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Abstract. Dynamic loading of software components is a commonly used mecha-
nism to achieve better flexibility and modularity in software. For an application’s
runtime safety, it is important for the application to load only its intended compo-
nents. However, programming mistakes may lead to failures to load a component,
or even worse, to load a malicious component. Recent work has shown that these
errors are both prevalent and severe, sometimes leading to remote code execu-
tion attacks. The work is based on dynamic analysis by monitoring and analyzing
runtime component loadings. Although simple and effective in detecting real er-
rors, it suffers from limited code coverage and may miss important vulnerabilities.
Thus, it is desirable to develop effective techniques to detect all possible unsafe
component loadings.

This paper presents the first static binary analysis aiming at detecting all pos-
sible loading-related errors. The key challenge is how to scalably and precisely
compute what components may be loaded at relevant program locations. Our
main insight is that this information is often determined locally from the com-
ponent loading call sites. This motivates us to design a demand-driven analysis,
working backward starting from the relevant call sites. In particular, for a given
call site c, we first compute its context-sensitive executable slices, one for each
execution context. Then we emulate the slices to obtain the set of components
possibly loaded at c. This novel combination of slicing and emulation achieves
good scalability and precision by avoiding expensive symbolic analysis. We im-
plemented our technique and evaluated its effectiveness against the existing dy-
namic technique on nine popular Windows applications. Results show that our
tool has better coverage and is precise—it is able to detect many more unsafe
loadings. It is also scalable and finishes analyzing all nine applications within
minutes.

1 Introduction

Dynamic component loading is widely used in software development to build flexi-
ble and modular software. Operating systems (OSes) typically provide relevant system
calls, such as dlopen, to load dynamic components. Once a loading system call is
invoked, the underlying OS resolves and loads the specified component. Component
resolution depends on how the component is specified—either through the intended
component’s full path or its file name. Given a full path, the OS simply uses it for reso-
lution. Given only a file name, the OS searches over a sequence of directories to locate
a file with the specified name. Which sequence of directories to search is controlled at
runtime by the particular directory search order at the time of system call invocation.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 122–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Static Detection of Unsafe Component Loadings 123

The flexibility of this common style of component loading does come with a price—
it introduces an inherent security concern. For runtime safety and security, an applica-
tion should only load its intended components. However, as the OS resolves a com-
ponent only through its name, programming mistakes can lead to the loading of an
unintended component with the same name.

Although this issue was known, it is not until recently that studies have shown how
prevalent and serious the issue is in practice.In particular, it is shown that unsafe loadings
on Microsoft Windows are prevalent and can lead to remote code execution attacks [21].
Remote attacks are possible for two main reasons: 1) the OS looks for a component with
a given file name and cannot distinguish malicious ones from benign ones with the same
file name; and 2) the default directory search order on Microsoft Windows contains the
current directory (i.e., “.”), where remote attackers can trick a victim user to download
files to via social engineering or by exploiting other vulnerabilities.

Here is an example attack scenario on Windows. An attacker sends a victim user
via email an archive that contains an arbitrary .asx file and a malicious file named
rapi.dll. The user extracts the archive file and runs Winamp 5.58 to open the .asx

file, the rapi.dll is loaded, which leads to a remote code execution attack [21]. Be-
sides archive files, the Carpet-Bomb attack [28] and the WebDAV protocol [2] can be
exploited for launching remote attacks. This very issue has also received considerable
recent media coverage [11,25,27,36,44]. Microsoft released MS10-087, rated “Critical,”
to patch Microsoft Office [42]. To mitigate the issue, Microsoft also released a fix-it tool
to control the directory search order by introducing a new registry key [17, 26]. How-
ever, it changes the default system-wide setting and leads to backward compatibility
issues. Fundamentally, this is a safe programming issue. Microsoft provides program-
ming guidelines for safe dynamic loading [10] and is conducting an ongoing investiga-
tion to secure the loading procedure [23].

As the root cause of the issue is unsafe programming, it is important to detect this class
of dangerous programming mistakes. Kwon and Su [21] proposed a dynamic technique
to detect unsafe component loadings. This technique collects at runtime loading-related
information—such as the target component to be loaded, the directory search order, and
the actually loaded component—at each of the invocation sites for the loading system call.
It then performs an offline analysis to detect two types of unsafe loadings: resolution fail-
ure and unsafe resolution. A resolution failure happens when the target component is not
found, while an unsafe resolution happens when other directories are searched before the
directory where the loaded component resides. Besides crashing an application, unsafe
loadings also make the application vulnerable to component hijacking.

