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Abstract. One of the most studied extensions of testing theory to non-
deterministic and probabilistic processes yields unrealistic probabilities
estimations that give rise to two anomalies. First, probabilistic test-
ing equivalence does not imply probabilistic trace equivalence. Second,
probabilistic testing equivalence differentiates processes that perform the
same sequence of actions with the same probability but make internal
choices in different moments and thus, when applied to processes without
probabilities, does not coincide with classical testing equivalence. In this
paper, new versions of probabilistic trace and testing equivalences are
presented for nondeterministic and probabilistic processes that resolve
the two anomalies. Instead of focussing only on suprema and infima of
the set of success probabilities of resolutions of interaction systems, our
testing equivalence matches all the resolutions on the basis of the success
probabilities of their identically labeled computations. A simple spectrum
is provided to relate the new relations with existing ones. It is also shown
that, with our approach, the standard probabilistic testing equivalences
for generative and reactive probabilistic processes can be retrieved.

1 Introduction

The testing theory for concurrent processes [5] is based on the idea that two
processes are equivalent if and only if they cannot be told apart when inter-
acting with their environment, which is represented by arbitrary processes with
distinguished successful actions or states, often called observers. In case purely
nondeterministic processes are considered, this approach has been very success-
ful and the induced relations enjoy a number of interesting properties. Testing
equivalence has been used in many contexts and it is a good compromise between
abstraction and inspection capabilities; it distinguishes processes that have dif-
ferent behaviors with respect to deadlock, but abstracts from the exact moment
in which a process performs internal (unobservable) choices.

When probabilities enter the game, the possible choices in defining the set
of observers, in deciding how to resolve nondeterminism, or in assembling the
results of the observations are many more and can give rise to significantly
different behavioral relations.
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One of the most studied variants of testing equivalence for nondeterministic
and probabilistic processes [17,10,14,6] considers the probability of performing
computations along which the same tests are passed. Due to the possible pres-
ence of equally labeled transitions departing from the same state, there is not
necessarily a single probability value with which a nondeterministic and proba-
bilistic process passes a test. Given two states s1 and s2 and the initial state o of
an observer, the above mentioned probabilistic testing equivalence computes the
probability of performing a successful computation from (s1, o) and (s2, o) in ev-
ery resolution of the interaction systems, then it compares the suprema (

⊔
) and

the infima (
�
) of these values over all possible resolutions of the interaction sys-

tems. This equivalence, which we denote by ∼PTe,��, enjoys nice properties and
possesses logical and equational characterizations but, if contrasted with classical
testing for purely nondeterministic processes [5], suffers from two anomalies.

The first anomaly is that ∼PTe,�� is not always included in one of the most
well-studied probabilistic versions of trace equivalence, namely ∼PTr,dis of [13].
Actually, the inclusion depends on the class of schedulers used for deriving resolu-
tions of interaction systems. It holds if randomized schedulers are admitted [14],
while it does not hold when only deterministic schedulers are considered like
in [17,10,6]. This anomaly could be solved by (i) considering a coarser proba-
bilistic trace equivalence ∼PTr,new that compares the execution probabilities of
single traces rather than trace distributions and (ii) replacing ∼PTe,�� with a
finer probabilistic testing equivalence ∼PTe,new, which does not focus only on
the highest and the lowest probability of passing a test but matches the maxi-
mal resolutions of the interaction systems according to their success probability.
Unfortunately, ∼PTe,new does not overcome the other anomaly.

The second anomaly of ∼PTe,�� (which also affects the testing equivalence
of [14]) is that, when used to test purely nondeterministic processes, it does not
preserve classical testing equivalence. In fact, given two fully nondeterministic
processes that are testing equivalent according to [5], they may be told apart by
∼PTe,�� because observers with probabilistic choices make the latter equivalence
sensitive to the moment of occurrence of internal choices, thus yielding unreal-
istic probability estimations. This problem has been recently tackled in [8] for a
significantly different probabilistic model by relying on a label massaging that
avoids over-/under-estimations of success probabilities in a parallel context.

In this paper, by using ∼PTe,new as a stepping stone, we propose a new prob-
abilistic testing equivalence, ∼PTe,tbt, that solves both anomalies by matching
success probabilities in a trace-by-trace fashion rather than on entire resolutions.
With respect to [8], the interesting feature of our definition is that it does not
require any model modification. We also show that the standard notions of test-
ing equivalences for generative probabilistic processes and reactive probabilistic
processes can be redefined, by following the same approach taken for the general
model, without altering their discriminating power. Finally, we relate ∼PTe,tbt

with some of the other probabilistic equivalences by showing that it is comprised
between ∼PTr,new and a novel probabilistic failure equivalence ∼PF,new, which
in turn is comprised between ∼PTe,tbt and ∼PTe,new.
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2 Nondeterministic and Probabilistic Processes

Processes combining nondeterminism and probability are typically represented
by means of extensions of labeled transitions systems (LTS), in which every
action-labeled transition goes from a source state to a probability distribution
over target states rather than to a single target state. The resulting processes
are essentially Markov decision processes [7] and correspond to a number of
slightly different probabilistic computational models including real nondeter-
minism, among which we mention concurrent Markov chains [16], alternating
probabilistic models [9,17], and probabilistic automata in the sense of [12].

