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Abstract. Modal languages are well-known for their robust decidabil-
ity and relatively low complexity. However, as soon as one adds a self-
referencing construct, like hybrid logic’s down-arrow binder, to the basic
modal language, decidability is lost, even if one restricts binding to a
single variable. Here, we concentrate on the latter case and investigate
the logics obtained by restricting the nesting depth of modalities be-
tween binding and use. In particular, for distances strictly below 3 we
obtain well-behaved logics with a relatively high descriptive power. We
investigate the fragment with distance 1 in the framework of coalgebraic
modal logic, for which we provide very general decidability and com-
plexity results. For the fragment with distance 2 we focus on the case
of Kripke semantics and obtain optimum complexity bounds (no harder
than the base logic). We show that this fragment is expressive enough to
accommodate the guarded fragment over the correspondence language.

1 Introduction

Modal logics are known for their robust decidability and relatively low com-
plexity. However, they don’t play along well with binding constructs such as
the ↓ binder of hybrid logic, which allows naming the current point of evalua-
tion for later reference. Hybrid logic with ↓ and the satisfaction operator @ is a
conservative reduction class for first-order logic and, therefore, has undecidable
satisfiability and finite satisfiability problems (see, e.g., [3]). Undecidability in
the presence of ↓ is rather robust. E.g. it persists without @, without nominals,
and even if only one variable is allowed to be bound by ↓ (or, semantically, if only
one state can be remembered at any given time) [14]. Also, satisfiability with re-
spect to classes of models that are typically computationally well-behaved (e.g.,
linear, transitive or equivalence relation frames) is undecidable (except in the
uni-modal case) [18]. Weakened versions of ↓ were investigated and also turned
out to be undecidable [2].

Syntactic fragments of the hybrid language with ↓ were investigated in [22].
There, it is observed that undecidability of the logic with ↓ can be established
by reduction from the tiling problem using a formula that contains the so-called
�↓� pattern, i.e. a �-modality occurs under the scope of a ↓ that occurs under
the scope of a �. It is then shown that interdicting this pattern (in negation
normal forms) ensures decidability.
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Here, we investigate a different form of restriction, coming from the same ob-
servation. The reduction of the tiling problem given in [22] uses three modalities:
� is made a master modality using a spypoint; ♦1 and ♦2 are forced to be total
functions; and the crucial grid is defined by the formula

�↓x.�(s→ �(♦1♦2x→ ♦2♦1x)).

Observe that there are four modalities between the binding of x and its uses.
Informally, we say that x occurs at depth 4 from its binding. This raises the
question of the decidability status of fragments of the logic with ↓ (and only
one variable) where every use of the variable occurs at a given maximal depth
k from its binding. Known undecidabiltiy proofs work for k = 4 [14]; as a first
step in our investigation, we show that undecidability holds also for k = 3.

We then show (Section 3) that for depth at most 1, and not only for the
Kripke semantics of modal logic but for any logic in the framework of coalge-
braic logic (which supports, e.g., probabilities, counting, preferences, and game
logics) [16,21], we obtain a decidable logic with the exponential model property.
even when the global modality A is added to the language. Under mild assump-
tions, it can be shown that satisfiability is in fact in EXPTIME, a tight bound in
most cases. These results can be shown to hold also in the presence of nominals.

For Kripke semantics, we can improve these results in several ways (Section 4):
we can allow up to depth 2 and retain decidability in EXPTIME, even though the
finite model property breaks. Moreover, we establish a quasi-tree model property
for the fragment without A and prove decidability in PSPACE.

The language with A and a depth bound of 2 for occurrence of the bound vari-
able is quite expressive. In particular, we show (Section 5) that it subsumes the
guarded fragment over the modal correspondence language (without constants
and on formulas with two free variables). Because the guarded fragment does
enjoy the finite model property, the containment is proper.

2 Coalgebraic Logics with Self-reference

For greater generality, we work in the framework of coalgebraic modal logic [16],
which covers a broad range of modalities beyond the standard relational setup,
including probabilistic and game-theoretic phenomena as well as neighbourhood
semantics and non-material conditionals [21]. This framework is parametric in
syntax and semantics. The syntax is given by a similarity type Λ, i.e. a set of
modal operators with finite arities ≥ 0 (hence possibly including propositional
atoms); to simplify notation, we will pretend that all operators are unary. Adopt-
ing the notation of [14], we use the personal pronouns I and me as binder and
bindee, respectively. The full language F(Λ, I,@,A) is given by the grammar

F(Λ, I,@,A) � φ, ψ ::= ⊥ | me | φ→ ψ | ♥φ | Aφ | I.φ | @meφ

where ♥ ∈ Λ. We use the standard derived boolean operators ¬, ∧, etc., while
E denotes the dual of A. Occasionally, we will assume all formulas to be in



242 D. Goŕın and L. Schröder

negation normal form (nnf) and in such cases ¬, ∧ and ∨ will be taken as
primitive. We will also usually restrict our attention to syntactic fragments of
F(Λ, I,@,A), such as F(Λ, I,@) or F(Λ, I): the fragments without A and with
neither A nor @, respectively. We use rank(φ) to denote the maximum number
of nested occurrences of ♥ ∈ Λ in φ. The notion of rank is trivially extended to
finite sets of formulas.

The semantics of the logic is given by an endofunctor T : Set → Set and,
for each ♥ ∈ Λ, a predicate lifting �♥�, i.e., a natural transformation �♥� :
Q → Q ◦ T op , where Q is the contravariant powerset functor Setop → Set (i.e.
QX = 2X and Qf(A) = f−1[A]). As usual, T is assumed w.l.o.g. to preserve
injective maps [5] and to be non-trivial, in the sense that TX = ∅ implies X = ∅.

Models of the logic are T -coalgebras 〈X, γ〉, where X is a non-empty set of
states and γ : X → TX is the transition function. Given two states x, y ∈ X (the
current and the remembered state, respectively), the truth value of F(Λ, I,@,A)-
formulas is inductively defined by:

y, x |=γ me ⇐⇒ x = y y, x |=γ Aφ ⇐⇒ ∀z ∈ X. z, z |=γ φ
y, x |=γ ♥φ ⇐⇒ γ(x) ∈ �♥�X�φ�γ,y y, x |=γ @meφ ⇐⇒ y, y |=γ φ
y, x |=γ I.φ ⇐⇒ x, x |=γ φ

where �φ�γ,x = {z ∈ X | x, z |=γ φ}; Boolean operations were omitted. When
clear from context, we shall write simply y, x |= φ and �φ�x.

