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Abstract. Probabilistic bisimilarity is a fundamental notion of equiva-
lence on labelled Markov chains. It has a natural generalisation to a
probabilistic bisimilarity pseudometric, whose definition involves the Kan-
torovich metric on probability distributions. The pseudometric has dis-
counted and undiscounted variants, according to whether one discounts
the future in observing discrepancies between states.

This paper is concerned with the complexity of computing proba-
bilistic bisimilarity and the probabilistic bisimilarity pseudometric on
labelled Markov chains. We show that the problem of computing prob-
abilistic bisimilarity is P-hard by reduction from the monotone circuit
value problem. We also show that the discounted pseudometric is ratio-
nal and can be computed exactly in polynomial time using the network
simplex algorithm and the continued fraction algorithm. In the undis-
counted case we show that the pseudometric is again rational and can be
computed exactly in polynomial time using the ellipsoid algorithm. Fi-
nally, using the notion of couplings on Markov chains, we show that the
pseudometric can be used to compute bounds on the variational distance
of trace distributions, which is NP-hard to compute directly.

1 Introduction

Probabilistic bisimilarity is a notion of equivalence for probabilistic labelled tran-
sition systems, introduced by Larsen and Skou [21]. It is based on Park and
Milner’s classical notion of bisimilarity for (non-deterministic) labelled transi-
tion systems [23]. A very similar and widely used concept on Markov chains,
called lumpability, can be found as far back as the classical text of Kemeny and
Snell [20]. A system and its probabilistic bisimilarity quotient can be considered
indistinguishable, and quotienting by probabilistic bisimilarity is a widely used
compression technique in verification and performance analysis [18/19].

The first part of this paper concerns the complexity of computing probabilistic
bisimilarity. It is known that this can be done in polynomial time, e.g., by par-
tition refinement [2ITTI32). Our first result shows that probabilistic bisimilarity
is P-hard, and therefore P-complete. As a consequence probabilistic bisimilarity
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is not in NC unless P = NC. (Recall that NC is a subclass of P comprising
problems that can be solved in polylogarithmic time using PRAMSs of polynomial
size [L6]. Informally such problems are considered to be efficiently parallelisable.)
By contrast, language equivalence of probabilistic automata is in NC [31], as
are related equivalence problems such as tree isomorphism [16].

For (non-deterministic) labelled transition systems it is known that computing
bisimilarity is P-complete [4126]. However the proof in the probabilistic case
requires a different construction than in op. cit.

For probabilistic systems it is natural to generalise from bivalent notions of
equivalence, such as probabilistic bisimilarity or language equivalence [30], to
quantitative measures of similarity. As well as being more informative, such
measures are more meaningful in the presence of rounding errors in computation
and modelling (see, for example, [15]).

In the second part of this paper we consider a probabilistic bisimilarity pseu-
dometric on labelled Markov chains. This generalises the notion of probabilistic
bisimilarity by assigning a similarity distance to pairs of states of a labelled
Markov chain. The smaller the distance, the more alike the states, with states
at zero distance if and only if they are probabilistic bisimilar. This pseudomet-
ric was first introduced in [I2] and, together with closely related notions, has
subsequently been studied in the context of systems biology [28], games [9],
planning [I0] and security [8], among others. The definition of the pseudometric
is based on the classical Kantorovich metric on probability distributions. The
pseudometric has discounted versions, which discount the future in observing
discrepancies between states.

We show that for labelled Markov chains with rational transition probabil-
ities the discounted probabilistic bisimilarity pseudometric is rational and can
be computed exactly by a polynomial-time algorithm. In particular, we show
that the distances can be approximated by using the network simplex algorithm
repeatedly and the exact distances can be obtained from the approximated ones
by means of the continued fraction algorithm. In the undiscounted case we also
obtain a polynomial-time algorithm to exactly compute the pseudometric, this
time using the heavier machinery of the ellipsoid algorithm. In combination with
our lower bound on computing probabilistic bisimilarity we conclude that com-
puting the pseudometric is P-complete. These results go beyond previous work
which only showed how to approximate the pseudometric up to some desired
level of precision [7]. In the undiscounted case it was only known how to ap-
proximate the pseudometric using polynomial space [6]. We use the notion of
couplings of Markov chains to show that the pseudometric is an upper bound
on the variational distance between the trace distributions generated by states
of the Markov chain, which is NP-hard to compute directly [22].