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−−−→) where S is an at most countable set of
states, A is a countable set of transition-labeling actions, and −−−→ ⊆ S ×A×
Distr(S) is a transition relation where Distr(S) is the set of discrete probability
distributions over S.

Given a transition s
a

−−−→D, we say that s′ ∈ S is not reachable from s via that
transition if D(s′) = 0, otherwise we say that it is reachable with probability
p = D(s′). The choice among all the transitions departing from s is external and
nondeterministic, while the choice of the target state for a specific transition
is internal and probabilistic. A NPLTS represents (i) a fully nondeterministic
process when every transition leads to a distribution that concentrates all the
probability mass into a single target state, (ii) a fully probabilistic process when
every state has at most one outgoing transition, or (iii) a reactive probabilistic
process [15] when no state has several transitions labeled with the same action.

A NPLTS can be depicted as a directed graph-like structure in which vertices
represent states and action-labeled edges represent action-labeled transitions.

Given a transition s
a

−−−→D, the corresponding a-labeled edge goes from the
vertex representing state s to a set of vertices linked by a dashed line, each of
which represents a state s′ such that D(s′) > 0 and is labeled with D(s′) – label
omitted if D(s′) = 1. Figure 1 shows six NPLTS models, with the first two mixing
nondeterminism and probability and the last four being fully probabilistic.

In this setting, a computation is a sequence of state-to-state steps (denoted
by −−−→s) derived from the state-to-distribution transitions of the NPLTS.

Definition 2. Let L = (S,A,−−−→) be a NPLTS, n ∈ N, si ∈ S for all
i = 0, . . . , n, and ai ∈ A for all i = 1, . . . , n. We say that:

c ≡ s0
a1−−−→s s1

a2−−−→s s2 . . . sn−1

an−−−→s sn
is a computation of L of length n going from s0 to sn iff for all i = 1, . . . , n

there exists a transition si−1

ai−−−→Di such that Di(si) > 0, with Di(si) being

the execution probability of step si−1

ai−−−→s si of c conditioned on the selection

of transition si−1

ai−−−→Di of L at state si−1.

In the following, given s ∈ S we denote by Cfin(s) the set of finite-length com-
putations from s. Given c ∈ Cfin(s), we say that c is maximal iff it cannot be
further extended, i.e., it is not a proper prefix of any other element of Cfin(s).
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In order to define testing equivalence, we also need to introduce the notion of
parallel composition of two NPLTS models, borrowed from [10].

Definition 3. Let Li = (Si, A,−−−→i) be a NPLTS for i = 1, 2. The parallel
composition of L1 and L2 is the NPLTS L1 ‖ L2 = (S1 × S2, A,−−−→) where

−−−→ ⊆ (S1×S2)×A×Distr(S1×S2) is such that (s1, s2)
a

−−−→D iff s1
a

−−−→1 D1

and s2
a

−−−→2 D2 with D(s′1, s
′
2) = D1(s

′
1) · D2(s

′
2) for each (s′1, s

′
2) ∈ S1 × S2.

3 Trace Equivalences for NPLTS Models

Trace equivalence for NPLTS models [13] examines the probability of performing
computations labeled with the same action sequences for each possible way of
solving nondeterminism. To formalize this for a NPLTS L, given a state s of L
we take the set of resolutions of s. Each of them is a tree-like structure whose
branching points represent probabilistic choices. This is obtained by unfolding
from s the graph structure underlying L and by selecting at each state a single
transition of L – deterministic scheduler – or a convex combination of equally
labeled transitions of L – randomized scheduler – among all the transitions
possible from that state. Below, we introduce the notion of resolution arising from
a deterministic scheduler as a fully probabilistic NPLTS. In this case, resolutions
coincide with computations if L is fully nondeterministic.

Definition 4. Let L = (S,A,−−−→) be a NPLTS and s ∈ S. We say that a
NPLTS Z = (Z,A,−−−→Z) is a resolution of s obtained via a deterministic
scheduler iff there exists a state correspondence function corr : Z → S such that
s = corr (zs), for some zs ∈ Z, and for all z ∈ Z:

– If z
a

−−−→Z D, then corr(z)
a

−−−→D′ with D(z′) = D′(corr(z′)) for all z′ ∈ Z.

