ f1 · is · (hds f1 f2 f3 g1 g2 is)

hbs-eq : hbs f1 f2 f3 g1 g2 is ≡ g1 · (has f1 f2 f3 g1 g2 is)

hcs-eq : hcs f1 f2 f3 g1 g2 is ≡ f2 · (hbs f1 f2 f3 g1 g2 is)

hds-eq : hds f1 f2 f3 g1 g2 is ≡ g2 · (hcs f1 f2 f3 g1 g2 is)

To prove that the alternating bit protocol is correct means to prove that each
message is eventually transmitted properly. Formally this means that the input
stream is bisimilar to the output stream computed by abptransfer. This property
can only hold if one assumes that the transmission channel(s) are “fair” in the
sense described above. Formally we thus need to prove

spec : Bit b → Stream is → Fair fs0 → Fair fs1 →
is ≈ abptransfer b fs0 fs1 is
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The proof is by coinduction. We prove the is and js are in the greatest bisimu-
lation ≈ by finding another bisimulation which they are in. This proof uses an
auxiliary proof by induction on the predicate F*T.

As in the previous examples, we manually need to instantiate the axiom
schemata (for induction and coinduction), but once this has been done a major
part (but not all) equational and logical reasoning is done automatically by the
ATPs. We do not have space here to present the details of this proof. The reader
is referred to the paper’s website.

6 Conclusions and Related Work

What is unique about our approach is that its logical basis is Aczel’s first order
theories of combinators. These theories were used for interpreting early versions
of Martin-Löf’s intuitionistic type theory, and our approach can be summarised
by saying that we work in models of type theory rather than in type theory
itself. In particular we make essential use of totality predicates (which were used
for interpreting types of type theory) and other inductive definitions.

A similar viewpoint has been exploited in the NuPrl project [29], where
Martin-Löf type theory is also viewed through an interpretation in untyped
computation systems. The difference is that in NuPrl the user still works in an
extension of (extensional) Martin-Löf’s type theory, while we work in a setting
which abandons most of the characteristics of Martin-Löf type theory. We work
in classical rather than intuitionistic logic; we do not use the formulae-as-types
principle; we have no dependent types, in fact our language is untyped rather
than typed; and we deal with non-terminating as well as terminating programs.
The advantage is that we can write our functional programs in the usual way as
in mainstream functional languages. Although our term language is untyped, we
may use polymorphic type inference during programming. However, the inferred
types play no role during verification.

In this work we use the Agda system, but we could carry out similar work
using another generic theorem prover such as Isabelle. However, Agda seems to
work well as an interface to automatic first order theorem provers is positive: we
have used it not only for FOTC but also for other first order theories such as
Group Theory and Peano Arithmetic with encouraging results.

Future research. The present approach can be improved in several ways. The
most obvious is to extend Agda so that it gives more support for FOTC and
for interacting with ATPs. It would also be interesting to modify our program
agda2atp and return witnesses for the automatically generated proofs so that
they can be checked by Agda. Another interesting direction is to connect Agda
to systems which can automatically do proof by induction; currently we only
automate pure first order logic reasoning. In fact, Agda comes with its own
automatic theorem prover Agsy - the Agda Synthesiser which can do proof by
induction [17].
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Related work. There is much related work on different aspects of this topic, and
we only have space to mention a few. Perhaps most importantly, we should com-
pare our approach with other systems which can be used for reasoning about
general recursive programs, going back at least to the LCF-system [13]. We al-
ready mentioned some recent dedicated such systems [15,20]. Another interesting
approach is the function package [16] built on top of the Isabelle system. The
logical basis is here different from ours: the basic idea is to interpret first or-
der functions as relations in Isabelle-HOL. The function package can also deal
with higher order functions. Moreover, the Boyer-Moore theorem prover [8] is
a powerful system for automatically proving properties of programs by induc-
tion. Logically, however it is based on primitive recursive arithmetic rather than
untyped combinatory logic as ours. Yet another system in somewhat the same
spirit as ours is Schwichtenberg’s Minlog [5].

We will only mention some other related areas. One such area is concerned
with methods for encoding general recursive functions in intuitionistic type the-
ory, see for example [6]. Another area is concerned with connecting theorem
provers with dependent type theory [1,27] or other generic theorem provers such
as Isabelle [19].
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