Although the proposed dynamic technique [21] is effective at detecting real unsafe
loadings, it may miss errors because of limited code coverage, an inherent weakness of
dynamic analysis. We illustrate this issue using delayed loading, an optimization to post-
pone the loading of infrequently used components until their first use. Delayed loading
is challenging for dynamic detection because it is difficult to trigger all delayed load-
ings at runtime. Figure 1 shows a code snippet that uses delayed loading in Microsoft
Windows. The code shows two functions f1 and f2 that use components registered for
delayed loading. In particular, f1 and f2 retrieve the addresses of OpenPrinter ex-
ported by WINSPOOL.DRV and GetSaveFile exported by COMDLG32.DLL respectively.
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Although the example only shows two functions f1 and f2, in practice, there are often
many more. The infrequent use of the components makes it difficult, if not impossible,
to trigger all possible loadings at runtime. Although we have illustrated the problem
using delayed loading, poor coverage of dynamic analysis is a general concern for de-
tecting unsafe loadings, as our results also confirm (cf. Section 3).

In this paper, we present the first static analysis to detect unsafe loadings from pro-
gram binaries. Two pieces of essential information are needed: 1) all components that
may be loaded at each loading call site, and 2) the safety of each possible loading. While
the second part is straightforward, the key challenge lies in the first part—how to pre-
cisely and scalably compute the possible loadings. Our key observation is: for a given
invocation of the loading system call, the set of possible loaded components is deter-
mined by the system call’s parameter values, which are often determined through com-
putations that originate not far from the call site. From these observations, we design
a two-phase analysis: extraction and checking. The extraction phase is demand-driven,
working backward from each loading call site to compute the set of possible loadings;
the checking phase determines the safety of a loading by examining the relevant direc-
tory search order at the call site.

Context-Sensitive Emulation. To realize the backward computation of parameter
values during the extraction phase, we introduce context-sensitive emulation, a novel
combination of slicing and emulation. For a given call site, we extract its context-
sensitive executable slices w.r.t. its parameters, one for each execution context. We then
emulate the slices to compute the parameter values.

1 void f1() {

2 ...

3 pDelayDesc1 = &WINSPOOL_DRV_DelayDesc;

4 // WINSPOOL_DRV_DelayDesc.dllname = "WINSPOOL.DRV"

5 func_addr = __delayLoadHelper2(

6 pDelayDesc1, "OpenPrinter"

7 );

8 ...

9 }

10 void f2() {

11 ...

12 pDelayDesc2 = &COMDLG32_DLL_DelayDesc;

13 // COMDLG32_DLL_DelayDesc.dllname = "COMDLG32.DRV"

14 func_addr = __delayLoadHelper2(

15 pDelayDesc2, "GetSaveFile"

16 );

17 ...

18 }

19 int __delayLoadHelper2(pImgDelayDesc, funcName) {

20 hMod = pImgDelayDesc->hMod; // init value = 0

21 if (hMod == 0) {

22 target_dllname = pImgDelayDesc->dllname;

23 hMod = LoadLibrary(target_dllname);

24 pImgDelayDesc->hMod = hMod;

25 }

26 func_addr = GetProcAddress(hMod, funcName);

27 return func_addr;

28 }

Fig. 1. Motivating example

Incremental and Modular Slicing. One
technical obstacle is how to compute
backward slices scalably. Standard slic-
ing techniques [1, 5, 13, 30, 35, 38] are
based on computing a program’s com-
plete system dependence graph (SDG) a
priori and are thus limited in scalability.
Because we only need to consider load-
ing call sites and the execution paths to
compute the parameter values to the calls
are usually relatively short, only a small
fraction of the complete SDG is relevant
for our analysis. This motivates the use
of an incremental and modular slicing al-
gorithm (cf. Section 2)—incremental be-
cause we build the slices lazily when
necessary; modular because when we en-
counter a function call foo(x,y), we use
an inferred summary of what dependen-
cies foo’s parameters and return value
have in analyzing the caller. At the end, we connect the function-level slices in the
standard way by linking formal and actual parameters.
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Emulation of Context-sensitive Slices. Once we have computed the backward slice s
w.r.t. a given loading call site, we need to compute possible values for the relevant pa-
rameters. One natural solution is to perform standard symbolic analysis on the slice to
compute the values. The main challenge for this approach is the difficulty in reasoning
symbolically about system calls because the relevant parameters often depend on com-
plex, low-level system calls. For example, many Windows applications invoke the system
call RegQueryValueExW to retrieve the fullpath of the target specification stored in the
registry key. The system call invokes more than 100 distinct system calls exported by five
libraries. To symbolically analyze the system call, it is necessary to symbolically execute
its invoked system calls as well, leading to path explosion. Thus, it is difficult in practice
to engineer and scale symbolic analysis to compute the possible values of the parameters.

To overcome this difficulty, we use emulation. In particular, we generate, from the
backward slice s, a set of context-sensitive executable sub-slices, which we then emulate
to compute the parameter values (cf. Section 2). Essentially, we inline callees’ function-
level slices in each execution context to produce s’s sub-slices s1, . . . , sn. Instructions
in each sub-slice si are next emulated topologically, respecting their data- and control-
flow dependencies.