Fu [I4] shows that the complexity of approximating a bisimilarity pseudo-
metric on probabilistic automata, which generalise labelled Markov chains, lies
in the intersection of NP and coNP. Even more general than probabilistic au-
tomata are stochastic games. A generalisation of the bisimilarity pseudometric
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from labelled Markov chains to stochastic games has been shown to be as hard
as the sum-of-square-roots problem [9], a problem not known even to be in NP.

2 Probabilistic Bisimilarity

In this section we introduce labelled Markov chains and probabilistic bisimilarity,
and we show that computing probabilistic bisimilarity is P-hard.

A labelled Markov chain is a tuple M = (S, X x, ) consisting of a finite set
of states S, a finite set of labels X', a rational transition matriz 7 such that
Y ieg s, = 1 for all s € S, and a labelling function £ : S — X.

A probabilistic bisimulation on M is an equivalence relation R C S x S such
that if s R ¢ then £(s) = £(t) and ) . p Ts.u = D, e Tt,u fOr each R-equivalence
class F, i.e., related states have the same label and the same probability to
transition into any given equivalence class. It is a standard result that there is a
largest probabilistic bisimulation on M and that this relation is an equivalence
relation (see, e.g., [25, Section 7.6]). The maximum probabilistic bisimulation is
called probabilistic bisimilarity and is denoted ~. From now on, we mostly refer
to probabilistic bisimilarity as simply bisimilarity.

We are interested in the problem of computing bisimilarity ~ on M. The
decision version of the problem asks whether s ~ t for two designated states
s,t € S.

The above formulation of the bisimilarity problem is convenient for our hard-
ness proof, however variations, such as replacing state labels with labels on
transitions, can easily be accommodated. It is also not difficult to reduce the
problem above to the restricted case in which the set of labels has two elements.

For a state s, let succ(s) = {u: ms, > 0}. We say that a transition matrix 7
is uniform if for all s € S and u, v € succ(s), Ts = Ts,». That is, the transition
probability out of each state is a uniform distribution over its support.

Lemma 1 (Matching Lemma). Assume that |succ(s)| = |succ(t)| and 7 is
uniform. Then s ~ t if and only if ¢(s) = ((t) and there exists a bijection
f o suce(s) — suce(t) with u ~ f(u) for each u € succ(s).

Proof. Suppose that s ~ t. Since ~ is a bisimulation, ¢(s) = £(t) and for each
~-equivalence class F,

2iwen Mo = Digep Tha- (1)

Since |suce(s)| = |suce(t)| and 7 is uniform, |ENsuce(s)| = |[ENsucc(t)| for each
~-equivalence class F. Hence there exists a bijection f : succ(s) — succ(t) with
u ~ f(u) for all u € succ(s).

Conversely, assume that £(s) = £(¢) and suppose that f is a bijection as above.
To conclude that s ~ ¢ we prove that the smallest equivalence relation containing
~U{(s,t)}, which we denote by R, is a bisimulation.

Since ~ is a bisimulation and ¢(s) = ((t), R only relates states with the
same label. Moreover, since every R-equivalence class is a union of ~-equivalence
classes, it suffices to show ({l) for ~-equivalences classes only.



440 D. Chen, F. van Breugel, and J. Worrell

Assume u Rv. We distinguish three cases. First, let u = s and v = ¢. Because of
the existence of the bijection f, we have that |[ENsucc(s)| = [ENsucc(t)| for each
~-equivalence class E. Because 7 is uniform, () holds for each ~-equivalence
class E. Second, let u ~ s and v ~ t. Recall that ~ is a bisimulation. Hence, for
each ~-equivalence class F,

ZIGE Wu,x = ZmEE 7T37x = ZmeE ﬂ-tax = ZIGE 771),3;,

where we use u ~ s, the previous case, and v ~ t. The third and final case,
u ~ v, follows immediately from the fact that ~ is a bisimulation. O

Theorem 2. Deciding probabilistic bisimilarity is P-hard.