Occurrences of me in φ that are not under the scope of an I-binder are said to
be free. A formula that contains no free occurrences of me is called a sentence.

Lemma 1. If φ is a sentence, then y, x |=γ φ iff x, x |=γ φ, for all x, y.

Therefore, for a sentence φ, we may omit the remembered state and write x |=γ φ.

Example 2. 1. Kripke semantics is an instance of coalgebraic semantics:
For n < ω, the signature Kn has unary modal operators �1,�2, . . .�n and a
countably infinite set P of propositional atoms (nullary operators). As usual, ♦i
is the dual of �i, i.e. ♦iφ = ¬�i¬φ. The semantics is given by the endofunctor
T defined by TX = (PX)n × PP, equipped with predicate liftings ��i�X(C) =
{(A1, . . . , An, B) ∈ TX | Ai ⊆ C} and �p�X = {(A1, . . . , An, B) ∈ TX | p ∈ B}
for p ∈ P. Then T -coalgebras assign to each state an n-tuple of sets of successors
and a valuation for P, and hence are exactly Kripke models with n relations. We
shall denote these as Pn-models 〈X, γ, π〉 with γ : X → (PX)n and π : X → PP.

2. In graded logic [8] one has modal operators ♦k for k ≥ 0, read ‘in more than
k successors, it holds that’. We can interpret this logic over the functor B that
takes a setX to the set BX of multisets overX , i.e. mapsB : X → N∪{∞}, using
the predicate liftings �♦k�X(A) = {B ∈ B(X) |

∑
x∈AB(x) > k}. This captures

the multigraph semantics of graded modalities [7], which in the absence of I-me
engenders the same notion of satisfiability as the more standard Kripke semantics
of graded modalities [19].
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3. Probabilistic logic [13] has operators Lp ‘in the next step, it holds with
probability at least p’, for p ∈ [0, 1] ∩ Q. Its semantics is based on the func-
tor D mapping X to the set of discrete probability distributions on X , with
�Lp�X(A) = {P ∈ D(X) | PA ≥ p}. D-coalgebras are Markov chains.

Other modal logics that fit in the coalgebraic paradigm include neighbourhood
semantics, coalition logic, and non-monotonic conditionals ⇒ (‘if – then nor-
mally’), to name just a few [21].

Remark 3. One may consider variants @∗
me and A∗ of the operators @me and

A with semantic clauses y, x |=γ @∗
meφ ⇐⇒ x, y |=γ φ and y, x |=τδ A∗φ ⇐⇒

∀z ∈ X.y, z |=τδ φ, respectively (so that @me = @∗
meI and A = A∗I). The operator

@∗
me is not in general expresible in F(Λ, I,@,A): one can show using the notion

of bisimulation introduced in Section 4 that the formula I.♦(¬me∧@∗
me♦¬me) is

not expressible in F(Kn, I,@,A). In the relational case, one can however give a
polynomial reduction using inverse relations (which can be defined in F(Kn, I,@)
as shown below). Also A∗ is not in general expressible in F(Λ, I,@,A): in the
relational case, a sink can be defined by the formula I.A∗(¬me → ♦me); again,
inexpressibility of this property in F(Kn, I,@,A) is shown using bisimulations.
Technically, A∗ has a number of undesirable properties; e.g. unlike A it cannot be
reduced to TBox reasoning (Remark 4), and moreover it subverts the semantic
idea behind the depth restriction.

Remark 4. In the following, we will work with TBoxes in the style of descrip-
tion logic instead of the A operator in full generality, i.e. we will assume that
all formulas are of the form (Aφ) ∧ ψ where φ, ψ do not contain A; satisfiability
of such a formula will be referred to as satisfiability of ψ over (the TBox) φ.
Similarly, we refer to validity over φ, soundness over φ etc. Algorithmically, we
can reduce the A-operator to TBox reasoning as follows. We first guess which
subformulas Aφ of the target formula are valid (one can do this already in NP;
algorithms for A happen in EXPTIME). Given this guess, we can eliminate all
occurrences of A, thus ending up with a modified target formula, a TBox, and
a conjunction ¬Aρ1 ∧ · · · ∧ ¬Aρk. As our logic is invariant under coproducts of
models, it now suffices to check (separately) that the target formula and the
formulas ¬ρi are satisfiable over the TBox.

We are interested in the modal distance between every bound occurrence of me
and its associated I. We now make this notion precise. We define sets of formulas
Fn
i (Λ, I,@,A) (0 ≤ i ≤ n) intuitively containing those formulas where i) every

free occurrence of me is under at most i− 1 modalities; and ii) there are at most
n modalities between every bound me and its corresponding I:

Fn
0 (Λ, I,@,A) � φn0 , ψ

n
0 ::= ⊥ | p | φn0 → ψn0 | ♥φn0 | I.φnn | Aφn0

Fn
l (Λ, I,@,A) � φnl , ψ

n
l ::= me | ⊥ | p | φnl → ψnl | ♥φnl−1 | I.φnn | Aφn0 | @meφ

n
l

where l > 0. Notice that me does not occur in Fn
0 (Λ, I,@,A). According to the

grammar, me cannot occur free under A, which is not a real restriction as any
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Table 1. Encoding of the grid of an N× N tiling in F3(K9, I). Here L = {u, r, ur, ru}.

∧

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I.♦¬me ∧ I.�¬me ∧ I.�♦me ∧ I.��me∧
∗∈L (I.��∗♦me ∧ I.��∗♦me) ∧

∧
∗∈L (��∗I.�♦me ∧ ��∗I.�♦me)∧

∗∈L (�I.�∗�∗me ∧�I.�∗♦∗me ∧�I.�∗�∗me ∧�I.�∗�∗me)
�I.�u�r�urme ∧�I.�r�u�rume
�♦u� ∧�♦r� ∧�I.�ur�rume

formula Aφ is equivalent to AI.φ. We will usually write Fn(. . .) instead of Fn
n (. . .)

and informally refer to it as the formulas of depth n, which form the depth-n
fragment. We assume w.l.o.g. that I occurs only in front of modal operators.