For evaluation, we implemented our technique in a prototype tool for Windows ap-
plications. We evaluated our tool’s effectiveness against the previous dynamic tool [21]
in terms of precision, scalability, and coverage. Results on nine popular applications
show that our tool is precise and scalable (cf. Section 3). For example, it took less
than two minutes to analyze each of the nine test subjects, including large applications
such as Acrobat Reader, Quicktime, and Safari. The results also show that our proposed
context-sensitive emulation achieves orders of magnitude reduction in the size of the
code needed to be analyzed and crucially contributes to the scalability of our technique.
In terms of coverage, our tool detected many more possible unsafe loadings and nicely
complements the dynamic technique.

Main Contributions

– We have developed the first static binary analysis to detect unsafe component load-
ings. Because of its scalability and higher code coverage, our technique effectively
complements the existing dynamic technique.

– We have proposed context-sensitive emulation, an effective approach that combines
slicing and emulation for the precise and scalable analysis of runtime values of
program variables.

– We have implemented our technique and evaluated its effectiveness by detecting
unsafe loadings in nine popular Windows applications.

The rest of this paper is organized as follows. Section 2 presents a detailed description
of our static detection algorithm. We describe our implementation and evaluation in
Section 3. Finally, Section 4 surveys additional related work, and Section 5 concludes
with a discussion of future work.

2 Static Detection Algorithm

In this section, we present background information on unsafe component loadings and
details of our analysis.
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2.1 Background
Dynamic component loading is commonly supported by operating systems through spe-
cific system calls that take as input a full path or file name for the intended component.
For example, Microsoft Windows provides component-loading system calls such as
LoadLibraryA. Once such a system call is invoked, the OS resolves the target compo-
nent as follows:

– The target component can be specified by its full path or its file name.
– When the full path is used, the OS directly resolves the target using the provided

full path.
– Otherwise, if file name is used and is known by the OS, the full path of the specified

file is predefined. For example, KERNEL32.DLL is known by Microsoft Windows
and its full path is predefined as "C:\WINDOWS\SYSTEM32\KERNEL32.DLL".

– If the given file name is unknown to the OS, it iterates through the predefined search
directories to locate the first file with the specified file name.

To formalize the component resolution process, it is necessary to model the file system
state, because even the same component-loading code may result in different resolu-
tions under different file system states. We define a file system state s to be the set of
full paths of all files stored on the current file system.

Definition 21 (Component Resolution). A component resolution function R takes a
component specification f ∈ Σ∗, a directory search order d = 〈d1, . . . , dn〉 ∈ Σ∗ ×
. . . × Σ∗ and a file system state s, and returns a resolved full path π ∈ Σ∗, where Σ
denotes the alphabet used to specify files and directories.

– If f is a full path,

R(f, d, s) =

{
f if f ∈ s;
ε otherwise.

where ε is the empty string.
– If f is a file name,

R(f, d, s) =

⎧⎪⎪⎨
⎪⎪⎩

π if f is known to the OS as π;
dk + \+ f if S = {i | di + \+ f ∈ s}

∧ S �= ∅ ∧ k = min(S);
ε otherwise.

where “+” denotes string concatenation.

We next formalize component loading, for which we need to consider the currently
loaded components. The reason is that the OS does not load the same component multi-
ple times. In our formalization, we let Π denote the set of full paths of all the currently
loaded components.

Definition 22 (Component Loading). Given the loaded components Π , a component
loading function L takes a component specification f ∈ Σ∗, a directory search order
d = 〈d1, . . . , dn〉 ∈ Σ∗× . . .Σ∗, a file system state s, and the set of loaded components
Π , and returns a resolution success or failure:

L(f, d, s,Π) =

{
success if R(f, d, s) �∈ {ε} ∪Π;
failure otherwise.
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The formalized component loading mechanism in Definition 22 is commonly used
on major operating systems. However, as the OS determines a target component only
through its name, unsafe programming can make software load an unintended compo-
nent with the same name. Attackers can exploit this security vulnerability by modifying
the file system state. In particular, the loading of a target component can be hijacked
if a malicious file with the same name can be created in a directory searched before
the directory where the intended component resides. This component hijacking can be
misused for local or remote attacks [21].

To formalize unsafe component loading, it is necessary to determine the current file
system state as whether or not a component loading is safe is relative to a file system
state. We first define a normal file system state w.r.t. an application p.

Definition 23 (Normal File System State). A file system state s is normal w.r.t. an
application p if no unintended components are loaded while p executes in state s. We
use sp to denote a normal file system state w.r.t. the application p.

We formalize two types of unsafe loadings: resolution failure and unsafe resolution. We
use Rp and Lp to denote component resolution and component loading performed by
an application p, respectively.