– If z
a1−−−→Z D1 and z

a2−−−→Z D2, then a1 = a2 and D1 = D2.

Given a state s of a NPLTS L, we denote by Res(s) the set of resolutions of s
obtained via deterministic schedulers. Since Z ∈ Res(s) is fully probabilistic,
the probability prob(c) of executing c ∈ Cfin(zs) can be defined as the product of
the (no longer conditional) execution probabilities of the individual steps of c,
with prob(c) being always equal to 1 if L is fully nondeterministic. This notion
is lifted to C ⊆ Cfin(zs) by letting prob(C) =

∑
c∈C prob(c) whenever C is finite

and none of its computations is a proper prefix of one of the others.
Given α ∈ A∗, we then say that c is compatible with α iff the sequence of

actions labeling the steps of c is equal to α. We denote by CC(zs, α) the set
of computations in Cfin(zs) that are compatible with α. Below we introduce a
variant of the probabilistic trace distribution equivalence of [13] in which only
deterministic schedulers are admitted.

Definition 5. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic trace distribution equivalent, written s1 ∼PTr,dis s2, iff:
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Fig. 1. Counterexample for probabilistic trace equivalences

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all α ∈ A∗:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that for all α ∈ A∗:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

The relation ∼PTr,dis is quite discriminating, because it compares trace distri-
butions and hence imposes a constraint on the execution probability of all the
traces of any pair of matching resolutions. This constraint can be relaxed by
considering a single trace at a time, i.e., by anticipating the quantification over
traces. In this way, differently labeled computations of a resolution are allowed to
be matched by computations of different resolutions, which leads to the following
coarser probabilistic trace equivalence that we will use later on.

Definition 6. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic trace equivalent, written s1 ∼PTr,new s2, iff for all traces α ∈ A∗:

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

Theorem 1. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTr,dis s2 =⇒ s1 ∼PTr,new s2

The inclusion of ∼PTr,dis in ∼PTr,new is strict. Indeed, if we consider the two
NPLTS models on the left-hand side of Fig. 1, when bi 	= bj for i 	= j
we have that s1 ∼PTr,new s2 while s1 	∼PTr,dis s2. In fact, the sets of traces of the
two resolutions of s1 depicted in the figure are {ε, a, a b1, a b2} and {ε, a, a b3, a b4},
respectively, while the sets of traces of the two resolutions of s2 depicted in the
figure are {ε, a, a b1, a b3} and {ε, a, a b2, a b4}, respectively. As a consequence,
neither of the two considered resolutions of s1 (resp. s2) can have the same trace
distribution as one of the two considered resolutions of s2 (resp. s1).

Both probabilistic trace equivalences are totally compatible with classical
trace equivalence ∼Tr [2], i.e., two fully nondeterministic NPLTS models are
related by ∼Tr iff ∼PTr,dis and ∼PTr,new relate them.

Theorem 2. Let (S,A,−−−→) be a fully nondeterministic NPLTS and s1,s2∈S.
Then:

s1 ∼Tr s2 ⇐⇒ s1 ∼PTr,dis s2 ⇐⇒ s1 ∼PTr,new s2
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4 Testing Equivalences for NPLTS Models

Testing equivalence for NPLTS models [17,10,14,6] considers the probability of
performing computations along which the same tests are passed, where tests
specify which actions of a process are permitted at each state and are formalized
as NPLTS models equipped with a success state. For the sake of simplicity, we
restrict ourselves to tests whose underlying graph structure is acyclic – i.e., only
finite-length computations are considered – and finitely branching – i.e., only a
choice among finitely many alternative actions is made available at each state.

Definition 7. A nondeterministic and probabilistic test is an acyclic and finitely-
branching NPLTS T = (O,A,−−−→) where O contains a distinguished success
state denoted by ω that has no outgoing transitions. We say that a computation
of T is successful iff its last state is ω.

Definition 8. Let L = (S,A,−−−→) be a NPLTS and T = (O,A,−−−→T ) be
a nondeterministic and probabilistic test. The interaction system of L and T is
the acyclic and finitely-branching NPLTS I(L, T ) = L‖ T where:

– Every element (s, o) ∈ S × O is called a configuration and is said to be
successful iff o = ω.

– A computation of I(L, T ) is said to be successful iff its last configuration is
successful. Given s ∈ S, o ∈ O, and Z ∈ Res(s, o), we denote by SC(zs,o) the
set of successful computations from the state of Z corresponding to (s, o).