Proof. We reduce from the MONOTONE CIRCUIT VALUE problem which is P-
hard [16], Theorem 6.2.2]. Recall that a monotone circuit is a finite directed
acyclic graph in which nodes have in-degree either two or zero. Nodes with in-
degree two are labelled A or V; nodes with in-degree zero, called input nodes, are
labelled either true (1) or false (0). There is a distinguished output node with
out-degree zero. The MONOTONE CIRCUIT VALUE problem is to compute the
output of a given monotone circuit.

Given a circuit C, we define a Markov chain M(C') with a uniform transi-
tion matrix. For each node n; of C' and its incoming edges, we include a gadget
consisting of states and their outgoing transitions in M(C'). Note that the transi-
tions of the Markov chain go in the opposite direction of the edges of the circuit.
Each gadget contains states u; and v;. We will prove that u; ~ v; if and only if
n; evaluates to true. We define the labelling function ¢ such that states have the
same label if and only if they belong to the same gadget and the gadget does
not represent an input node that is labelled false. In the diagrams below, states
have the same label if and only if they have the same index and the same colour.

We describe M(C') by giving gadgets for each input node, and-gate and or-
gate of C.

The gadget for input node labelled true is shown below.

o ® ¢

The gadget for input node labelled false is shown below.

) X

Note that u; and v; have the same label if and only if n; is labelled true and
therefore u; ~ v; if and only if n; is labelled true.
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The gadget for an and-gate is shown below.

n;

L L UG vj CUk : g Vg -
Note that u;, v; and uy, vi are states of the gadgets corresponding to the nodes
n; and ny. The correctness of this gadget amounts to showing that u; ~ v; if and
only if both u; ~ v; and uy ~ vi. This follows immediately from the Matching
Lemma and the fact that the definition of ¢ precludes u; ~ v;, and v; ~ uy in
case n; and ny, are different nodes. If n; and n;, are one and the same node, the
and-gate can be removed from the circuit.
The gadget for an or-gate is shown below.

The correctness of this gadget amounts to showing that u; ~ v; if and only if
Uj ~ Vj Or U ~ Vg.

u; ~ v; iff (wi ~ Y N T~ Zi) \ (wi ~ Zi Nxj ~ yi) [Matching Lemma]

ff uj ~v; Vup ~ v, [Matching Lemma)

In the last step we use again the fact that the definition of ¢ precludes u; ~ vy
and v; ~ uy in case n; and ny are different nodes. If n; and ny are one and the
same node, the or-gate can be removed from the circuit.

This completes the description of the gadgets. The Markov chain M(C) is
obtained by composing the gadgets for each node of C. The transduction of a
circuit to a Markov chain is done gate by gate. To produce the output gadget
corresponding to each circuit gate one only needs to store the indices of the gate
and its two inputs, and the states of the output gadget. Thus the reduction can
be done in deterministic logarithmic space. a

The proofs of P-hardness of ordinary bisimilarity for labelled transition systems
by Balcdzar, Gabarr6é and Santha [4] and Sawa and Jancar [26] are also by re-
duction from MONOTONE CIRCUIT VALUE. However in the probabilistic case
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disjunction cannot be translated directly as in the non-deterministic case. Inter-
estingly, a formally identical gadget to the above disjunction gadget appears in
Toran’s proof of DET-hardness of graph isomorphism [29]. However DET is a
subclass of P and the graph isomorphism problem is not known to be P-hard.

3 The Bisimilarity Pseudometric

In this section we recall the definition of a bisimilarity pseudometric on la-
belled Markov chains. We first give a logical characterisation, due to Deshar-
nais, Gupta, Jagadeesan and Panangaden [12], based on a real-valued semantics
for Larsen and Skou’s probabilistic modal logic [21]. This characterisation illus-
trates the sense in which states that are close in the pseudometric satisfy similar
behavioural properties. In the next section we give a more abstract fixed-point
characterisation of the pseudometric, which will be used in our algorithms.
The logic L is defined by the grammar

pu=0c|eVe | p|leoq| Op (2)

where 0 € X and ¢ € [0,1] is rational.

