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Abstract. This paper summarises recent results on bicategories of
concurrent games and strategies. Nondeterministic concurrent strategies,
those nondeterministic plays of a game left essentially unchanged by
composition with copy-cat strategies, have recently been characterized
as certain maps of event structures. This leads to a bicategory of gen-
eral concurrent games in which the maps are nondeterministic concurrent
strategies. It is shown how the bicategory can be refined to a bicategory of
winning strategies by adjoining winning conditions to games. Assigning
“access levels” to moves addresses situations where Player or Opponent
have imperfect information as to what has occurred in the game. Finally,
a bicategory of deterministic “linear” strategies, a recently discovered
model of MALL (multiplicative-additive linear logic), is described. All
the bicategories become equivalent to simpler order-enriched categories
when restricted to deterministic strategies.

Keywords: Games, strategies, concurrency, event structures, winning
conditions, determinacy.

1 Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, leisure and in life. As abundant, but much less understood, are
concurrent games in which a Player (or team of players) compete against an
Opponent (or team of opponents) in a highly interactive and distributed fash-
ion, especially when we recognize that the dichotomy Player vs. Opponent has
several readings, as for example, process vs. environment, proof vs. refutation,
or more ominously as ally vs. enemy. This paper summarises recent results on
the mathematical foundations of concurrent games. It describes what it means
to be a concurrent game, a concurrent strategy, a winning strategy, a concurrent
game of imperfect information, and a linear strategy, and generally illustrates
the rich mathematical structure concurrency brings to games.

Our primary motivation has come from the semantics of computation and
the role of games in logic, although games are situated at a crossing point of
several areas. In semantics it is becoming clear that we need an intensional
theory to capture the ways of computing, to near operational and algorithmic
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concerns. Sometimes unexpected intensionality is forced through the demands of
compositionality, e.g. in nondeterministic dataflow [1]. More to the point we need
to repair the artificial division between denotational and operational semantics.
But what is to be our fundamental model of processes? Game semantics provides
a possible answer: strategies. (There are others, e.g. profunctors as maps between
presheaf categories [2,3].) Meanwhile in logic the well-known Curry-Howard
correspondence “propositions as types, proofs as programs” is being recast as
“propositions as games, proofs as strategies.”

However, in both semantics and logic, traditional definitions of strategies and
games are not general enough: they do not adequately address the concurrent
nature of computation and proof—see e.g. [4]. Game semantics has developed
from simple sequential games, where only one move is allowed at a time and, for
instance, it is often assumed that the moves of Player and Opponent alternate.
Because of its history it is not obvious how to extend traditional game semantics
to concurrent computation, or what relation it bears to other generalised domain
theories such as those where domains are presheaf categories [2,3]. It is time
to build game semantics on a broader foundation, one more squarely founded
within a general model for concurrent processes. The standpoint of this paper
is to base games and strategies on event structures, the analogue of trees but in
a concurrent world; just as transition systems, an “interleaving” model, unfold
to trees so do Petri nets, a “concurrent” model, unfold to event structures.
In doing so we re-encounter earlier work of Abramsky and Melliès, first in their
presentation of deterministic concurrent strategies as closure operators, and later
in Melliès programme of asynchronous games, culminating in his definition with
Mimram of ingenuous strategies; a consequence of the work described here is a
characterization of Melliès and Mimram’s receptive ingenuous strategies [5] as
precisely those deterministic pre-strategies for which copy-cat strategies behave
as identities.

Our slogan: processes are nondeterministic concurrent strategies. For method-
ology we adopt ideas of Joyal who recognized that there was a category of games
underlying Conway’s construction of the “surreal numbers” [6,7]. Like many 2-
party games Conway’s games support two important operations: a form of paral-
lel composition G‖H ; a dualizing operationG⊥ which reverses the roles of Player
and Opponent in G. Joyal defined a strategy σ from a game G to a gameH , to be
a strategy σ in G⊥‖H . Following Conway’s method of proof, Joyal showed that
strategies compose, with identities given by copy-cat strategies.