Definition 24 (Resolution Failure). For an application p, a resolution failure occurs
at runtime if Rp(f, d, sp) = ε. In this case, with a full path specification f , an arbitrary
file with the same full path f can hijack the component loading. If f is file name, an
attacker can hijack this loading by placing a file (or tricking the user to place a file)
with the specified name f in any directory di writable by the attacker under the search
order d = 〈d1, . . . , dn〉.
Definition 25 (Unsafe Resolution). For an application p, an unsafe resolution occurs
at runtime if the following conditions hold: 1) f is the file name of the target component
and unknown to the OS; 2) Rp(f, d, sp) = dk+\+f∧ k > 1; and 3) Lp(f, d, ss, Π) =
success. In this case, an attacker can hijack the loading by placing a file (or tricking
the user to place a file) with the specified name f in any writable directory di by the
attacker where i < k.

To avoid unsafe loadings, it is necessary for developers to specify the target component
in a safe manner. We define safe target component specifications as follows.

Definition 26 (Safe Component Spec). Under a given threat model, a loading spec-
ification for an application p is safe if either of the following holds: 1) if f is a full
path, R(f, d, sp) �= ε and the attacker cannot overwite f or trick the user to overwrite
f ; and 2) if f is an unknown file name to the OS, R(f, d, sp) = di + \ + f and the
attacker cannot place a file or trick the user to place a file named f in any of the dj for
1 ≤ j ≤ i.

If a loading specification is unsafe, it leads to resolution failure or unsafe resolution.
While the first condition checks the resolution failure for the fullpath specification, the
second condition checks whether the filename specification leads to resolution failure or
unsafe resolution. As many Windows users have the administrator privilege, a realistic
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threat model under Windows is that an attacker may be able to trick a (non-malicious)
user to place a malicious component in a desired directory to hijack component loading.
We have adopted this threat model in our evaluation.

2.2 Detailed Analysis

Fig. 2. Component-interoperating code

We now present the details of
our analysis. Our technique stat-
ically detects unsafe component
loadings to achieve high cover-
age. It first extracts the target
component specifications from
possible code region executed at
runtime and checks their safety
based on Definition 26.

The executed code region is determined by loaded components. Figure 2 depicts the
component loading code whose execution path is controlled by a random variable x. If x
is zero, foo1 of component A and foo2 of component C are executed. Otherwise, bar1
of component B and bar2 of component D are executed. Our observation is that each
execution path covers the partial code region of the loaded components. For example, if
x is zero, the partial code regions of components Program, A, and C are executed. From
these observations, we design our static detection as shown in Figure 3: extraction and
checking. From the extraction phase, we obtain a set of the target component specifi-
cations from the components that can be loaded at runtime. In the checking phase, we
evaluate the safety of each target specification based on Definition 26.

Fig. 3. Detection framework

Extraction Phase. A component can
load other components at loadtime or
runtime. This loading introduces load-
time and runtime dependencies among
components [41]. Based on these de-
pendencies, we determine components
that can be loaded during program ex-
ecution. Specifically, we recursively re-
solve the components from the program
file based on their loadtime and runtime
dependencies. To resolve the dependent
components, the corresponding target
specifications, i.e., full path or file name, are needed. For loadtime dependencies, com-
pilers specify the dependent components in the executable format. For example, the
names of the loadtime dependent components are stored in IMAGE IMPORT DIRECTORY

with the PE format [24]. To obtain the specifications of the runtime dependent compo-
nents, we compute values of parameters to component-loading system calls. This suf-
fices for our setting because the program dynamically loads components via the system
calls and their parameters determine the loaded components.

As an example of recursive resolution, we search the components that can be loaded
by Program in Figure 2. Suppose that components E and F, which have no loadtime
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1 PUSH EAX

2 PUSH EAX

3 PUSH offset 0x7D61AC5C; "xpsp2res.dll"

4 CALL DWORD PTR DS:[LoadLibraryExA]

(a) Memory indirect

1 MOV EBX, DWORD PTR DS:[LoadLibraryW]

2 PUSH offset 0x65015728; "CABINET.DLL"

3 CALL EBX

(b) Register indirect

Fig. 4. Two types of component-loading call sites

or runtime dependent components, implement the rand and LoadLibrary functions,
respectively. In this case, Program loads components E and F on its startup. Regarding
runtime dependencies, Program dynamically loads components with the specifications,
"A" on line 4 and "B" on line 8. From this information, we can detect the potentially-
loaded components by simulating component resolution. Similarly, we can infer that
C, D and F, which are loaded by A and B. Because C and D have no loadtime and run-
time dependent components, we stop the resolution process. Thus, we detect the seven
components potentially loaded at runtime: Program, A, B, C, D, E, and F.

The key step of the extraction phase is to obtain the target specification for com-
ponent loading in a binary. The specification of a loadtime dependent component can
be easily obtained from the binary file format. However, extracting the specification
of a runtime dependent component is nontrivial because it often requires to locate the
code relevant to the value of the specification and analyze its execution. For example,
the target component specification for system libraries under Microsoft Windows is
sometimes determined by concatenating the system directory path and the file name.
To obtain the specification, it is necessary to extract the related code and analyze its
execution result.