We consider a real-valued semantics of £, which is parameterised by a discount
factor ¢ € (0,1]. The smaller the value of ¢, the more the future is discounted,
with ¢ = 1 being the undiscounted case. Given a labelled Markov chain M =
(S, X, m,£), the interpretation of a formula ¢ is a function [¢] : S — [0, 1] defined
by the following clauses:

[[U]] (S) - {(1) loftflser)\mse
[e Vv ¥l(s) = max([¢](s), [¢](s))
[=¢l(s) =1 = [¢l(s)
[pedl(s) = maX(ﬂ I1(s) —¢,0)
[Ol(s) = ¢ > mor - [2](t)
tes

A pseudometric is a relaxation of the notion of an ordinary metric in which
different states can have distance zero. Formally a (1-bounded) pseudometric on
aset Sisamapd: S xS — [0,1] such that for all s,t,u € S, d(s,s) = 0,
d(s,t) =d(t,s) and d(s,u) < d(s,t) + d(t,u).

Given a discount factor ¢ € (0,1] the function d. : S x S — [0, 1] assigns
a distance to every pair of states of a labelled Markov chain according to the
following definition:

de(s, t) = sup [[£](s) — [l (®)] - 3)

peLl

It is straightforward that, with this definition, d. is a pseudometric. The following
theorem justifies our description of d. as a bisimilarity pseudometric.
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Theorem 3. [25, Section 8.2] d.(s,t) =0 if and only if s ~ t.

In [9], Chatterjee, de Alfaro, Majumdar and Raman enriched the logic £ by the
addition of fixed-point operators, yielding a quantitative pu-calculus £, which can
express reachability and w-regular specifications. For example, the £,-formula
px.(oV<Ox) represents the probability to reach a o-labelled state, while vy.px. (oA
y) V <x) represents the probability to infinitely often visit a o-labelled state. It is
shown in [9] that d.(s, ) = sup e, |[¢](s) — [¢](?)] for any pair of states s, ¢ € S
thus d. can equivalently be defined in terms of the more powerful logic £,,.

4 Matchings, Couplings and the Kantorovich Metric

In this section we give a fixed-point characterisation of the probabilistic bisim-
ilarity pseudometric. Based on this we relate the pseudometric to the classical
notion of couplings on Markov chains.

Say that a probability distribution w on S x S is a matching of probability
distributions p,v on S if

Y wegwW(u,v) = p(u) forallue S
Youesw(u,v) =v(v) foralves.

In other words, w is a joint probability distribution whose marginals are x and v.
Suppose that (S, d) is a finite metric space. The Kantorovich metric dx on
the set of probability distributions on S is defined by

d ,V) = min d(u,v) - w(u,v),
KGew) = min 3 dlun) )
where 2, , is the set of matchings of 1 and v.

Informally we can characterise the bisimilarity pseudometric d.(s,t) as the
distance between the distributions 7, — and m _ in the Kantorovich metric over
(S,d.). This characterisation is recursive, and accordingly we will show that d.
is a fixed point of a functional A. based on the Kantorovich metric.

Define A, : [0,1]5%% — [0,1]5%% as follows. If £(s) # £(t) then A.(d)(s,t) =1
and if £(s) = £(t) then

Aq(d)(s,t) = ¢+ min d(u,v) - w(u,v), (4)
wEN ¢
u,vES
where (2;; is the set of matchings of 75 _ and m; _.

The set [0, 1]°* is a complete lattice in the pointwise order. It is shown in [5,
Proposition 38] that A, is a monotone selfmap on [0, 1]°** and thus, by Tarski’s
fixed point theorem, has a least fixed point. Since the least element of [0, 1]5*%
is a pseudometric, A, maps a pseudometric to a pseudometric, and the least
upper-bound of a set of pseudometrics is a pseudometric, we can conclude that
the least fixed point of A. is a pseudometric as well. This turns out to be the
pseudometric d..



444 D. Chen, F. van Breugel, and J. Worrell

Theorem 4. [0, Theorem 4.6] d. is the least fixved point of A..