Theorem 5. Satisfiability is undecidable for F4(K1, I) and for F3(K9, I).

Proof (sketch). Both claims are shown by reduction from the N×N tiling prob-
lem (cf. [6]) using the so-called spypoint technique. The proof for F4(K1, I)
can be found in [14] (a simpler one but for F4(K3, I) is given in [22]). Here
we show the construction for F3(K9, I). For the sake of clarity, we assume
K9 = {�,�u,�r,�ur,�ru,�u,�r,�ur,�ru}; �u and �r represent moving one
step, up or right, in the grid, while �ur and �ru correspond to a two-step move
up-right and right-up. Each �∗ is intended to be the inverse of �∗. We use � to
go back and forth between the points of the grid and the spypoint. The latter is
the initial point of evaluation. The encoding of the grid is shown in Table 1. The
first two lines define a spypoint. The next line makes �∗ and �∗ inverses and,
exploiting this fact, injective functions. The last two lines make �ur and �ru
composites of �u and �r, and force �u and �r to commute, respectively. ��

The stepmother example from [14] (I.♦hasSpouse♦hasChild�hasParent¬me) lives in the
depth-3 fragment, while the celebrity needs only depth 2 (I.�meets♦knowsme).
Although it is possible to reduce the number of relation symbols required in the
proof above (see, e.g. [14]), the decidability of F3(K1, I) remains open.

3 The Depth-1 Fragment in Coalgebraic Semantics

As a first step in our program, we investigate the depth-1 fragment, which allows
for defining the narcissist (I.♦lovesme) and the egotist (I.�loves.me), but can
also be applied in the coalgebraic setting to express phenomena such as usually
knowing oneself on Tuesdays (if maybe not on Mondays), I.Tuesday ⇒knows me
(here we index conditionals by role names) or a Markov chain staying in the
current state with probability at least 2/3 (I. L2/3me). Specifically, we prove that
even at the general coalgebraic level, the depth-1 fragment has the exponential
model property over general TBoxes (and hence in the presence of A), with
ensuing generic decidability and complexity results.

As we work in the depth-1 fragment, we can assume that every occurrence of
♥ ∈ Λ is prefixed by I, and we regard I.♥ as a single operator — consequently,
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the subformulas of I.♥φ are I.♥φ and the subformulas of φ, but not ♥φ. We next
recall some notation and previous results.

Definition 6. We use Prop(V ) to denote the set of Boolean expressions over
a set V (of atoms) and put Λ(V ) = {I.♥v | ♥ ∈ Λ, v ∈ V }. For any set X , an
X-substitution for V is a function V → X . Given α ∈ Prop(V ) and a P(X)-
substitution τ , �α�X,τ is the extension of α in the boolean algebra P(X) under
the interpretation τ . Similarly, for a functor T and predicate liftings �♥�, we write
�α�TX,τ , with α ∈ Prop(Λ(V )) and τ a P(X)-substitution for V , to denote the
extension of α in the boolean algebra P(TX) under the interpretation function
λ♥v.�♥�X(τ(v)). We say that that α is one-step satisfiable over τ if �α�TX,τ �= ∅.
Definition 7. A clause over V is a disjunction of atoms in V ∪ ¬V . A one-
step rule over a set V is a pair φ/ψ where φ ∈ Prop(V ) and ψ is a clause
over Λ(V ). A one-step rule φ/ψ is one-step sound if whenever �φ�X,τ = X , then
�ψ�TX,τ = TX . A collection R of one-step rules is one-step complete if whenever
�χ�TX,τ = TX with χ a clause over Λ(V ), then there exist φ/ψ ∈ R over V and
a V -substitution σ such that ψσ propositionally entails χ and �φσ�X,τ = X .

In proofs, a one-step rule φ/ψ over V is applied in substituted form, i.e. conclude
ψσ from φσ, where σ substitutes formulas for the variables in V . Thanks to the
following result, we can assume that we have a one-step complete set R of one-
step sound rules.

Theorem 8 ([19]). The set of all one-step sound rules for a functor T and its
corresponding predicate liftings is one-step complete.

We will first show that whenever φ is satisfiable over a TBox χ, then φ has an
exponentially bounded model (in |χ| + |φ|) satisfying χ. To this end, we let Σ
be the closure of {φ, χ} under subformulas (in the above sense), negation, and
prefixing with @me, where we identify ¬¬φ with φ, ¬@meφ with @me¬φ, and
@me@meφ with @meφ. We use Σ′ to denote the set of sentences in Σ. We let Sχ
be the set of all maximally satisfiable subsets of Σ′ containing χ.

We build a syntactic model whose domain 2Sχ contains two copies of each
B ∈ Sχ. Formally, we define 2Sχ = {�,⊥}×Sχ and let l : 2Sχ → Sχ denote the
second projection. For A ∈ Sχ, let Sχ,A denote the set of maximally satisfiable
subsets of Σ (which may contain free occurrences of me) extending {χ}∪@meA,
where @meA = {@meψ | ψ ∈ A}. For each (a,A) ∈ 2Sχ, we define a function
r(a,A) : Sχ,A → 2Sχ as r(a,A)(B) = (b, B ∩ Σ′) where b = � iff B entails the
formula a↔ me.

For x ∈ 2Sχ, we define a valuation τx : VΣ → P(2Sχ) on VΣ = {aρ | ρ ∈ Σ}
by τx(aρ) = [ρ]x, with [ρ]x given by the usual clauses for Boolean operators plus

[a]x = {y ∈ 2Sχ | a ∈ l(y)} [me]x = {x}
[@meρ]x = {y ∈ 2Sχ | x ∈ [ρ]x} [I.♥ρ]x = {y ∈ 2Sχ | I.♥ρ ∈ l(y)}.