The concrete value of the parameter to the component-loading system call serves
as the specification for the runtime dependent component. From this observation, we
extract the specification by searching for the program variable for the specification
and then computing its value via context-sensitive emulation, a novel combination of
backward slicing and emulation. We describe details of the extraction in the following
sections.

Searching Program Variable for Specification. In binary code, invoking the
component-loading system calls follow the stdcall calling convention [45]. When pa-
rameters are passed to the call site, they are pushed from right to left. For example, Fig-
ure 4(a) represents the binary code corresponding to LoadLibraryExA(0x7D61AC5C,

EAX, EAX). Based on the parameter passing mechanism, we locate the program vari-
able, e.g., a register or a memory chunk, which stores the target specification. In partic-
ular, we detect the call site for component loading via static taint data analysis and then
extract the input operands of the instructions passing the parameter to the call site. We
describe details of each step in the rest of this section.

Locating Component-loading Call Sites. In this phase, we aim at finding the call
site for component loading in a binary. Our observation is that software stores the ad-
dress of the system call implementation in its memory space and utilizes it in the call
sites for component loading at runtime. Figure 4 shows the two types of component-
loading call sites in a binary, which are memory indirect and register indirect. The main
difference between them is what type of program variable stores the address of the
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component-loading system call at the call site. While the memory indirect type stores
the address in a memory chunk, the register indirect type stores the address in a register,
e.g., line 4 in Figure 4(a) and line 3 in Figure 4(b).

Based on this observation, we locate the component-loading call sites through static
taint data analysis. In particular, we define the taint sources and the taint sinks as fol-
lows:

– Taint source: an instruction that references a memory chunk that stores the address
of the component-loading system call.

– Taint sink: a branch instruction, e.g., call, whose target address is tainted. We
consider the taint sink instructions as the call sites.

We now present examples on how to detect call sites. In Figure 4(a), line 4 serves as
not only the taint source but also the taint sink, i.e., the component-loading call site,
because it is the branch instruction, accessing a memory chunk that stores the address
of LoadLibraryExA. For Figure 4(b), line 1 is the taint source, accessing the address
of the LoadLibraryA, and line 3 is the taint sink, because it is the call instruction
whose target is the address, stored in EBX.

Extracting Parameter Variables. Once a call site is located, we extract the program
variables for the target specification from the predefined number of the instructions
to pass the parameters to the call site. In particular, we detect the instructions, e.g.,
PUSH, to initialize the top of stack backward from the call site. Because the number of
parameters of a component-loading system call is known, we can precisely extract all
the variables to define this target specification. For example, the call site in Figure 4(a)
invokes LoadLibraryExA, and it has three parameters, i.e., 0x7D61AC5C,EAX, and EAX,
via the instructions on lines 1–3.

Context-Sensitive Emulation. In this phase, we compute the concrete values of the
parameter variables extracted in Section 2.2. The computation may seem trivial at first.
For example, the memory chunk at 0x7D61AC5C in Figure 4(a) contains the target spec-
ification, "xpsp2res.dll". However, the computation is in fact challenging because it
is necessary to extract the code to compute the variable, requiring interprocedural data
flow analyses (cf. Figure 1). Also, we need the runtime information of the code to obtain
the concrete values of the variable. Symbolic analysis can serve as a potential solution.
However, as we mentioned in Section 1, symbolic analysis suffers from poor scalability
and is limited in handling system calls, which are often complex.

To address this problem, we introduce context-sensitive emulation, which novely
combines backward slicing and emulation. Based on this combination, we can scalably
and precisely compute the values of the variables of interest. We describe its details in
the rest of this section.

Backward Slicing. This phase performs the interprocedural backward slicing w.r.t. the
parameter variable, extracting the instructions to compute the variable. This problem
has been extensively studied, and many slicing algorithms [1,5,13,30,35,38] have been
proposed. These algorithms commonly solve the graph reachability problem over a Sys-
tem Dependence Graph (SDG) [13], a set of Program Dependence Graphs (PDGs) [12]
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and edges capturing data flow dependencies among them. In particular, a SDG is con-
structed beforehand based on an exhaustive data flow analysis over the subject program.
Then, the slicing outcome is determined by traversing the SDG from the given slicing
criteria. Although the approach has been widely used, it is not appropriate for our prob-
lem setting. The reason is that binary files are generally composed of a large number
of instructions, and an exhaustive data flow analysis over all the instructions is very
expensive, leading to limited scalability.

(a) Intra-backward

(b) Inter-backward
Fig. 5. Unnecessary data flow analysis

Our key observation is that the parameter
values are often locally determined, that is the
execution paths to compute the variables are rel-
atively short. Thus, exhaustive data flow analy-
sis is not be necessary to extract backward slices
w.r.t. the given slicing criteria. Figure 5 shows ex-
amples of the unnecessary data flow analysis dur-
ing intraprocedural and interprocedural backward
slicing.