Remark 5. In the relational setting it is traditional to view bisimilarity as a
greatest fixed point. Intuitively the situation is opposite in the pseudometric
setting because the bottom element of [0, 1] represents relatedness.

Theorem 6. If c <1 then d. is the unique fized point of A..

Proof sketch. We can show that A, is c¢-Lipschitz. From Banach’s fixed point
theorem we can conclude that the fixed point is unique. O

However, A; need not have a unique fixed point. For example, consider the
labelled Markov chain with a single state. Then A; is the identity mapping.

Ezample 7. Consider the Markov chain below, where £(s) = £(t) # (u):

1 c 1
O 0O
S tﬁu

For ¢ < 1, d.(s,t) = c=¢* The pseudometric 0 assigns to every pair of states

1—c2°

distance zero. For all n € N, A?(0)(s,t) < C_fi;ﬂ. This shows that the fixed
point may not be reached by a finite number of iterations of A..
For each s,t € S, let w ) (—,—) be a matching of 7s — and m; . Then the
Markov chain C = (S x S,w) is a coupling (see, e.g., [24, Chapter 11] for a
discussion of couplings). Such a coupling can be seen as two copies of M running
synchronously, although not necessarily independently. Couplings are typically
used to give upper bounds on convergence to stationary distributions. Here we
use them to a slightly different end. Given a coupling C, as above, define the
discrepancy of a state (s,t) € S x S, denoted d¢(s,t), to be the probability that
a trajectory of C starting in state (s,t) reaches a state (u,v) with £(u) # £(v).

Formally, given a coupling C, we define I¢ : [0,1]5%% — [0,1]%*9 as follows.
If £(s) # £(t) then Ic(d)(s,t) = 1 and if £(s) = £(t) then

Te(d)(s,t) = Z d(,v)  W(s) ()
u,VES

We leave it to the reader to check that Iz is a monotone selfmap on [0, 1]*5. By
Tarski’s fixed point theorem, I has a least fixed point, which we denote by d¢.
As we will show next, d¢ is closely related to our bisimilarity pseudometric d; .

Theorem 8. d; = min{ d¢ : C is a coupling}.

As a consequence of the above theorem, the bisimilarity pseudometric d; cor-
responds to the minimal coupling. Next, we will show that two states have dis-
crepancy zero in some coupling if and only if they are bisimilar.
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Proposition 9. d¢(s,t) =0 for some coupling C if and only if s ~ t.

Proof. From Theorem 8 we can conclude that de(s,t) = 0 for some coupling C
if and only if dq(s,t) = 0. By Theorem [3 this gives us the desired result. ]

The following simple lemma shows that the discrepancy can be used to bound
the variational distance between trace distributions. This can be seen as a quan-
titative version of the folklore that bisimilar states satisfy the same linear-time
properties. In the lemma we use Prag s(A) to denote the probability that a run
of the labelled Markov chain M started in state s is in the set A. For a formal
definition of Prass(A) and a definition of measurable subset of the set X of
infinite sequences over X, we refer the reader to, e.g., [3, Chapter 10].

Lemma 10 (Coupling Lemma). Let C be a coupling of the labelled Markov
chain M = (S, X, w,L). Then for any measurable set A C X and s,t € S,

|Prag,s(A) — Prage(A)| < dc(s,t).

As a consequence of the Coupling Lemma and Theorem [§ our bisimilarity
pseudometric is an upper bound for the variational distance between trace
distributions.

Corollary 11. For any measurable set A C X“ and s,t € S,
|[Prag,s(A) — Prag(A)] < di(s,t).

Whereas the variational distance between trace distributions is NP-hard to com-
pute, as shown by Lyngse and Pedersen in [22], we will show that our bisimilarity
pseudometric can be computed in polynomial time.