Also, define ηA : VΣ → P(Sχ,A) by ηA(aρ) = {B ∈ Sχ,A | ρ ∈ B}. The following
key lemma, whose proof depends crucially on the fact that for every x ∈ 2Sχ,
rx : Sχl(x) → 2Sχ is injective, allows us to move from the complex definition of
τx to the simpler ηl(x):
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Lemma 9. For all ρ ∈ Σ and x ∈ 2Sχ, ηl(x)(aρ) = r−1
x [τx(aρ)].

We let σΣ : VΣ → Σ by σΣ(aρ) = ρ and then have, similar to Lemma 27 in [19],

Lemma 10. For A ∈ Sχ and θ ∈ Prop(VΣ), �θ�Sχ,A,ηA = Sχ,A iff @me

∧
A →

θσΣ is valid over the TBox χ (
∧
A is the conjunction of all formulas in A).

Lemma 11 (Existence). There is a coherent coalgebra structure ξ on 2Sχ,
i.e., one such that ξ(x) ∈ �♥�[ρ]x iff x ∈ [I.♥ρ]x for every x and every I.♥ρ ∈ Σ.

The key point in the proof of the existence lemma in comparison to the base
case [19] is the following lemma.

Lemma 12 (Rule relativization). If θ/ψ is a sound one-step rule, then we
can soundly conclude ρ→ ψσ from @meρ→ θσ, for any substitution σ and any
sentence ρ.

Lemma 13 (Truth). Let ξ be a coherent coalgebra structure on 2Sχ. Then
x, y |=ξ ρ iff y ∈ [ρ]x for ρ ∈ Σ and hence x, y |=ξ ρ′ iff ρ′ ∈ l(y) for ρ′ ∈ Σ′.

Theorem 14. F1(Λ, I,@,A) has the exponential model property. Moreover, if
one-step satisfiability is in NP, satisfiability is NEXPTIME; when the former is
in P, the latter is in EXPTIME.

Proof. The exponential model property is established by the above construction,
as 2Sχ has exponential size. One-step satisfiability in NP allows guessing and
checking an exponential model in exponential time [19]. With one-step satisfia-
bility in P we can use Hintikka set elimination, similarly as in [20].

Remark 15. The EXPTIME bound is tight already in the relational case. Al-
most all instances of coalgebraic logics, including conditional logics, alter-
nating-time/coalition logics, and probabilistic logics, have one-step satisfiability
problems in P [19], so that the EXPTIME result applies in these cases. We have
little doubt that using global caching, one can show an EXPTIME bound for so-
called EXPTIME-tractable instances [9], which would cover essentially all cases of
interest. For graded logics (whose one-step satisfiability problem is NP-complete),
we have recent results proving an EXPTIME bound even at depth 2 [10].

Remark 16. Theorem 14 generalizes to a setting with nominals [3], i.e. propo-
sitional symbols i denoting single states which can appear by themselves or in
satisfaction operators @iρ (‘ρ holds at state i’). That is, the result also holds in
the framework of coalgebraic hybrid logic [15]. Only minor modifications of the
construction are required, the most notable one being that elements of Sχ that
are named, i.e. contain a positive nominal, are not duplicated in the construction
of the carrier. This is in sharp contrast to the depth-2 case, studied next, where
nominals cause drastic effects even in the relational case (Remark 25).
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4 The Depth-2 Fragment in Kripke Semantics

We will next we focus on the depth-2 fragment under relational semantics, i.e.,
F2(Kn, I,@,A) and some of its fragments. Syntactically, we view this as a logic
with two types of modal operators, I.�i and �i; by the depth-2 restriction,
no �i can occur directly under another �j . Our main result is decidability in
EXPTIME (even in PSPACE without A). This contrasts with Theorem 5 and,
more generally, with the robust undecidability of F(Kn, I) (Section 1).

A detailed observation of the proof of Theorem 5 shows that F2(Kn, I,@,A)
is quite expressive: only two formulas are needed outside this fragment. In par-
ticular, Table 1 illustrates that in depth-2, one can define inverse and functional
relations, and similarly one can define reflexive and symmetric relations. As an-
other example, consider the formula γ = ♦�∧ I.�(¬me∧♦me)∧�I.�♦¬me. It
is not hard to see that x |= γ implies that x has at least two successors, i.e. satis-
fies the formula ♦>1�, where ♦>1 is a graded modality (cf. Example 2). We can
delineate the expressive power of F2(Kn, I,@,A) using a notion of bisimulation:

Definition 17. Let 〈X, γ, π〉 and 〈Y, δ, τ〉 be Pn-models. Then Z1, Z2 ⊆ X2 ×
Y 2 constitute an I@A2-bisimulation whenever they satisfy all the conditions in
Table 2. The weaker notions of I@2-, IA2- and I2-bisimulations are obtained by
ignoring clauses {Al,Ar}, {@} and {Al,Ar,@}, respectively.

Proposition 18. Let 〈X, γ, π〉 and 〈Y, δ, τ〉 be two Pn-models such that relations
Z1, Z2 ⊆ X2 × Y 2 constitute an I@A2-bisimulation between them. Then:

1. (x0, x1)Z1(y0, y1) =⇒ (x0, x1 |=πγ φ ⇐⇒ y0, y1 |=τδ φ) ∀φ ∈ F1(Kn, I,@,A)
2. (x0, x1)Z2(y0, y1) =⇒ (x0, x1 |=πγ φ ⇐⇒ v0, v1 |=τδ φ) ∀φ ∈ F2(Kn, I,@,A)

Analogous results hold for I@2-, IA2- and I2-bisimulations.

Example 19. Formula γ above shows that F2(Kn, I) can express some car-
dinality requirements on successors. We make this expressivity more precise
by showing that it cannot distinguish structures with two and three succes-
sors. Consider two P-models 〈X, γ, π〉 and 〈A, δ, τ〉 where X = {x, y0, y1}; A =
{a, b0, b1, b2}; π(p) = τ(p) = ∅ for all proposition p; and γ and δ are such that

Table 2. Conditions that define a IA@2-bisimulation. Z∗ stands for both Z1 and Z2.