Due to the possible presence of equally labeled transitions departing from the
same state, there is not necessarily a single probability value with which a NPLTS
passes a test. Thus, given two states s1 and s2 of the NPLTS and the initial
state o of the test, we need to compute the probability of performing a successful
computation from (s1, o) and (s2, o) in every resolution of the interaction system.
Then, one option is comparing, for the two configurations, the suprema (

⊔
) and

the infima (
�
) of these values over all resolutions of the interaction system.

Given a state s of a NPLTS L and the initial state o of a nondeterministic and
probabilistic test T , we denote by Resmax(s, o) the set of resolutions in Res(s, o)
that are maximal, i.e., that cannot be further extended in accordance with the
graph structure of I(L, T ) and the constraints of Def. 4. In the following, we will
consider only maximal resolutions because the non-maximal ones would lead to
obtain always 0 as infimum being them unsuccessful.

Definition 9. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [17,10,6], written s1 ∼PTe,�� s2, iff for
all nondeterministic and probabilistic tests T = (O,A,−−−→T ) with initial state
o ∈ O: ⊔

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Resmax(s2,o)

prob(SC(zs2,o))
�

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
�

Z2∈Resmax(s2,o)

prob(SC(zs2,o))
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Following the structure of classical testing equivalence ∼Te for fully nondetermin-
istic processes [5], the constraint on suprema is the may-part of∼PTe,�� while the
constraint on infima is the must-part of ∼PTe,��. The probabilistic testing equiv-
alence of [14] is defined in a similar way, but resolves nondeterminism through
randomized schedulers and makes use of countably many success actions. The
relation ∼PTe,�� possesses several properties investigated in [17,10,6,14], but
suffers from two anomalies when contrasting it with ∼Te.

The first anomaly of ∼PTe,�� is that it is not always included in ∼PTr,dis and
∼PTr,new. The inclusion depends on the class of schedulers that are considered
for deriving resolutions of interaction systems. If randomized schedulers are ad-
mitted, then inclusion holds as shown in [14]. However, this is no longer the case
when only deterministic schedulers are taken into account like in [17,10,6].

For instance, if we take the two NPLTS models on the left-hand side of
Fig. 2(i), when b 	= c it turns out that s1 ∼PTe,�� s2 while s1 	∼PTr,dis s2
and s1 	∼PTr,new s2. States s1 and s2 are not related by the two probabilistic
trace equivalences because the maximal resolution of s1 starting with the central
a-transition is not matched by any of the two maximal resolutions of s2 (note
that we would have s1 ∼PTr,dis s2 if randomized schedulers were admitted).
It holds that s1 ∼PTe,�� s2 because, for any test, the same maximal resolution
of s1 cannot give rise to a success probability not comprised between the success
probabilities of the other two maximal resolutions of s1, which basically coincide
with the two maximal resolutions of s2.

The inclusion problem can be overcome by considering ∼PTr,new instead of
∼PTr,dis and by replacing ∼PTe,�� with the finer probabilistic testing equiva-
lence below. This equivalence does not only focus on the highest and the lowest
probability of passing a test but requires matching all maximal resolutions of
the interaction system according to their success probabilities.

Definition 10. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent, written s1 ∼PTe,new s2, iff for all nondeterministic
and probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:

– For each Z1 ∈ Resmax(s1, o) there exists Z2 ∈ Resmax(s2, o) such that:
prob(SC(zs1,o)) = prob(SC(zs2,o))

– For each Z2 ∈ Resmax(s2, o) there exists Z1 ∈ Resmax(s1, o) such that:
prob(SC(zs2,o)) = prob(SC(zs1,o))

Theorem 3. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTe,�� s2

The inclusion of ∼PTe,new in ∼PTe,�� is strict. Indeed, if we consider again the
two NPLTS models on the left-hand side of Fig. 2(i) together with the test next
to them, it turns out that s1 ∼PTe,�� s2 while s1 	∼PTe,new s2. The considered
test distinguishes s1 from s2 with respect to ∼PTe,new because – looking at the
interaction system on the right-hand side of Fig. 2(i) – the maximal resolution
of (s1, o) starting with the central a-transition gives rise to a success probability
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Fig. 2. Counterexamples for probabilistic testing and trace equivalences

equal to 0.25 that is not matched by any of the two maximal resolutions of
(s2, o). These resolutions – not shown in the figure – basically coincide with
the maximal resolutions of (s1, o) starting with the two outermost a-transitions,
hence their success probabilities are respectively 0.5 and 0.