5 Algorithms for Bisimilarity Pseudometrics

5.1 The Discounted Case

Let ¢ <1 be a fixed rational discount factor. Given a labelled Markov chain M,
we show that d. is rational and can be computed exactly in time polynomial in
size(M) and size(c) ]

In Theorem @ we have characterised d. as the least fixed point of A.. While
the stipulation that d. be the least fixed point is essential in the undiscounted
case, it is redundant in the discounted case. In the latter case, A, has a unique
fixed point (see Theorem[d]). As a consequence, d. is also the greatest fixed point
of A, for ¢ < 1. Thus, by Tarski’s fixed point theorem, we have

de=| {deR¥:d< A(d)AO<d<1}. (5)

1 'We denote by size(X) the size of the representation of an object X. We represent
rational numbers as quotients of integers written in binary. For example, the size of
a rational number is the sum of the bit lengths of its numerator and denominator
and the size of a matrix is the sum of the sizes of its entries.
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This simple change in perspective is fruitful because the characterisation ()
directly yields a translation of the problem of computing d. to the following
linear program:

maximise Es,tes ds ¢

such that ds¢ < ¢ 30, cgduw - w(u,v) w € 24, £(s) # L(t) (6)
duy = 1 0(s) = (1)
0 S ds,t S 1

As we will see, the linear program ({]) can be solved in polynomial time using the
ellipsoid algorithm. We pursue this option in the undiscounted setting below. How-
ever, here we do not require such powerful techniques. Instead we just use the lin-
ear programming formulation to observe that the fixed point of A, is rational and
bounded in size by a polynomial in size(M) and size(c). We then approximate
the fixed point by repeating the network simplex algorithm, obtaining the exact
solution by rounding by means of the continued fraction algorithm.

Recall that the set of matchings (25, is a polytope in R¥*S defined by the
following constraints:

Y wegw(u,v) =msq and ), g w(u,v) =7, and w(u,v) >0 (7)

In general, 2, , is infinite and therefore the set of constraints in (@) is infinite
also. However, for each fixed d the linear function mapping a matching w to
€y d(u,v) - w(u,v) achieves its minimum on (2, at some vertex. Thus,
writing V'(£2;;) for the (finite) set of vertices of {25+, we can replace {2, with
V(£2s,4) in (@), obtaining a linear program with the same feasible region. We
denote the polytope defined by the set of constraints of this linear program by
D. To prove that the distances are rational, we first observe the following.

Proposition 12. Fach w € V (§2,4) is rational of size polynomial in size(M).

Proof sketch. Since a vertex of (2, ; is by definition an intersection of hyperplanes
given by the (in)equalities defining {25 ; and the coefficients of the (in)equalities
are rationals bounded in size by size(M), we can conclude that each w € V(§25 )
is rational of size polynomial in size(M). O

Proposition 13. d. is rational of size polynomial in size(M) and size(c).

Proof sketch. Along a similar line of reasoning as used in the proof of Propo-
sition [[2] we can conclude that the vertices of polytope D are rational of size
polynomial in size(M) and size(c).

Since the function mapping any d of the polytope D to Zs,tES’ ds is linear,
it attains its maximum, d., at some vertex of D, which, as we have just shown,
is rational of size polynomial in size(M) and size(c). |

Note that the proofs of Proposition[I2and [[3 are also valid for ¢ = 1 and, hence,
d; is rational as well. Having established that d. is rational, we now give a simple
iterative algorithm to approximate d. starting from the pseudometric O.
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Proposition 14. For alln € N, A%(0) is rational of size polynomial in size(M)
and size(c) and can be computed in time polynomial in size(M) and size(c).

Proof sketch. We prove this property by induction on n. Obviously, the property
holds for n = 0. Let n > 0. Obviously, the property holds when £(s) # £(t).
Otherwise, A7 (0)(s,?) = ¢ minven, , D, 1es A"=1(0)(u, v) -w(u, v). The above
minimum is attained at a vertex of 2, ;. As we have seen in Proposition[IZ these
vertices are rationals of size polynomial in size(M). Furthermore, by induction,
An=1(0) is rational of size polynomial in size(M) and size(c). Hence, A"(0)(s,t)
is a rational of size polynomial in size(M) and size(c). Computing A.(d)(s,t) is a
minimum-cost flow problem for which there are versions of the network simplex
algorithm that are strongly polynomial time [IJ. O

To get e-close to d., we need to iterate [log.(e)] times.

Proposition 15. For all ¢ >0, ||A£10g6(6ﬂ (0) —d.| <e.