We shall transport the pattern established by Joyal to a general model for con-
current computation: games will be represented by event structures and strategies
as certain maps into them. The motivation is to obtain: forms of generalised do-
main theory in which domains are replaced by concurrent games and continuous
functions by nondeterministic concurrent strategies; operations, including higher-
order operations via “function spaces” G⊥‖H , within a model for concurrency;
techniques for logic (via proofs as concurrent strategies), and possibly verification
and algorithmics. However, first things first, here we will concentrate on the rich
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algebra of concurrent strategies. Most proofs and background on stable families,
on which proofs often rely, can be found in [8].

2 Event Structures

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con =⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation
of immediate dependency e � e′, meaning e and e′ are distinct with e ≤ e′

and no event in between, will play a very important role. For X ⊆ E we write
[X ] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X ; note if X ∈ Con, then
[X ] ∈ Con.

Notation 1. Let E be an event structure. We use x−⊂y to mean y covers x

in C∞(E), i.e. x ⊂ y in C∞(E) with nothing in between, and x
e−−⊂ y to mean

x ∪ {e} = y for x, y ∈ C∞(E) and event e /∈ x. We sometimes use x
e−−⊂ ,

expressing that event e is enabled at configuration x, when x
e−−⊂ y for some y.

2.1 Maps of Event Structures

Let E and E′ be event structures. A (partial) map of event structures f : E ⇀ E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E) its direct
image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. Partial maps of event
structures compose as partial functions, with identity maps given by identity
functions.
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For any event e a map of event structures f : E ⇀ E′ must send the con-
figuration [e] to the configuration f [e]. Partial maps preserve the concurrency
relation, when defined.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from
x is injective; the restriction of f to a function from x to fx is thus bijective.
A partial map of event structures which preserves causal dependency whenever
it is defined, i.e. e′ ≤ e implies f(e′) ≤ f(e) whenever both f(e′) and f(e) are
defined, is called partial rigid. We reserve the term rigid for those total maps of
event structures which preserve causal dependency.

2.2 Process Operations

Products. The category of event structures with partial maps has products
A×B with projections Π1 to A and Π2 to B. The effect is to introduce arbitrary
synchronisations between events of A and events of B in the manner of process
algebra.

Restriction. The restriction of an event structure E to a subset of events R,
written E � R, is the event structure with events E′ = {e ∈ E | [e] ⊆ R} and
causal dependency and consistency induced by E.

Synchronized Compositions and Pullbacks. Synchronized compositions
play a central role in process algebra, with such seminal work as Milner’s CCS
and Hoare’s CSP. Synchronized compositions of event structures A and B are
obtained as restrictions A × B � R. We obtain pullbacks as a special case. Let
f : A→ C and g : B → C be maps of event structures. Defining

P =def A×B � {p ∈ A×B | fΠ1(p) = gΠ2(p) with both defined}

we obtain a pullback square

P
Π1

����
��
��
���� Π2

���
��

��
��

�

A

f ���
��

��
��

B

g
����
��
��
��

C

in the category of event structures. When f and g are total the same construction
gives the pullback in the category of event structures with total maps.
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2.3 Projection

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V

v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

3 Event Structures with Polarities

Both a game and a strategy in a game are to be represented as an event struc-
ture with polarity, which comprises (E, pol ) where E is an event structure with
a polarity function pol : E → {+,−} ascribing a polarity + (Player) or − (Op-
ponent) to its events. The events correspond to (occurrences of) moves. Maps
of event structures with polarity are maps of event structures which preserve
polarity.

3.1 Operations

Dual. The dual, E⊥, of an event structure with polarity E comprises a copy of
the event structure E but with a reversal of polarities.

Simple Parallel Composition. The operation A‖B simply forms the disjoint
juxtaposition of A,B, two event structures with polarity; a finite subset of events
is consistent if its intersection with each component is consistent.