We now show that ∼PTe,new does not suffer from the first anomaly because
it is included in ∼PTr,new. As expected, the inclusion is strict. For instance, if
we consider the two NPLTS models on the left-hand side of Fig. 2(ii) together
with the test next to them, when b 	= c it turns out that (s1 ∼PTr,dis s2 and)
s1 ∼PTr,new s2 while s1 	∼PTe,new s2. In fact, the considered test distinguishes s1
from s2 with respect to ∼PTe,new because – looking at the two interaction systems
on the right-hand side of Fig. 2(ii) – the only maximal resolution of (s1, o) gives
rise to a success probability equal to 1 that is not matched by any of the two
maximal resolutions of (s2, o), whose success probabilities are p1 and p2.
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Theorem 4. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTr,new s2

Unfortunately, ∼PTe,new still does not avoid the second anomaly of ∼PTe,��
(which affects [14] too) because it does not preserve ∼Te. In fact, there exist
two fully nondeterministic processes that are testing equivalent according to [5],
but are differentiated by ∼PTe,new when probabilistic choices are present within
tests. The reason is that such probabilistic choices make it possible to take
copies of intermediate states of the processes under test, and thus to enhance
the discriminating power of observers [1].

As an example, if we consider the two NPLTS models on the left-hand side of
the upper part of Fig. 2(iii) together with the test next to them, when c 	= d it
turns out that s1 ∼Te s2 while s1 	∼PTe,�� s2 and s1 	∼PTe,new s2. Let us look at
the two interaction systems on the right-hand side of the upper part of Fig. 2(iii),
whose maximal resolutions are shown in the lower part of the same figure. The
considered test distinguishes s1 from s2 with respect to ∼PTe,�� because the
supremum of the success probabilities of the four maximal resolutions of (s1, o)
is 1 – see the second maximal resolution of (s1, o) – whereas the supremum of
the success probabilities of the two maximal resolutions of (s2, o) is equal to the
maximum between p1 and p2. The considered test distinguishes s1 from s2 with
respect to ∼PTe,new because the third maximal resolution of (s1, o) gives rise to
a success probability equal to 0 that is not matched by any of the two maximal
resolutions of (s2, o), whose success probabilities are p1 and p2.

The second anomaly is essentially originated from an unrealistic estimation
of success probabilities. For instance, if we consider again the four maximal res-
olutions of (s1, o) in the lower part of Fig. 2(iii), we have that their success
probabilities are p1, 1, 0, and p2, respectively. However, value 1 is clearly an
overestimation of the success probability, in the same way as value 0 is an un-
derestimation. These two values come from the fact that in each of the two
corresponding maximal resolutions of (s1, o) the deterministic scheduler selects
a different b-transition in the two states of the probabilistic choice. The selection
is instead consistent in the other two maximal resolutions of (s1, o), which thus
yield realistic estimations of the success probability.

The issue of realistic probability estimation has been recently addressed in [8].
Their models are significantly different from ours, with three kinds of transition
(visible, invisible, and probabilistic) and each state having only one kind of out-
going transition. Equally labeled transitions departing from the same state are
tagged to be kept distinct. Moreover, in presence of cycles, models are unfolded
and the tagged transitions are further decorated with the unfolding stage. Since
schedulers, while testing, might encounter several instances of a given state with
tagged transitions, they must resolve nondeterminism consistently in all the in-
stances at the same stage; choices at different stages are instead independent.
Therefore, in Fig. 2(iii) the two pairs of b-transitions in the interaction system
with initial configuration (s1, o) would be identically tagged with bl and br and
the only allowed maximal resolutions of that interaction system would be the
first one (choice of bl) and the fourth one (choice of br).
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5 Trace-by-Trace Redefinition of Testing Equivalence

In this section, we propose a solution to the problem of estimating success prob-
abilities – and hence to the second anomaly – which is alternative to the solution
in [8]. Our solution is not invasive at all, in the sense that it does not require
any transition relabeling. In order to counterbalance the strong discriminating
power deriving from the presence of probabilistic choices within tests, our basic
idea is changing the definition of ∼PTe,new by considering success probabilities
in a trace-by-trace fashion rather than on entire resolutions.

In the following, given a state s of a NPLTS, a state o of a nondeterministic
and probabilistic test, and α ∈ A∗, we denote by Resmax,α(s, o) the set of res-
olutions Z ∈ Resmax(s, o) such that CCmax(zs,o, α) 	= ∅, where CCmax(zs,o, α) is
the set of computations in CC(zs,o, α) that are maximal. Moreover, for each such
resolution Z we denote by SCC(zs,o, α) the set of computations in SC(zs,o) that
are compatible with α.