From Proposition [I4] and [[5 we can conclude that we can approximate d.. in time
polynomial in size(M), size(c) and logy(!). Once we have iterated close enough
to d., we can use the continued fraction algorithm (see, e.g. [I7, Section 5.1]) to
obtain d..

Theorem 16. The pseudometric d. can be computed in time polynomial in
size(M) and size(c).

Proof sketch. This follows now immediately from the observation made by Etes-
sami and Yannakakis [I3], page 2540] that for problems whose solutions are ra-
tional, of size polynomial in the input size, if we can solve the approximation
problem in polynomial time, then we can also solve the exact computation prob-
lem in polynomial time by using the continued fraction algorithm. a

5.2 The Undiscounted Case

Throughout this section we refer to the undiscounted bisimilarity pseudometric
as d, rather than d; and likewise use A instead of A;.

In the previous section we gave a reduction of the problem of computing d.
to linear programming by characterising d. as the greatest fixed point of A, for
¢ < 1. However, recall from Section [ that d is not in general the greatest fixed
point of A. Nevertheless we can recover a greatest-fixed-point characterisation
of d by separately handling the set of bisimilar states, i.e. the states at distance
zero. This will allow us to use linear programming to compute d.

As a first step we define A’ : [0,1]5%% — [0,1]5*9 by

s = {00

Proposition 17. A’ has a unique fized point.
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Proof sketch. Since A is monotone, we can easily deduce that A’ is monotone
as well. According to Tarski’s fixed point theorem, A’ has a least and a greatest
fixed point. Hence, it is sufficient to prove that if d < d’ are both fixed points of
A’ then d =d'.

To this end, let m = max{d'(s,t) — d(s,t) : s,t € S} and let M be the set
of pairs { (s,t) € S x S :d'(s,t) — d(s,t) = m } which maximise the discrepancy
between d’ and d. We will show that m = 0, which implies that d = d’. We
distinguish two cases.

Assume that (s,t) € M such that £(s) # £(t). Then

d(s,t) — d(s,t) = A'(d)(s,t) — A'(d)(s,t) =1 — 1 =0

and, hence, m = 0.
Otherwise, for all (s,t) € M we have that £(s) = £(t). In this case, we claim
that M C ~. From this claim it follows that for all (s,t) € M,

d'(s,t) —d(s,t) = A'(d)(s,£) — A'(d)(s,t) =0 — 0 =0

and, hence, m = 0. It just remains to prove the claim.

By Proposition [l it suffices to define a coupling C such that d¢(s,t) = 0 for
all (s,t) € M. To define C we must specify a matching w € (25, for each pair of
states (s,t) € S xS. For (s,t) ¢ M any matching will do. For (s,t) € M we show
that we can choose a matching w € {2, whose support is contained in M. Then
in the coupling C no pair in (s,t) € M can reach a pair (u,v) with £(u) # £(v),
that is, de(s,t) = 0.

Let (s,t) € M. Suppose A'(d)(s,t) = >, ,es d(u,v) -w(u,v), where w € §2 ;.
Then

m =d'(s,t) — d(s,t)
= A (s 1) — A(d)(s,)

= | min Z d' (u,v) - w'(u,v) | — Z d(u,v) - w(u,v)

w' €N ¢
T u,veS u,vES
< Z d' (u,v) - w(u,v) — Z d(u,v) - w(u,v)
u,WES u,WES
= > (@ (u,0) — d(u,0)) - w(u,v).
u,WES
Since d'(u,v) — d(u,v) < m and } ,  gw(u,v) = 1, we can conclude from
> uwes(d (u,v) —d(u,v)) - wu,v) > m that d'(u,v) — d(u,v) = m whenever
w(u,v) > 0. 0

Corollary 18. d is the unique fized point of A'.