4 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand
for the possible occurrences of moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.
A pre-strategy represents a nondeterministic play of the game—all its moves
are moves allowed by the game and obey the constraints of the game; the con-
cept will later be refined to that of strategy (and winning strategy in Section 7).
A pre-strategy in A is defined to be a total map σ : S → A from an event struc-
ture with polarity S. Two pre-strategies σ : S → A and τ : T → A in A will
be essentially the same when they are isomorphic, i.e. there is an isomorphism
θ : S ∼= T such that σ = τθ; then we write σ ∼= τ .

Let A and B be event structures with polarity. Following Joyal [7], a pre-
strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.
It thus determines a span

S

σ1

����
��
��
�� σ2

���
��

��
��

�

A⊥ B ,
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of event structures with polarity where σ1, σ2 are partial maps and for all s ∈ S
either, but not both, σ1(s) or σ2(s) is defined. Two pre-strategies from A to
B will be isomorphic when they are isomorphic as pre-strategies in A⊥‖B, or
equivalently are isomorphic as spans. We write σ : A + ��B to express that σ is
a pre-strategy from A to B. Note a pre-strategy σ in a game A coincides with a
pre-strategy from the empty game σ : ∅ + ��A.

4.1 Composing Pre-strategies

We can present the composition of pre-strategies via pullbacks.1 Given two pre-
strategies σ : S → A⊥‖B and τ : T → B⊥‖C, ignoring polarities we can
consider the maps on the underlying event structures, viz. σ : S → A‖B and
τ : T → B‖C. Viewed this way we can form the pullback in the category of
event structures

P

�����
���

���
� ��

����
���

���
��

S‖C

σ‖C ����
��

��
��

�
A‖T

A‖τ					
		
		
		

A‖B‖C .

There is an obvious partial map of event structures A‖B‖C → A‖C undefined
on B and acting as identity on A and C. The partial map from P to A‖C given
by following the diagram (either way round the pullback square)

P

					
			

			
	 ��

����
���

���
��

S‖C

σ‖C ��















A‖T

A‖τ		���
��
��
��

A‖B‖C




A‖C

factors as the composition of the partial map P → P ↓ V , where V is the set of
events of P at which the map P → A‖C is defined, and a total map P ↓ V →
A‖C. The resulting total map gives us the composition τ�σ : P ↓ V → A⊥‖C
once we reinstate polarities.

1 The construction here gives the same result as that via synchronized composition
in [9]— I’m grateful to Nathan Bowler for this observation. Notice the analogy with
the composition of relations S ⊆ A × B, T ⊆ B × C which can be defined as
T ◦S = (S×C ∩ A×T ) ↓ A×C, the image of S×C ∩ A×T under the projection
of A×B ×C to A× C.
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4.2 Concurrent Copy-Cat

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of
a pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent,
or distributed, strategy based on the idea that Player moves, of +ve polarity,
always copy previous corresponding moves of Opponent, of −ve polarity.

For c ∈ A⊥‖A we use c to mean the corresponding copy of c, of opposite po-
larity, in the alternative component. Define CCA to comprise the event structure
with polarity A⊥‖A together with extra causal dependencies c ≤CCA

c for all
events c with polA⊥‖A(c) = +.

Proposition 1. Let A be an event structure with polarity. Then event struc-
ture with polarity CCA is an event structure. Moreover, x ∈ C(CCA) iff x ∈
C(A⊥‖A) & ∀c ∈ x. polA⊥‖A(c) = + =⇒ c ∈ x .

The copy-cat pre-strategy γA : A + ��A is defined to be the map γA : CCA →
A⊥‖A where γA is the identity on the common set of events.

Example 1. We illustrate the construction of the copy-cat strategy for the event
structure A comprising the single immediate dependency a1 � a2 from an Op-
ponent move a1 to a Player move a2. The event structure CCA is obtained from
A⊥‖A by adjoining the additional immediate dependencies shown:

A⊥ a2 � � ���


 ⊕ a2 A

a1 ⊕


�
�

� a1


�
�

�
�� 
 
 


5 Strategies

The main result of [9] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible
moves of Opponent. Innocence restricts the behaviour of Player; Player may
only introduce new relations of immediate causality of the form �� ⊕ beyond
those imposed by the game.