Definition 11. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are trace-
by-trace probabilistic testing equivalent, written s1 ∼PTe,tbt s2, iff for all non-
deterministic and probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O
and for all traces α ∈ A∗:

– For each Z1 ∈ Resmax,α(s1, o) there exists Z2 ∈ Resmax,α(s2, o) such that:
prob(SCC(zs1,o, α)) = prob(SCC(zs2,o, α))

– For each Z2 ∈ Resmax,α(s2, o) there exists Z1 ∈ Resmax,α(s1, o) such that:
prob(SCC(zs2,o, α)) = prob(SCC(zs1,o, α))

If we consider again the two NPLTS models on the left-hand side of the upper
part of Fig. 2(iii), it turns out that s1 ∼PTe,tbt s2. As an example, let us exam-
ine the interaction with the test in the same figure, which originates maximal
computations from (s1, o) or (s2, o) that are all labeled with traces a b, a b c, or
a b d. It is easy to see that, for each of these traces, say α, the probability of per-
forming a successful computation compatible with it in any of the four maximal
resolutions of (s1, o) having a maximal computation labeled with α is matched
by the probability of performing a successful computation compatible with α in
one of the two maximal resolutions of (s2, o), and vice versa. For instance, the
probability p1 (resp. p2) of performing a successful computation compatible with
a b c (resp. a b d) in the second maximal resolution of (s1, o) is matched by the
probability of performing a successful computation compatible with that trace
in the first (resp. second) maximal resolution of (s2, o). As another example, the
probability 0 of performing a successful computation compatible with a b in the
third maximal resolution of (s1, o) is matched by the probability of performing
a successful computation compatible with that trace in any of the two maximal
resolutions of (s2, o).

The previous example shows that ∼PTe,tbt is included neither in ∼PTe,�� nor
in ∼PTe,new. On the other hand, ∼PTe,�� is not included in ∼PTe,tbt as witnessed
by the two NPLTS models in Fig. 2(i), where the considered test distinguishes
s1 from s2 with respect to ∼PTe,tbt. In fact, the probability 0.25 of performing a
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successful computation compatible with a b in the maximal resolution of (s1, o)
beginning with the central a-transition is not matched by the probability 0.5 of
performing a successful computation compatible with a b in the only maximal
resolution of (s2, o) that has a maximal computation labeled with a b. In contrast,
∼PTe,new is (strictly) included in ∼PTe,tbt.

Theorem 5. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTe,tbt s2

Apart from the use of prob(SCC(zs,o, α)) values instead of prob(SC(zs,o)) values,
another major difference between ∼PTe,tbt and ∼PTe,new is the consideration of
resolutions in Resmax,α(s, o) rather than in Resmax(s, o). The reason is that it is
not appropriate to match the (zero) success probability of unsuccessful maximal
computations labeled with α with the (zero) success probability of computa-
tions labeled with α that are not maximal, as it may happen when considering
Resmax(s, o). For example, let us take the two NPLTS models on the left-hand
side of the following figure:

s1

b1 b2 b3 b4

s2

b1 b3 b2 b4 b1 b2

o( ),s2

b1 b2

s1 o( ),

b1 b2

a a a a a

ω

o

a a

ω ωω ω

a a

where bi 	= bj for i 	= j. If we employed maximal resolutions not necessarily hav-
ing maximal computations labeled with a, then the test in the figure would not be
able to distinguish s1 from s2 with respect to ∼PTe,tbt. In fact, the success prob-
ability of the maximal resolution of (s1, o) formed by the rightmost a-transition
departing from (s1, o) – which is 0 – would be inappropriately matched by the
success probability of the a-prefix of the only maximal computation of both
maximal resolutions of (s2, o).

We now show that ∼PTe,tbt does not suffer from the two anomalies discussed
in Sect. 4. We start with the inclusion in ∼PTr,new, which is easily met. As
expected, the inclusion is strict. For instance, if we consider again the two NPLTS
models on the left-hand side of Fig. 2(ii) together with the test next to them, it
turns out that (s1 ∼PTr,dis s2 and) s1 ∼PTr,new s2 while s1 	∼PTe,tbt s2. In fact,
the considered test distinguishes s1 from s2 with respect to ∼PTe,tbt because –
looking at the two interaction systems on the right-hand side of Fig. 2(ii) – each
of the two maximal resolutions of (s2, o) has a maximal computation labeled
with a while the only maximal resolution of (s1, o) has not.

Theorem 6. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,tbt s2 =⇒ s1 ∼PTr,new s2

With regard to the second anomaly, we show that ∼PTe,tbt is totally compatible
with ∼Te, in the sense that two fully nondeterministic NPLTS models are related
by ∼Te iff they are related by ∼PTe,tbt regardless of the class of tests. Due to the
anomaly, only partial compatibility results could be provided in [17] for ∼PTe,��,
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because only tests without probabilistic choices (i.e., only fully nondeterministic
tests) could be considered.