Figure 5(a) shows an example of the CFG for
constructing the PDG. Suppose that we perform
intraprocedural backward slicing w.r.t. the instruc-
tion D. In this case, the bold instructions often only
affect the instruction D in terms of control flow. It
is possible that the instruction D can be affected
by the instructions without control flow dependen-
cies. For example, the instruction E initializes a
variable and the instruction B reads it. However,
this case rarely happens in our problem setting in
practice, because the parameters for the specification are generally computed by the
instructions executed before the component-loading call sites.

Suppose that Figure 5(b) depicts the SDG for the interprocedural backward slicing.
If the instructions of the bold PDGs for bar1 and bar2 are only traversed during slicing,
it is not necessary to perform data flow analysis on the instructions of the grayed PDGs.
Because the SDG consists of a large number of PDGs in binary and the target specifica-
tions are often locally determined, most of the PDGs are not relevant for interprocedural
backward slicing w.r.t. the parameter variables for the target specifications.

Based on this insight, we design our slicing technique as demand-driven, reducing
the unnecessary analysis of data flow dependencies. In particular, we perform interpro-
cedural backward slicing by incrementally combining intraprocedural backward slices
whose slicing criteria are determined when necessary.

Intraprocedural backward Slicing. For each intraprocedural backward slicing, we an-
alyze only the data flow dependencies among the instructions that are control dependent
on the given slicing criteria. To this end, we construct the PDG based on the predeces-
sor subgraph w.r.t. the slicing criterion under the CFG. Thus, we can avoid the analysis
of the data flow dependency among the instructions not traversed during slicing. Sup-
pose that we perform intraprocedural backward slicing w.r.t. the instruction D in the
CFG shown in Figure 5(a). If we construct the PDG based on the CFG, the data flow
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dependencies among all the instructions in the CFG are analyzed. However, the grayed
instructions do not affect the instruction D in terms of control flow dependencies. By
constructing the PDG based on the subgraph composed of the bold instructions, i.e., the
predecessor subgraph w.r.t. the instruction D, we can avoid some unnecessary data flow
analysis when performing slicing.

One challenge for PDG construction is caused by the call site instructions. Because
functions are not generally monolithic, it is necessary to identify which call sites affect
the slicing criteria. Although traversing the SDG provides such information, it requires
the computation of significant amount of unnecessary data-flow dependencies (cf. Fig-
ure 5(b)). To address this problem, we utilize the prototypes of the functions invoked
at the call sites. Specifically, we consider a call site instruction as a non-branching in-
struction during our PDG construction, and analyze the data flow dependencies related
to the call site in terms of the prototype of the callee function. For example, a call site
invokes a function foo whose prototype is int foo(in,inout). In this case, the call
to foo is considered to be an instruction that uses the first and second parameters and
defines the second parameter and the return variable. Based on this information, we can
effectively determine the data flow dependencies between the call site instructions and
the slicing criteria without a whole SDG traversal.

Interprocedural backward Slicing. As aforementioned, an exhaustive SDG construc-
tion often leads to significant amount of data flow analysis that is unnecessary for inter-
procedural backward slicing. To address this problem, we construct the interprocedural
backward slices incrementally combining the intraprocedural backward slices whose
slicing criteria are chosen in a demand-driven manner.

There are two key challenges for this demand-driven combination. First, it is nec-
essary to determine the new slicing criteria if the interprocedural backward slice con-
sists of multiple intraprocedural backward slices. For example, we construct the inter-
procedural backward slice in Figure 5(b) by combining the two intra-backward slices
extracted from functions bar1 and bar2. In this case, we need to determine the new
slicing criteria in the bar1 function. Second, the composed interprocedural backward
slice needs to be easily handled for the later emulation phase.

Fig. 6. Example context-sensitive backward slices

Our basic idea for building the new
slicing criteria is that the interprocedu-
ral data flow dependencies are captured
by parameter passing. In SDG-based
slicing, the PDGs are connected using
the edges that model parameter pass-
ing, which are traversed to analyze the
dependencies. Based on this idea, we
choose the slicing criteria as follows.
Suppose that an intraprocedural back-
ward slice s is extracted from an in-
struction whose input operand is initial-
ized through parameter p of the func-
tion f . In this case, we determine the
new slicing criterion as the parameter
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variable corresponding to the parameter p. To locate this parameter variable, we use
caller-callee relationship and the callee’s function prototype. In particular, we de-
tect the call site for function f and analyze f ’s function prototype to obtain the
index of the parameter corresponding to p. For example, the intraprocedural back-
ward slice w.r.t. the target dllname in Figure 1 uses the first parameter, i.e.,
pImgDelayDesc, of delayLoadHelper2. As two call sites on lines 5–7 and lines
14–16 invoke delayLoadHelper2, we choose their first parameter variables, i.e.,
pDelayDesc1 on line 6 and pDelayDesc2 on line 15, as the new slicing criterion.