Receptivity. A pre-strategy σ is receptive iff σx
a−−⊂ & polA(a) = − ⇒ ∃!s ∈

S. x
s−−⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s � s′ & pol(s) = + then σ(s) � σ(s′), and
−-innocent: if s � s′ & pol(s′) = − then σ(s) � σ(s′).

Theorem 1. Let σ : A + ��B be pre-strategy. Copy-cat behaves as identity w.r.t.
composition, i.e. σ ◦ γA ∼= σ and γB ◦ σ ∼= σ, iff σ is receptive and innocent.
Copy-cat pre-stategies γA : A + ��A are receptive and innocent.
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5.1 The Bicategory of Concurrent Games and Strategies

Theorem 1 motivates the definition of a strategy as a pre-strategy which is recep-
tive and innocent. In fact, we obtain a bicategory, Games, in which the objects
are event structures with polarity—the games, the arrows from A to B are strate-
gies σ : A + ��B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies � (which extends to a functor on 2-cells via the
universality of pullback).

A strategy σ : A + ��B corresponds to a dual strategy σ⊥ : B⊥ + ��A⊥. This
duality arises from the correspondence

S

σ1

����
��
��
�

σ2

���
��

��
��

�

A⊥ B

←→ S

σ2

����
��
��
�� σ1

���
��

��
��

�

(B⊥)⊥ A⊥ .

The dual of copy-cat, γ⊥
A , is isomorphic to the copy-cat of the dual, γA⊥ , for

A an event structure with polarity. The dual of a composition of pre-strategies
(τ�σ)⊥ is isomorphic to the composition σ⊥�τ⊥. This duality is maintained in
the major bicategories of games we shall consider.

One notable sub-bicategory of games, though one not maintaining duality, is
obtained on restricting to objects which comprise purely +ve events: then we
obtain the bicategory of stable spans, which have played a central role in the
semantics of nondeterministic dataflow [1].

5.2 The Subcategory of Deterministic Strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg [X ] ∈ ConS =⇒ X ∈ ConS ,

where Neg[X ] =def {s′ ∈ S | pol(s′) = − & ∃s ∈ X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends only
on a consistent set of opponent moves. Say a strategy σ : S → A is deterministic
if S is deterministic.

Lemma 1. An event structure with polarity S is deterministic iff

∀s, s′ ∈ S, x ∈ C(S). x
s−−⊂ & x

s′−−⊂ & pol (s) = + =⇒ x ∪ {s, s′} ∈ C(S) .
In general, a copy-cat strategy can fail to be deterministic, illustrated below.

Example 2. Take A to consist of two events, one +ve and one −ve event, incon-
sistent with each other (indicated by the wiggly line). The construction CCA:

A⊥ � � ���




��
��
��

⊕ A

��
��
��

⊕ ��
�� 
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To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

Copy-cat γA is deterministic iff immediate conflict in A respects polarity, or
equivalently that there is no immediate conflict between +ve and −ve events, a
condition we call race-free.

Lemma 2. Let A be an event structure with polarity. The copy-cat strategy γA
is deterministic iff A is race-free, i.e. for all x ∈ C(A),

x
a−−⊂ & x

a′
−−⊂ & pol(a) = + & pol(a′) = − =⇒ x ∪ {a, a′} ∈ C(A) .

Lemma 3. The composition of deterministic strategies is deterministic.

Lemma 4. A deterministic strategy σ : S → A is injective on configurations
(equivalently, σ is mono in the category of event structures with polarity).

We obtain a sub-bicategory DGames of Games by restricting objects to race-
free games and strategies to being deterministic. Via Lemma 4, deterministic
strategies in a game correspond to certain subfamilies of configurations of the
game. A characterization of those subfamilies which correspond to deterministic
strategies shows them to coincide with the receptive ingenuous strategies of Mim-
ram and Melliès [5]. This work grew out of Abramsky and Melliès early work
in which deterministic concurrent strategies are presented, essentially, as partial
closure operators on the domain of configurations of an event structure [4]. Via
the presentation of deterministic strategies as families DGames is equivalent
to an order-enriched category. There are notable subcategories: when the ob-
jects are countable event structures with polaritywhich consist of purely +ve
events we recover as a full subcategory the classical category of stable domain
theory, viz. Berry’s dI-domains and stable functions; this in turn has Girard’s
qualitative domains and coherence spaces, both with stable functions, as full
subcategories [10]. The category of simple games [11,12], underlying both HO
and AJM games, is a subcategory, though not full.