(p) (x0, x1)Z∗(y0, y1) =⇒ (x1 ∈ π(p) ⇐⇒ y1 ∈ τ (p)), for each proposition p
(me) (x0, x1)Z∗(y0, y1) =⇒ (x0 = x1 ⇐⇒ y0 = y1)
(I.�l) (x0, x1)Z1(y0, y1) and x1Rix2 =⇒ ∃y2 st. y1Riy2 and (x1, x2)Z∗(y1, y2)
(�l) (x0, x1)Z2(y0, y1) and x1Rix2 =⇒ ∃y2 st. y1Riy2 and (x0, x2)Z1(y0, y2)
(I.�r) (x0, x1)Z1(y0, y1) and y1Riy2 =⇒ ∃x2 st. x1Rix2 and (x1, x2)Z∗(y1, y2)
(�r) (x0, x1)Z2(y0, y1) and y1Riy2 =⇒ ∃w2 st. x1Rix2 and (x0, x2)Z1(y0, y2)
(@) (x0, x1)Z∗(y0, y0) =⇒ (x0, x0)Z∗(y0, y0)
(Al) ∀x∃y st. (x, x)Z∗(y, y)
(Ar) ∀y∃x st. (x, x)Z∗(y, y)
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Rγ = {(x, yi) | 0 ≤ i ≤ 1} and Rδ = {(a, bi) | 0 ≤ i ≤ 2}. It is not hard to verify
that Z1 = Z2 = {(s, t) ∈ X2 ×A2 | ∀0 ≤ i ≤ 1, πi(s) = a ⇐⇒ πi(t) = x} con-
stitute an I2-bisimulation.

4.1 F2(Kn, I) Is PSPACE-Complete

Using Proposition 18 we will show that F2(Kn, I) possesses a variant of the tree-
model property: every satisfiable formula has a model that is contained in the
reflexive-symmetric closure of a tree. Moreover these quasi-tree-models can be
shown to be shallow, i.e., have a depth polynomial on the size of the formula.
As usual, this is key in deriving a decision procedure for satisfiability that runs
in polynomial space.

Definition 20. We say that S ⊆ X2 is a quasi-tree with root r if for some tree R
with root r, R ⊆ S ⊆ R∪R−1∪ IdX . A Pn model 〈X, γ, π〉 is a quasi-tree-model
with root r when

⋃
iRγ,i is a quasi-tree with root r.

Theorem 21 (Quasi-tree model property). If φ ∈ F2(Kn, I) is a satisfiable
sentence then there exists a quasi-tree model that satisfies φ at its root.

Proof (sketch). By Lemma 1, let X be a model with domain X such that r, r |=πγ
φ, for some r ∈ X . One builds an unravelling A of X such that it contains all
the paths in X from r where no self-loop is ever taken and such that one never
immediately returns to the preceding state, regardless of the relation used. This
unravelling gives us a quasi-tree and one then shows it to be bisimilar X .

We are now ready to introduce the announced tableau construction. In this
context, we will restrict our attention to F2(Kn, I)-formulas in nnf subject to
the following restriction: if me occurs free in φ, then it does so under the scope
of some modality. Notice that for such a formula �iφ, φ need not satisfy this
condition. We solve this by defining, for an arbitrary formula φ, φ(�) and φ(⊥)
as the result of replacing every free occurrence of me that is not under a modality
by � and ⊥, respectively. E.g., for φ = me∧�ime, φ(⊥) = ⊥∧�ime; the former
does not satisfy the restriction above, the latter does.

Given a set of formulas Σ, its closure Cl(Σ), is the smallest set that is closed
under nnf negation and pseudo-subformulas, that is, if φ ∈ Cl(Σ) and ψ is a
subformula of φ, then ψ(�) and ψ(⊥) are in Cl(Σ) as well. Cl∗(Σ) denotes the
set of sentences in Cl(Σ).

Let φ be a F2(Kn, I)-sentence. A tableau for φ is then a labelled quasi-tree
T = 〈T,R, ·T 〉 with root r, where each directed edge (s, t) ∈ R is labelled with a
non-empty set of relation indices (s, t)T ⊆ {1 . . . n} (we write sRit if (s, t) ∈ T
and i ∈ (s, t)T ) and each node is labelled with a tuple sT = 〈H∗, H∗∗, Hf∗, H∗f〉
where H∗ is a Hintikka set over (some subset of) Cl∗({φ}) and all the others are
Hintikka sets over (subsets of) Cl ({φ}) (for an s ∈ T , we will denote these sets
by sT∗ , s

T
∗∗, s

T
f∗ and sT∗f ; or even s∗, s∗∗, sf∗ and s∗f if T is clear from context).

Intuitively, sT∗ contains sentences that hold at s (where the remembered state
is irrelevant); sT∗∗ contains formulas that hold at s when the remembered state is
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Table 3. Conditions for a tableau T for φ with root r. For s ∈ T , fs is the father
of s (if s 	= r); and t1, . . . tk ∈ T are the children of s. We use t to designate some
existentially quantified children of s. Also L = {∗, ∗∗, f∗, ∗f}.

1. φ ∈ r∗ and rf∗ = r∗f = ∅.
2.

⋃
x∈L sx ⊆ Cl({φ}) and rank(

⋃
x∈L sx) > rank(

⋃
x∈L tjx) for all j.

3. For a sentence ψ, if ψ ∈ s∗∗ ∪ sf∗ or ψ ∈ t∗f , then ψ ∈ s∗.
4. If ♦iψ ∈ s∗ or I.♦iψ ∈ s∗, then some of the following must hold:

i) sRifs, ψ(⊥) ∈ s∗f ; ii) sRis, ψ(�) ∈ s∗∗; iii) sRit, ψ(⊥) ∈ tf∗.
5. If �iψ ∈ s∗ or I.�iψ ∈ s∗, then all of the following must hold:

i) sRifs =⇒ ψ(⊥) ∈ s∗f ; ii) sRis =⇒ ψ(�) ∈ s∗∗; iii) sRit =⇒ ψ(⊥) ∈ tf∗.
6. If ♦iψ ∈ s∗∗ (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(⊥) ∈ fs∗; ii) sRis, ψ(�) ∈ s∗; iii) sRit, ψ(⊥) ∈ t∗.
7. If �iψ ∈ s∗∗ (with me free in ψ), then all of the following must hold:

i) sRifs =⇒ ψ(⊥) ∈ fs∗; ii) sRis =⇒ ψ(�) ∈ s∗; iii) sRit =⇒ ψ(⊥) ∈ t∗.
8. If ♦iψ ∈ sf∗ (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(�) ∈ fs∗; ii) sRis, ψ(⊥) ∈ s∗; iii) sRit, ψ(⊥) ∈ t∗.
9. If �iψ ∈ sf∗ (with me free in ψ), then all of the following must hold:

i) sRifs =⇒ ψ(�) ∈ fs∗; ii) sRis =⇒ ψ(⊥) ∈ s∗; iii) sRit =⇒ ψ(⊥) ∈ t∗.
10. If ♦iψ ∈ tj∗f (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(⊥) ∈ fs∗; ii) sRis, ψ(⊥) ∈ s∗;
iii) sRitj , ψ(�) ∈ tj∗; iv) sRitk, j 	= k, ψ(⊥) ∈ tk∗.