Theorem 7. Let (S,A,−−−→) be a fully nondeterministic NPLTS and s1,s2∈S.
Then:

s1 ∼Te s2 ⇐⇒ s1 ∼PTe,tbt s2

We conclude by showing that ∼PTe,tbt is a congruence with respect to parallel
composition of NPLTS models (see Def. 3).

Theorem 8. Let Li = (Si, A,−−−→i) be a NPLTS and si ∈ Si for i = 0, 1, 2
and consider L1 ‖ L0 and L2 ‖ L0. Then:

s1 ∼PTe,tbt s2 =⇒ (s1, s0) ∼PTe,tbt (s2, s0)

6 Placing Trace-by-Trace Testing in the Spectrum

In this section, we show that ∼PTe,tbt is strictly comprised between ∼PTr,new

(see Thm. 6) and a novel probabilistic failure equivalence ∼PF,new that, in turn,
is strictly comprised between ∼PTe,tbt and ∼PTe,new.

In the following, we denote by 2Afin the set of finite subsets of A and we call
failure pair any element β of A∗ × 2Afin, which is formed by a trace α and a finite
action set F . Given a state s of a NPLTS L, Z ∈ Res(s), and c ∈ Cfin(zs), we
say that c is compatible with β iff c ∈ CC(zs, α) and the last state reached by c
has no outgoing transitions in L labeled with an action in F . We denote by
FCC(zs, β) the set of computations in Cfin(zs) that are compatible with β.

Definition 12. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic failure equivalent, written s1 ∼PF,new s2, iff for all β ∈ A∗ × 2Afin:

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(FCC(zs1 , β)) = prob(FCC(zs2 , β))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(FCC(zs2 , β)) = prob(FCC(zs1 , β))

Theorem 9. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PF,new s2 =⇒ s1 ∼PTe,tbt s2

The inclusion of ∼PF,new in ∼PTe,tbt is strict. For instance, if we consider again
the two NPLTS models on the left-hand side of Fig. 1, when bi 	= bj for i 	= j
it turns out that s1 ∼PTe,tbt s2 while s1 	∼PF,new s2. In fact, given the failure
pair β = (a, {b1, b2}), the second maximal resolution of s1 has probability 1 of
performing a computation compatible with β, whilst each of the two maximal
resolutions of s2 has probability 0.5.

~PTe,new

~PTe,

~PTe,tbt ~PTr,new

~PTr,dis

~PF,new

Fig. 3. Spectrum of the considered probabilistic equivalences for NPLTS models
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Theorem 10. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PF,new s2

The inclusion of ∼PTe,new in ∼PF,new is strict as ∼PTe,new suffers from the second
anomaly. Indeed, if we consider again the two NPLTS models on the left-hand
side of Fig. 2(iii), it holds that s1 ∼PF,new s2 while s1 	∼PTe,new s2.

We also note that ∼PTe,�� is incomparable not only with ∼PTr,dis, ∼PTr,new,
and ∼PTe,tbt, but with ∼PF,new too. The NPLTS models on the left-hand side of
Fig. 2(i) show that ∼PTe,�� is not included in ∼PF,new and the NPLTS models
on the left-hand side of Fig. 2(iii) show that ∼PF,new is not included in ∼PTe,��.
Similarly, ∼PTr,dis is incomparable with ∼PTe,tbt, ∼PF,new, and ∼PTe,new. The
NPLTS models on the left-hand side of Fig. 1 show that ∼PTe,tbt is not in-
cluded in ∼PTr,dis and the NPLTS models on the left-hand side of Fig. 2(ii)
show that ∼PTr,dis is not included in ∼PTe,tbt. Moreover, the NPLTS models
on the left-hand side of Fig. 2(ii) show that ∼PTr,dis is included in neither
∼PF,new nor ∼PTe,new. On the other hand, neither of ∼PF,new and ∼PTe,new

is included in ∼PTr,dis as can be seen by considering two NPLTS models both

having four states si,a, si,b, si,c, and si,− for i = 1, 2 such that: si,a
a

−−−→Di,j for
j = 1, 2, 3 withD1,1(s1,b) = 0.6 = 1−D1,1(s1,−),D1,2(s1,b) = 0.4 = 1−D1,2(s1,c),
D1,3(s1,−) = 0.6 = 1−D1,3(s1,c), and D2,j(s2,∗) = 1−D1,j(s1,∗) for ∗ = b, c,−;

si,b
b

−−−→Di,b with Di,b(si,−) = 1; and si,c
c

−−−→Di,c with Di,b(si,−) = 1.
The relationships among the examined equivalences are summarized in Fig. 3,

where arrows mean more-discriminating-than. For the sake of completeness, we
remark that∼PTe,�� has been characterized in [10,6] through probabilistic simula-
tion equivalence for the may-part and probabilistic failure simulation
equivalence for the must-part.With regard to the variant of [14] based on random-
ized schedulers, the may-part coincides with the coarsest congruence contained
in ∼PTr,dis (again based on randomized schedulers) and the must-part coincides
with the coarsest congruence contained in probabilistic failure distribution equiv-
alence. The probabilistic testing equivalence of [8] has instead been characterized
via probabilistic ready-trace equivalence. Its connection with ∼PTe,tbt is hindered
by the different underlying models and is still an open problem.