6 From Strategies to Profunctors

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+

x′ to mean x ⊆ x′ and pol(x′ \ x) ⊆ {+}, i.e. the configuration x′ extends
the configuration x solely by events of +ve polarity. Similarly x ⊆− x′ means
configuration x′ extends x solely by events of −ve polarity. With this notation
in place we can give an attractive characterization of concurrent strategies:

Lemma 5. A strategy S in a game A comprises a total map of event structures
with polarity σ : S → A such that
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(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′



σ





⊆ x


σ




y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆
x′ & σx′ = y , i.e.

x


σ





⊆ x′



σ




σx ⊆− y .

The above lemma tells us how to form a discrete fibration, so presheaf, from a
strategy. For A, an event structure with polarity, we can define a new order, the
Scott order, between configurations x, y ∈ C∞(A), by

x �A y ⇐⇒ x ⊇− x ∩ y ⊆+ y .

Proposition 2. Let σ : S → A be a pre-strategy in game A. The map σ“ taking a
finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from (C(S),�S)
to (C(A),�A) iff σ is a strategy.

As discrete fibrations correspond to presheaves, an alternative reading of Propo-
sition 2 is that a pre-strategy σ : S → A is a strategy iff σ“ determines a presheaf
over (C(A),�A).

Consequently, a strategy σ : A + ��B determines a discrete fibration over
(C(A⊥‖B),�A⊥‖B). But

(C(A⊥‖B),�A⊥‖B) ∼= (C(A⊥),�A⊥)×(C(B),�B) ∼= (C(A),�A)
op×(C(B),�B) ,

so σ determines a presheaf over (C(A),�A)
op × (C(B),�B), i.e. a profunctor

σ“ : (C(A),�A) + ��(C(B),�B) .

The operation σ“, on a strategy σ, forms a lax functor from Games to Prof ,
the bicategory of profunctors: whereas it preserves identities, it is not the case
that (τ�σ)“ and τ“◦σ“ coincide up to isomorphism; the profunctor composition
τ“ ◦ σ“ will generally contain extra “unreachable” elements.

However, in special cases composition is preserved up to isomorphism. Say a
strategy σ is partial rigid when the components σ1, σ2 are partial-rigid maps of
event structures (with polarity). Partial-rigid strategies form a sub-bicategory
of Games—see Section 9. For composable partial-rigid strategies σ and τ we do
have (τ�σ)“ ∼= τ“ ◦ σ“. Stable spans and simple games lie within the bicategory
partial-rigid strategies.
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7 Winning Strategies

A game with winning conditions comprises G = (A,W ) where A is an event
structure with polarity and W ⊆ C∞(A) consists of the winning configurations
for Player. We define the losing conditions to be C∞(A) \W .2

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ : S → A in G
is winning (for Player) if σx ∈ W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s−−⊂ then the event s has −ve

polarity. Any achievable position z ∈ C∞(S) of the game can be extended to a +-
maximal, so winning, configuration (via Zorn’s Lemma). So a strategy prescribes
Player moves to reach a winning configuration whatever state of play is achieved
following the strategy. Note that for a game A, if winning conditionsW =C∞(A),
i.e. every configuration is winning, then any strategy in A is a winning strategy.