11. If �iψ ∈ tj∗f (with me free in ψ), then all of the following must hold:
i) sRifs =⇒ ψ(⊥) ∈ fs∗; ii) sRis =⇒ ψ(⊥) ∈ s∗;
iii) sRitj =⇒ ψ(�) ∈ tj∗; iv) sRitk with j 	= k =⇒ ψ(⊥) ∈ tk∗.

s, sTf∗ the ones that hold when the remembered state is the father of s and sT∗f
the formulas that hold at the father of s when the remembered state is s. This
intuition suggests the conditions in Table 3. Notice that conditions 7–11 heavily
use the fact that, because I is assumed to occur always in front of a modality,
me cannot occur free under a modality in ψ.

Lemma 22. There exists a tableau for a sentence φ iff φ is satisfiable.

Lemma 23. Let φ be a satisfiable sentence. Every tableau for φ has depth
bounded by rank(φ). Moreover, φ has a tableau with breadth polynomial in |φ|.
Theorem 24. The satisfiability problem for F2(Kn, I) is PSPACE-complete.

Remark 25. Unlike the depth-1 case (Remark 16) this result does not hold
in the presence of nominals, were we can form a spypoint using the formula:
s ∧�(♦s ∧

∧
i�iI.♦(s ∧ ♦me)), internalizing global reasoning. This gives us the

possibility of defining functions and inverses, which in combination with nominals
cause NEXPTIME-hardness and break the finite model property.

4.2 F2(Kn, I,@) Is PSPACE-Complete

It is not hard to see that F2(Kn, I,@) is as expressive as F2(Kn, I), although
perhaps more succinctly so. Indeed, as an example, consider the form
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�iI.�j(p∨�k(@me♦lme → p)). A trivial transformation leads to the equivalent
formula �iI.((♦lme ∧�j (p ∨�k(� → p)))∨ (¬♦lme ∧�j (p ∨�k(⊥ → p)))). It
is not hard to generalize this example into a truth-preserving translation from
F2(Kn, I,@) to F2(Kn, I) but with an exponential blow-up in size.

Lemma 26. There exists a polynomial, satisfiability preserving translation from
F2(Kn, I,@) to F2(Kn, I).

Proof. We use the standard technique of replacing subformulas by fresh propo-
sitional symbols. We illustrate the idea translating the example used above and
leave the formal details to the reader. The translated formula we obtain in this
case is �iI.(♦lme ↔ q ∧ (q → �j�kq) ∧ (¬q → �j�k¬q) ∧�j (p ∨�k(q → p))),
where q is fresh. Notice that formulas (¬)q → �j�k(¬)q are used to propagate
the value of q to the modal context in which the @-formula originally occurred.

Theorem 27. Satisfiability for F2(Kn, I,@) is PSPACE-complete.

4.3 F2(Kn, I,@,A) Is EXPTIME-Complete

We begin by observing that the proof of Lemma 26 can be used to show also
that F2(Kn, I,@,A) is polynomially reducible to F2(Kn, I,A), so the latter is the
logic we will consider. Moreover, we reduce A to TBoxes (Remark 4).

Now, it is not hard to adapt conditions 2 in Table 3 in order to obtain a
tableau for F2(Kn, I,A) such that an analogue of Lemma 22 holds. However,
we will not be able to give a bound for the depth of this tableau. In fact, since
F2(Kn, I,A) encodes inverse functional roles, standard examples show

Theorem 28. F2(K2, I,A) lacks the finite model property.

We will show that we can nevertheless effectively decide existence of infinite
tableaux by encoding the problem in the description logic ALCHIQ, whose
satisfiability problem with respect to general TBoxes is EXPTIME-complete [12].
As a modal language (i.e. avoiding the more common DL syntax), ALCHIQ
contains graded modalities ♦>ni and �≤n

i and inverse modalities (denoted by �i
and �i). Additionally it features role inclusion axioms Ri � Rj , which roughly
correspond to AI.�i�jme. For an introduction to description logics, see [4].

Remark 29. In terms of descriptive power, ALCHIQ is not more expressive
than F2(Kn, I); for instance �I.♦me has no ALCHIQ equivalent.

Assume we are given a F2(Kn, I)-formula φ and a general TBox χ. The encoding
into ALCHIQ will use relation symbols R1, . . . , Rn and Rf , with role inclusion
axioms R−1

i � Rf for 1 ≤ i ≤ n (where R−1
i denotes the inverse relation of

Ri). Moreover, we impose a TBox axiom �≤1
f �, so that Rf is interpreted as a

partial function. This essentially means that we work with tree-models, where
Rf represents the “father-of” relation. Notice that a node may reach its children
by more than one Ri. Since models will be proper trees, we will need to make
explicit provisions for quasi-trees in the encoding.
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Table 4. Encoding of conditions 3–11 in Table 3 as global axioms in ALCHIQ

3.
∧
ψ∈Σ0

(ρ∗∗:ψ → ρ∗:ψ) ∧ (ρf∗:ψ → ρ∗:ψ) ∧ (ρ∗f :ψ → ♦fρ∗:ψ)
4.