Once the new slicing criterion is determined, we construct the interprocedural back-
ward slice by composing the intraprocedural backward slices and use the composed
slice in the emulation phase. One simple method for composing the intraprocedural
slices is to collect the instructions of each intraprocedural backward slice. For example,
the interprocedural backward slice w.r.t. the target dllname in Figure 1 consists of
the instructions of three intraprocedural backward slices w.r.t. the slicing criteria, i.e.,
target dllname, pDelayDesc1, and pDelayDesc2. However, this simple method
produces context-insensitive slices, making the emulation phase complex. In particu-
lar, when emulating each instruction of the context-insensitive slice, we have to assume
that the values of its operands are determined under all of its calling contexts.

(a) Parameter access

(b) Stack layout

Fig. 7. Function prototype analysis

To better support emulation, we combine
the intraprocedural backward slices to con-
struct a set of context-sensitive interproce-
dural backward slices. In particular, for a
given intraprocedural backward slice s, if
multiple new slicing criteria, p1 . . . pn, are
determined, the set of the context-sensitive
slices are constructed as {si ∪ s|si = ∪pi

intraprocedural backward slice w.r.t. pi where
1 ≤ i ≤ n}. Thus, we can more straightfor-
wardly use the context-sensitive slices to compute
possible concrete values of the target component
specification. For example, Figure 6 shows the
context-sensitive interprocedural backward slices
w.r.t. target dllname in Figure 6, We can com-
pute the possible values of target dllname by
emulating them. We describe more details of our
backward slicing phase in an earlier version of this
paper [22].

Function Prototype Analysis. The backward slic-
ing phase relies on function prototypes, but such
information is often unavailable in binary code.
Our solution to this problem is as follows. For a given function f , its parameters are
stored in fixed locations during f ’s execution. Thus, we infer its prototype by analyzing
how the instructions of the function access the memory chunks for the parameters, i.e.,
read or write.
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Figure 7 shows an example of our proposed prototype analysis for the foo function.
Suppose that Figures 7(a) and 7(b) show part of foo and the stack layout at the be-
ginning of the function’s execution, respectively. In this case, the idx-th parameter is
stored at the address ebp+4×(idx+1) where the stack is aligned by four bytes. From
this observation, we can infer foo’s prototype. It reads data from the memory chunks
for its second and third parameters, and initializes the memory chunks for its first and
fourth parameters, i.e., its function prototype is "eax foo(inout,in,in,inout)".
Here we assume that its result is returned through the eax register.

To improve the precision of our prototype inference, we use the following effective
heuristic. If the effective address of the memory chunk, obtained by the lea instruction,
is passed to the function, we consider it as the inout parameter. The effective address
corresponds to a pointer variable and the memory chunk that it points to is often ini-
tialized during function execution. Although this heuristics may increase the size of
the computed slice, it is sufficient to compute possible values of the slicing criteria via
emulation.

Emulation Phase. In this phase, we compute the possible values of the target com-
ponent specification by emulating its corresponding context-sensitive slices. There are
three challenges for slice emulation. The first challenge is how to schedule the instruc-
tions because we do not know their runtime execution sequence. If the instructions are
incorrectly scheduled, they may violate the data and control flow dependencies among
them, which may lead to imprecise results or emulation failures. The second challenge
is how to pass function parameters. Although parameter passing captures useful data
flow dependencies, the context-sensitive slices do not explicitly specify the dependen-
cies. The third challenge is how to handle the call site instructions. Because we perform
the data flow analysis by considering a call site as an instruction, the backward slice
does not contain detailed code of the callee function.

Fig. 8. Data-flow dependency among basic blocks

Scheduling Algorithm. To develop
a practical scheduling algorithm, we
have analyzed all 682 backward
slices extracted from nine popular
Windows applications (cf., Table 1).
We have observed that all the ex-
tracted slices form directed acyclic
graphs. Therefore, we schedule the
basic blocks in their topological or-
der w.r.t. dataflow dependency. We
then determine the order of the in-
structions of each basic block w.r.t.
their sequence in the original code.
For example, Figure 8 shows the data
flow dependency among the basic
blocks of the first slice in Figure 6. In this case, we schedule the basic blocks as B1,
B2, and B3. For each basic block, the sequence of its instructions is determined as
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follows: i1, i4,i2,i3,i5,i6, and i7. The scheduled sequence of the instructions
does not violate the data- and control-flow dependency among them.

Parameter Passing. To handle parameter passing, we initialize the stack frame before
emulating the callee function. In particular, suppose that a parameter p is passed to a
function f . In this case, before emulating f ’s basic blocks, we reserve the stack frame
and initialize its memory chunk for the parameter with the concrete value of p. The
location of the memory chunk is determined by the index of the passed parameter. For
example, the address of the memory chunk for the idx-th parameter can be computed
by ebp+ 4× (idx+ 1), (cf. Figure 7).