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ : S → A is a strategy in a game (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ : T → A⊥ in the dual game. We
can view σ as a strategy σ : ∅ + ��A and τ as a strategy τ : A + ��∅. Their
composition τ�σ : ∅ + ��∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures σ : S → A and τ : T → A. Form their pullback,

P
Π1

����
��
��
���� Π2

���
��

��
��

�

S

σ
���

��
��

��
� T

τ
����
��
��
��

A ,

to obtain the event structure P resulting from the interaction of σ and τ . Because
σ or τ may be nondeterministic there can be more than one maximal configura-
tion z in C∞(P ). A maximal configuration z in C∞(P ) images to a configuration
σΠ1z = τΠ2z in C∞(A). Define the set of results of the interaction of σ and τ
to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P )} .
It can be shown that a strategy σ is a winning for Player iff all the results of
the interaction 〈σ, τ〉 lie within the winning configurations W , for any counter-
strategy τ : T → A⊥ of Opponent.

2 It is fairly straightforward to generalize to the situation where configurations may
be neutral, neither winning nor losing [13,8].
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7.1 Operations

There is an obvious dual of a game with winning conditions G = (A,WG):

G⊥ = (A⊥, C∞(A) \WG) ,

reversing the role of Player and Opponent, and consequently that of winning
and losing conditions.

The parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is

G`H =def (A‖B, WG`H)

where, for x ∈ C∞(A‖B),

x ∈ WG`H iff x1 ∈WG or x2 ∈ WH

—a configuration x of A‖B comprises the disjoint union of a configuration x1 of
A and a configuration x2 of B. To win in G `H is to win in either game. The
unit of ‖ is (∅, ∅). Defining G ⊗H =def (G

⊥‖H⊥)⊥ we obtain a game where to
win is to win in both games G and H . The unit of ⊗ is (∅, {∅}).

Defining G � H =def G
⊥ `H , a win in G � H is a win in H conditional on

a win in G: For x ∈ C∞(A⊥‖B),

x ∈ WG�H iff x1 ∈WG =⇒ x2 ∈ WH .

7.2 The Bicategory of Winning Strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G � H . We compose strategies as before.
The composition of winning strategies is winning. However, for a general game
with winning conditions (A,W ) the copy-cat strategy need not be winning, as
shown in the following example.

Example 3. Let A be the event structure with polarity of Example 2. Take as
winning conditions the set {{⊕}}. To see CCA is not winning consider the con-
figuration x consisting of the two −ve events in CCA. Then x is +-maximal as
any +ve event is inconsistent with x. However, x1 ∈ W while x2 /∈ W , failing
the winning condition of (A,W ) � (A,W ).

Recall from Section 6, that each event structure with polarityA possesses a Scott
order on its configurations C∞(A): x′ � x iff x′ ⊇− x ∩ x′ ⊆+ x . With it we
can express a necessary and sufficient for copy-cat to be winning w.r.t. a game
(A,W ):

∀x, x′ ∈ C∞(A). if x′ � x & x′ is +-maximal & x is −-maximal,

then x ∈ W =⇒ x′ ∈W .
(Cwins)



38 G. Winskel

The condition (Cwins) is assured for event structures with polarity which are
race-free.

We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditions G,H, · · · satisfying
(Cwins) and arrows winning strategies G + ��H ; 2-cells, their vertical and hori-
zontal composition are as before. Its restriction to deterministic strategies yields
a bicategory equivalent to a simpler order-enriched category.

7.3 Applications

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent [14,11]—see [8] for details. Often problems can be reduced to
whether Player or Opponent has a winning strategy, for which it is important
to know when concurrent games are determined, i.e. either Player or Opponent
has a winning strategy. As a first step, well-founded, race-free concurrent games
have now been shown to be determined and have been applied to give a concur-
rent game semantics to predicate logic [8,15]. (A game A is well-founded if all
configurations in C∞(A) are finite.) The game semantics extends to Hintikka’s
“independence-friendly” logic, using ideas of the next section to associate ‘levels’
with quantified variables.