∧
(I.)♦iψ∈Σ0

ρ∗:(I.)♦iψ →
((
↑i ∧ ρ∗f :ψ(⊥)

)
∨
(
�i ∧ ρ∗∗:ψ(�)

)
∨ ♦iρf∗:ψ(⊥)

)

5.
∧

(I.)�iψ∈Σ0
ρ∗:(I.)�iψ →

((
↑i → ρ∗f :ψ(⊥)

)
∧
(
�i → ρ∗∗:ψ(�)

)
∧�iρf∗:ψ(⊥)

)

6.
∧

♦iψ∈Σ1
ρ∗∗:♦iψ →

((
↑i ∧ �fρ∗:ψ(⊥)

)
∨
(
�i ∧ ρ∗:ψ(�)

)
∨ ♦iρ∗:ψ(⊥)

)

7.
∧

�iψ∈Σ1
ρ∗∗:�iψ →

((
↑i → �fρ∗:ψ(⊥)

)
∧
(
�i → ρ∗:ψ(�)

)
∧�iρ∗:ψ(⊥)

)

8.
∧

♦iψ∈Σ1
ρf∗:♦iψ →

((
↑i ∧�fρ∗:ψ(�)

)
∨
(
�i ∧ ρ∗:ψ(⊥)

)
∨ ♦iρ∗:ψ(⊥)

)

9.
∧

�iψ∈Σ1
ρf∗:�iψ →

((
↑i → �fρ∗:ψ(�)

)
∧
(
�i → ρ∗:ψ(⊥)

)
∧�iρ∗:ψ(⊥)

)

10.
∧

♦iψ∈Σ1
ρ∗f :♦iψ →

(
♦f

(
↑i ∧ ρ∗:ψ(⊥)

)
∨ ♦f

(
�i ∧ ρ∗:ψ(⊥)

)
∨
(
�i� ∧ ρ∗:ψ(�)

)

∨
(
ρ∗:¬ψ(⊥) ∧ ♦f♦iρ∗:ψ(⊥)

)
∨
(
ρ∗:ψ(⊥) ∧ ♦f♦>1

i ρ∗:ψ(⊥)

)
)

11.
∧

�iψ∈Σ1
ρ∗f :�iψ →

⎛

⎜⎜⎝

♦f
(
↑i → �fρ∗:ψ(⊥)

)
∧ ♦f

(
�i → ρ∗:ψ(⊥)

)

∧
(
�i⊥ → ♦f�iρ∗:ψ(⊥)

)

∧�i� →
(
ρ∗:ψ(�) ∧

(
ρ∗:ψ(⊥) → ♦f�iρ∗:ψ(⊥) ∧
ρ∗:¬ψ(⊥) → ♦f�≤1

i ρ∗:ψ(⊥)

))

⎞

⎟⎟⎠

Let L = {∗, ∗∗, f∗, ∗f}, Σ = Cl ({χ, ψ}), Σ0 = Cl∗({χ, ψ}) and Σ1 = Σ \Σ0.
We use the set V = {ρl:ψ | l ∈ L,ψ ∈ Σ} ∪ {�i | 1 ≤ i ≤ n} ∪ {↑i | 1 ≤ i ≤ n} of
proposition symbols. Intuitively we want ρl:ψ to hold at a state s of a (quasi-)tree
if ψ ∈ sl. Moreover �i and ↑i are used to denote that state s has a self-loop or
reaches his father, respectively.

Since we want χ to hold globally, we impose the TBox axiom ρ∗:χ. Also, we
require nodes to be labelled with Hintikka sets by means of the TBox axiom∧
l∈L(¬ρl:⊥ ∧

∧
ψ∈Σ ¬(ρl:ψ ∧ ρl:¬ψ) ∧

∧
ψ1�ψ2∈Σ(ρl:ψ1�ψ2 → ρl:ψ1 � ρl:ψ2)).

To ensure a correct distinction between the root and non-root nodes, we im-
pose TBox axioms ↑i → ♦f� which state that ↑i can only hold at non-root
nodes. Moreover, conditions 3 to 11 are encoded by the TBox axioms shown in
Table 4. The encoding is straightforward, except for conditions 10 and 11, since
ALCHIQ provides no direct way of expressing the requirement tj �= tk (cf. Ta-
ble 3). In the case of condition 10, for instance, we overcome this by splitting
into cases: if tj �|= ψ(⊥), then any tk that satisfies ψ(⊥) will be different from ti;
otherwise, we use the graded modality ♦>1 to ensure another one exists.

Existence of a tableau for Aχ ∧ φ then amounts to the satisfiability, over the
TBox described above, of the formula ρ∗φ ∧�f⊥ ∧

∧
ψ∈Σ0

(¬ρf∗:ψ ∧ ¬ρ∗f :ψ).

Theorem 30. Satisfiability for F2(Kn, I,@,A) is EXPTIME-complete.

5 Embedding the Guarded Fragment

Modal correspondence theory studies the relation between modal logic and clas-
sical logics, most notably, first-order logic (cf. [23]). The link is typically estab-
lished through the modal correspondence language: a first-order language with
only one-place and two-place relation symbols; the former stand for proposition



252 D. Goŕın and L. Schröder

symbols on the modal side, the latter for (relational) modalities. Kripke mod-
els can then be seen as relational models, and well-known translations allow
embedding many modal logics into first-order logic (FO).

The guarded fragment of FO [1], characterized by its guarded quantification
pattern, generalizes the modal fragment of FO. It enjoys good computational
properties: both the finite model property and a form of tree-model property,
and an EXPTIME-complete satisfiability problem (under bounded arity) [11].

We will see that the guarded fragment over the modal correspondence lan-
guage can be almost perfectly (i.e. using fresh relation symbols whose inter-
pretation is uniquely determined by that of the old symbols) embedded into
F2(Kn, I,@,A). While they agree on the complexity of satisfiability, because the
latter lacks the finite model property (Theorem 28), the containment is proper.

We need to make precise what we mean by an almost perfect embedding. For
Kn = {�1, . . . ,�n}, let tense F2(Kn, I,@,A) to be the logic F2(K2n, I,@,A),
with K2n = {�1, . . .�n,�1, . . .�n}, restricted to the class of models that satisfy
the formula A

∧
i≤n (I.�i�ime ∧ I.�i♦ime), i.e. those where �i and �i are inter-

preted as inverse relations. There is a bijection between models for F2(Kn, I,@,A)
and models for tense F2(Kn, I,@,A).