Proof. Tt is enough to prove that d is a fixed point of A’. On the one hand,
suppose that s ~ ¢. Then d(s,t) = 0 = A’(d)(s,t) by Theorem [Bl On the other
hand, suppose that s ¢ t. Then d(s,t) = A(d)(s,t) = A’(d)(s, t). O
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Corollary [I8 implies that d is the greatest fixed point of A’. Thus, following the
development in Section 5.1, we can compute d as the solution to the following
linear program:

maximise Zs,tES’ ds ¢

such that ds; = 0 s~t 8)
dey =1 £(s) # £(1)

Gt < Yvesdun 0(,0) @€ V(Qua)ys 2 4,6(s) = (1)

Unfortunately we cannot solve () using the iterative method adopted in the
discounted case. The reason is that it may require exponentially many iterations
of A’ to achieve a sufficiently close approximation to d.

Ezample 19. Consider the Markov chain below, where ¢(s) = £(t) # £(u):
1
Y

Then d(s,t) = 1 and (A’)"(0)(s,t) < n-2~™ for all n € N. This shows that it
may require exponentially many iterations in size(M) to approximate the fixed
point of A’.

m

1— 1

2-
() O
tﬁu

Instead we use the ellipsoid algorithm (see, e.g. [27), Chapter 14]) to solve the linear
program (§)). According to Proposition[I2] (which also holds for ¢ = 1), the coeffi-
cients of the constraints of the linear program () are rational of size polynomial
in size(M). By, e.g. |27, Corollary 14.1a], to conclude that the linear program (&)
can be solved in time polynomial in size(M), it suffices to show that there exists a
polynomial time separation algorithm. In our setting, given a d € RS> rational of
size polynomial in size(M), the separation algorithm has to decide whether d sat-
isfies the constraints of (§]) or not, and, in the latter case, find in time polynomial
in size(M) a separating hyperplane, i.e., an a € Q%% such that

Zu,vES d(u7 U) : a(uv U) < Zu,vES d,(u’ ”U) ' a(u7 1)) (9)

for all d’ € RS*S that satisfy the constraints of
Let d € R9*S be rational of size polynomia, in size(M). For each pair of

states s,t € S, we consider the following linear program:

minimise -, cgd(u,v) Wy

10
such that > ccwuo = Tsu and Y cqWup = Trp and wy, >0 (10)

This linear program is a minimum-cost flow problem for which there are ver-
sions of the network simplex algorithm that can compute an (wy,y)u,ves, which

satisfies the constraints of (I0)) and minimizes the objective function, and that
are strongly polynomial time [I].

Note that d satisfies the constraints of (I0) if and only if d(s, t) is smaller than
or equal to the optimal value of (I0) for each pair of states s,t € S. Otherwise,
there exists a pair of states s,t € S such that d(s,t) is greater than the optimal
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value of (I0). Let w € V' (§25;) be a vertex that realizes the optimal value of (I0).

As we have seen in Proposition [[2] w is rational of size polynomial in size(M).
It remains to define an « that satisfies ([@). We define « in terms of w as

follows:

wu,v) — 1if (u,v) = (s,t)

w(u,v) otherwise.

a(u,v) = {

Proposition 20. Assume that d does not satisfy the constraints of (I0). Then
for all d' € RS*S that satisfy the constraints of {I0), we have ().

Proof. Since d does not satisfy the constraints of ([T, there exists a pair of
states s,t € S such that d(s,t) > >_, g d(u,v) - w(u,v). Hence,

ZU,UES d(u7 1}) : a(u7 ’U) <0. (11)

Assume that d’ € RS9 satisfies the constraints of ([0). Then we have that
d'(s,t) <3, es d (u,v) - w(u,v). Hence,

Zu,vES dl(uv ’U) : a(u7 U) > 0. (12)

From () and ([IZ) we can immediately conclude (). O

6 Conclusion

The linear program (6l shows inter alia that the problem of computing proba-
bilistic bisimilarity can naturally be reduced to linear programming. It would be
interesting to relate the resulting procedure for computing probabilistic bisimi-
larity to the classical partition refinement algorithm.

The problem of computing probabilistic bisimilarity bears some similarity to
the graph isomorphism problem. While the latter is not known to be in P, for cer-
tain restricted graph classes, such as graphs of bounded degree or with bounded
colour classes, it is in DET (a subclass of P). By contrast, deciding probabilistic
bisimilarity is P-hard already for labelled Markov chains with branching degree
at most two, in which at most four states share the same label.
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