8 Imperfect Information

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“paper”).
The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1⊕

��
��
��
��
��

��
��

��
��

��
� r2

�	
�	
�	
�	
�	

��
��

��
��

��

s1⊕ 
�
�
�
�
�
�
� ⊕ p1 s2� 
�
�
�
�
�
�
� � p2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}
and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a
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dominant move. Explicitly, the winning strategy σ : S → RSP is given as the
obvious map from S, the following event structure with polarity:

r1⊕

��
��
��
��
��

��
��

��
��

��

s1⊕ 
�
�
�
�
�
�
� ⊕ p1 � s2

���� � � � � � � � � � � � � � � � �

�	
�	
�	
�	
�	

��
��

��
��

��

p2�

���� � � � � � � � � � � � � � �

�
�
�
�
�
�
� � r2

���� � � � � � � � � � � � � � �

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible
to both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

We can extend concurrent games to games with imperfect information. To do
so in way that respects the operations of the bicategory of games we suppose a
fixed preorder of levels (Λ,�). The levels are to be thought of as levels of access,
or permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

A Λ-game (G, l) comprises a game G = (A,W ) with winning conditions to-
gether with a level function l : A→ Λ such that

a ≤A a′ =⇒ l(a) � l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ : S → A for
which

s ≤S s′ =⇒ lσ(s) � lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under �. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to level
1 and −ve events to level 2. The strategy above, where Player awaits the move
of Opponent then beats it with a dominant move, is now disallowed because it is
not a Λ-strategy—it introduces causal dependencies which do not respect levels.
If instead we took Λ to be the unique preorder on a single level the Λ-strategies
would coincide with all the strategies.

Fortunately the introduction of levels meshes smoothly with the bicategorical
structure on games. For Λ-games (G, lG) and (H, lH), define the dual (G, lG)

⊥

to be (G⊥, lG⊥) where lG⊥ = lG, and define the parallel composition (G, lG) `
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(H, lH) to be (G`H, lG`H) where lG`H(a) = lG(a) for a ∈ G, lG`H(b) = lH(b)
for b ∈ H .

A Λ-strategy between Λ-games from (G, lG) to (H, lH) is a strategy in
(G, lG)

⊥ ` (H, lH). Let (G, lG) be a Λ-game where G satisfies (Cwins). The
copy-cat strategy on G is a Λ-strategy. The composition of Λ-strategies is a
Λ-strategy.

9 Linear Strategies

It has recently become clear that concurrent strategies support several refine-
ments. For example, define a partial-rigid strategy to be a strategy σ in which
both components σ1 and σ2 are partial rigid. Copy-cat strategies are partial
rigid, and the composition of partial-rigid strategies is partial-rigid, so partial-
rigid strategies form a sub-bicategory of Games. We can refine partial-rigid
strategies further to linear strategies, where each +ve output event depends on
a maximum +ve event of input, and dually, a −ve event of input depends on a
maximum −ve event of output. By introducing this extra relevance, of input to
output and output to input, we can recover coproducts and products lacking in
Games.

Formally, a (nondeterministic) linear strategy is a strategy

S

σ1

����
��
��
�� σ2

���
��

��
��

�

A⊥ B ,

where σ1 and σ2 are partial rigid maps such that

∀s ∈ S. polS(s) = + & σ2(s) is defined

=⇒
∃s0 ∈ S. polS(s0) = − & σ1(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ1(s1) is defined & s1 ≤S s =⇒ s1 ≤S s0

and

∀s ∈ S. polS(s) = + & σ1(s) is defined

=⇒
∃s0 ∈ S. polS(s0) = − & σ2(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ2(s1) is defined & s1 ≤S s =⇒ s1 ≤S s0 .

Copy-cat strategies are linear and linear strategies are closed under composi-
tion. Linear strategies form a sub-bicategory Games. Its sub-bicategory Lin of
deterministic subcategories is a model of MALL (multiplicative-additive linear
logic) and a promising candidate in which to establish full-completeness—work
in progress.
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10 Conclusion

We have summarised the main results on concurrent strategies to date
(December 2011). Two current research directions: One current is the develop-
ment of an intensional semantics of processes and proofs. But games and concur-
rent strategies form a generalized affine domain theory. Does the bicategory Lin
of deterministic linear strategies provide a fully-complete model of MALL? A next
step is to extend concurrent games to allow back-tracking via “copying” monads
in event structures with symmetry [16]. Another direction concerns the possible
application of concurrent games for which we seek stronger determinacy results.
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