Theorem 31. Given a guarded formula α(x1, x2) in the correspondence lan-
guage for Kn, there is a φ in tense F2(Kn, I,@,A) such that for every C, C |=fo

α[x1 �→ c1, x2 �→ c2] iff c1, c2 |= φ.

Proof. First, observe that every guarded formula with two free variables over the
correspondence language is equivalent to a guarded formula of FO2. Moreover,
the set of guarded formulas of FO2 can be split into four overlapping sets G∅,
Gx1 , Gx2 and Gx1x2 , such that α ∈ G� iff the free variables of α are among �.
These sets can be described by simple, mutually recursive grammars, as shown
in Table 5, where x ranges over {x1, x2}, ẋ1 = x2 and ẋ2 = x1. Finally, Table 6
exhibits translation functions (Booleans omitted) for each of these sets. An in-
duction over α ∈ G� shows that C |=fo α[ẋ �→ c1, x �→ c2] iff c1, c2 |= T �ẋx(α). ��

Remark 32. One point to observe about Table 6 is that modal operators appear
without a preceding I only in formulas of the form ♦ime and �ime; contrastingly,
F2(Kn, I) would also allow formulas such as ♦i(¬me ∧ φ). Indeed one can show
that the guarded fragment is essentially the extension of F1(Kn, I,@,A) with

Table 5. The guarded fragment of FO2 is the union of G∅, Gx1 , Gx2 and Gx1,x2

G∅ � α, β Gx � α(x), β(x) Gxẋ � α(x, ẋ), β(x, ẋ)

¬α | α ∨ β
∃x.x = x ∧ α(x)
∃x.Px ∧ α(x)
∃x.Rxx ∧ α(x)
∃x∃ẋ.Rxẋ ∧ α(x, ẋ)

x = x | Px | Rxx | α
¬α(x) | α(x) ∨ β(x)
∃ẋ.x = ẋ ∧ α(x, ẋ)
∃ẋ.Rxẋ ∧ α(x, ẋ)
∃ẋ.Rẋx ∧ α(x, ẋ)

x = ẋ | Rxẋ | Rẋx
α | α(x) | α(ẋ)
¬α(x, ẋ)
α(x, ẋ) ∨ β(x, ẋ)
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Table 6. Translations from the guarded fragment of FO2 to tense F2(Kn, I,@,A)

T xẋx(x = x)=�
T xẋx(Px)= p

T xẋx(Rixx)= I.♦ime

T xẋx(α)=T ∅
ẋx(α), if α ∈ G∅

T xẋx(∃ẋ.x = ẋ ∧ α)= I.T x1x2ẋx (α)
T xẋx(∃ẋ.Rixẋ ∧ α))= I.♦iT x1x2xẋ (α)
T xẋx(∃ẋ.Riẋx ∧ α)= I.�iT x1x2xẋ (α)

T ẋẋx(ẋ = ẋ)=�
T ẋẋx(P ẋ)=@mep

T ẋẋx(Riẋẋ)=@meI.♦ime

T ẋẋx(α)=T ∅
ẋx(α), if α ∈ G∅

T ẋẋx(∃x.x = ẋ ∧ α)=@meT
x1x2
ẋx (α)

T ẋẋx(∃x.Riẋx ∧ α)=@meI.♦iT x1x2ẋx (α)
T ẋẋx(∃x.Rixẋ ∧ α)=@meI.�iT x1x2ẋx (α)

T ∅
ẋx(∃x.x = x ∧ α)=EI.T xẋx(α)

T ∅
ẋx(∃x.Px ∧ α)=EI. (p ∧ T xẋx(α))

T ∅
ẋx(∃x.Rixx ∧ α)=E (I.♦ime ∧ I.T xẋx(α))

T ∅
ẋx(∃x∃ẋ.Rixẋ ∧ α)=EI.♦iT x1x2xẋ (α)

T x1x2ẋx (x = ẋ)=me
T x1x2ẋx (Riẋx)=♦ime
T x1x2ẋx (Rixẋ)=�ime

T x1x2ẋx (α)=T ∗
ẋx(α) (α ∈ G∗)

♦ime (noting that also the definition of inverses as in Table 1 needs only ♦ime).
Thus, one might call the guarded fragment the ‘depth-1.5’ fragment — use of me
is unrestricted at depth 1, and limited to positive occurrences at depth 2 when
♦ is taken as the basic modal operator. In fact, formulas of the form ♦i¬me can
be encoded in the guarded 2-variable fragment with counting quantifiers (which
is also known to be in EXPTIME [17]), while it does not seem easily possible to
encode formulas of the more general form ♦i(¬me ∧ φ).

6 Conclusion

Modal logics extended with the I-me operators (or alternatively, ↓ with only one
variable) are robustly undecidable. In this paper we have identified decidable
fragments, based on the modal distance (depth) between the binder I and the
bound variable me. We have shown that already for depth 3 the logic becomes un-
decidable (previous undecidability proofs required depth 4). However, for depth
less than 3 we obtain well-behaved logics with a relatively high descriptive power.
Indeed, for depth 2 we arrive at a logic that is EXPTIME-complete and strictly
more expressive than the (constant-free) guarded fragment of the correspon-
dence language. When restricted to local satisfiability (i.e., without TBoxes nor
a universal modality), the problem was shown to be PSPACE-complete.

For depth 1 we obtained a very general result: coalgebraic modal logics ex-
tended in this way have an exponential model property, even with general TBoxes
and nominals. Generalizing our results for depth 2 to the coalgebraic case is the
subject of ongoing work; recent results [10] show that they do extend to the
graded case. Unlike for depth 1, nominals cannot be added to the depth-2 logic
without losing most of the good properties even in the relational case: even one
nominal makes the logic NEXPTIME-hard and causes infinite branching. We
conjecture that the depth-2 logic with nominals is NEXPTIME-complete.
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1. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments
of predicate logic. J. Phil. Log. 27(3), 217–274 (1998)

2. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. Rev. Symb. Log. 2, 290–318 (2011)

3. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logics. Elsevier
(2006)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press (2003)

5. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput.
Sci. 114, 299–315 (1993)
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