7 Trace-by-Trace Testing for GPLTS and RPLTS Models

Our variant of testing equivalence naturally fits to generative and reactive prob-
abilistic processes [15]. In this section, we show that the two testing equivalences
for those two classes of processes can be redefined in a uniform trace-by-trace
fashion without altering their discriminating power.

Definition 13. A probabilistic labeled transition system, PLTS for short, is a
triple (S,A,−−−→) where S is an at most countable set of states, A is a countable
set of transition-labeling actions, and −−−→ ⊆ S ×A×R(0,1] × S is a transition
relation satisfying one of the following two conditions:
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–
∑

{| p ∈ R(0,1] | ∃a ∈ A. ∃s′ ∈ S. s
a,p

−−−→ s′ |} ∈ {0, 1} for all s ∈ S (generative
PLTS, or GPLTS for short).

–
∑

{| p ∈ R(0,1] | ∃s′ ∈ S. s
a,p

−−−→ s′ |} ∈ {0, 1} for all s ∈ S and a ∈ A (reactive
PLTS, or RPLTS for short).

A test consistent with a PLTS L = (S,A,−−−→L) is an acyclic and finitely-
branching PLTS T = (O,A,−−−→T ) equipped with a success state, which is
generative (resp. reactive) if so is L. Their interaction system is the acyclic and
finitely-branching PLTS I(L, T ) = (S × O,A,−−−→) whose transition relation

−−−→ ⊆ (S×O)×A×R(0,1]×(S×O) is such that (s, o)
a,p

−−−→ (s′, o′) iff s
a,p1

−−−→L s′

and o
a,p2

−−−→T o′ with p being equal to:

p1 · p2/
∑

{| q1 · q2 | ∃b ∈ A, s′′ ∈ S, o′′ ∈ O. s
b,q1

−−−→L s′′ ∧ o
b,q2

−−−→T o′′ |} if GPLTS
p1 · p2 if RPLTS
Given s ∈ S and o ∈ O, we denote by SC(s, o) the set of successful computa-
tions of I(L, T ) with initial configuration (s, o) and by SCC(s, o, α) the set of
computations in SC(s, o) that are compatible with α ∈ A∗. Moreover, we denote
by Trmax(s, o) the set of traces labeling the maximal computations from (s, o).

Definition 14. Let (S,A,−−−→) be a GPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [3,4], written s1 ∼PTe,G s2, iff for all
generative probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:

prob(SC(s1, o)) = prob(SC(s2, o))

Definition 15. Let (S,A,−−−→) be a RPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [11], written s1 ∼PTe,R s2, iff for all
reactive probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:⊔

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
⊔

α∈Trmax(s2,o)

prob(SCC(s2, o, α))
�

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
�

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

Definition 16. Let L = (S,A,−−−→) be a PLTS. We say that s1, s2 ∈ S are
trace-by-trace probabilistic testing equivalent, written s1 ∼PTe,tbt s2, iff for all
probabilistic tests T = (O,A,−−−→T ) consistent with L with initial state o ∈ O
and for all traces α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))

Theorem 11. Let (S,A,−−−→) be a GPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,G s2 ⇐⇒ s1 ∼PTe,tbt s2

Theorem 12. Let (S,A,−−−→) be a RPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,R s2 ⇐⇒ s1 ∼PTe,tbt s2

8 Conclusion

In this paper, we have proposed solutions for avoiding two anomalies of prob-
abilistic testing equivalence for NPLTS models by (i) matching all resolutions
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on the basis of their success probabilities rather than taking only maximal and
minimal success probabilities and (ii) considering success probabilities in a trace-
by-trace fashion rather than on entire resolutions. The trace-by-trace approach
– which fits also testing equivalences for nondeterministic processes (Thm. 7),
generative probabilistic processes (Thm. 11), and reactive probabilistic processes
(Thm. 12) – thus annihilates the impact of the copying capability introduced by
probabilistic observers. In the future, we would like to find equational and log-
ical characterizations of ∼PTe,tbt. Moreover, we plan to investigate the whole
spectrum of probabilistic behavioral equivalences for NPLTS models.
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