For example, Figure 8 shows how we handle the parameter passing from f1

to delayLoadHelper2. When B1 is emulated, top of the call stack for f1

stores offset WINSPOOL DRV DelayDesc. Assuming that the initial value of esp

for emulating B2 is equal to 0x13f258, the stored value initializes a memory
chunk at arg 0=0x13f258+4×2, because it corresponds to the first parameter to
delayLoadHelper2. The instructions use arg 0 to reference the first parameter

(e.g., i2).

Call Site Instruction. To obtain the possible values of the target component specifica-
tion, it is necessary to emulate the call site instruction. If the code of the invoked func-
tion resides in the current file, we can simply emulate the corresponding code. However,
if the call site invokes a system call, we may not be able to obtain the code from the
current file. Figure 9 shows an example slice with external library calls where each
edge represents data flow dependency between two instructions. The slice determines
the fullpath of the target component by concatenating the path to the system directory
with a string \kernel32.dll. In this case, the instructions invoked by i5 and i10 are
not available in the current file. In particular, GetSystemDirectoryW and wcscat s

are implemented in KERNEL32.DLL and MSVCRT.DLL, respectively.

Fig. 9. Backward slice with external library calls

One natural solution is to perform
instruction-level emulation over the sys-
tem call implementations obtained from
the corresponding libraries. However,
this is not practical because system call
implementations typically have a large
number of instructions and lead to poor
scalability.

Thus, we do not emulate the system
call code at the instruction-level. Instead,
we use code to model the side effects
of system calls and execute the mod-
els. For example, Figure 10(a) and Fig-
ure 10(b) show the stack layout before
and after processing i5 shown in Fig-
ure 9. The example models the side effect
of GetSystemDirectoryW: 1) retrieve
the two parameters from the stack; 2)
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obtain the system directory path by invoking GetSystemDirectoryW; 3) write the di-
rectory path to the memory chunk pointed to by the first parameter; 4) copy the system
call’s return value to eax register and adjust the esp register to clean up the stack frame.

(a) Before

(b) After

Fig. 10. Side effects of i5 in Figure 9

Based on the technique discussed above, we
can emulate the context-sensitive slices to com-
pute the possible values of the target component
specification. For example, we can compute the
value, "C:\Windows\System32\KERNEL32.DLL",
of lpLibFileName by emulating the backward
slice in Figure 9.
Checking Phase. In this phase, we evaluate the
safety of the target component specifications ob-
tained from the extraction phase. To this end, for
each specification, we check whether or not the
safety conditions in Definition 26 are satisfied. In particular, when the fullpath is speci-
fied, we check whether or not the specified file exists in the normal file system. For the
filename specification, we consider that a specification can lead to unsafe loading if the
target component is unknown and the OS cannot resolve it in the directory that is first
searched on the normal file system. Note that the names of the known component and
the first directory searched by the OS for the resolution are predefined [8, 9, 21].

As an example of this phase, we check the component loading discussed in the at-
tack scenario in Section 1. When opening the .asx file, Winamp 5.58 tries to load
rapi.dll. In this case, OS iterates through a list of predefined directories [9] to locate
the file named rapi.dll. However, no such file is found during the iteration. Thus,
this loading is unsafe, because attackers can hijack this loading by placing malicious
rapi.dll files in the checked directories. In particular, the current working directory,
one of the directories, is determined as the same directory as the .asx file, leading to
the remote code execution attack. Suppose that the file named rapi.dll exists in the
directory first searched, i.e., the Winamp program directory. In this case, this loading is
safe, because there is no directory such that attackers can misuse for hijacking.

3 Empirical Evaluation

In this section, we evaluate our static technique in terms of precision, scalability, and
code coverage. We show that our technique scales to large real-world applications and
is precise. It also has good coverage, substantially better than the existing dynamic
approach [21].

3.1 Implementation

We implemented our technique on Windows XP SP3 as a plugin to IDA Pro [15], a
state-of-the-art commercial binary disassembler. Our IDA Pro plugin is implemented
using IDAPython [16] and three libraries: 1) NetworkX [29] for graph analysis, 2)
PyEmu [32] for emulation, and 3) pefile [31] for PE format analysis.

For the precise analysis of binaries, it is important to map between C-like variables
and memory regions accessed by instructions. We adapt the concept of an abstract



Static Detection of Unsafe Component Loadings 137

location (a-loc) [3], which models a concrete memory address in terms of the base
address for a memory region and a relative offset. For example, the a-loc for &a[4] is
mem 4 where mem is the base address of the array a and 4 is the relative offset from the
base address. Refer to Balakrishnan and Reps [3] for more details.

Backward slicing in our technique requires function prototypes of system calls. To
this end, we analyzed the files in the system directory and collected prototypes for 3,291
system calls.

To emulate the code modeling side effects of system calls, we need to determine what
system call is invoked through a given call site instruction. We have extended PyEmu’s
set library handler function so that it can register callback functions for external
function calls. We implemented the callbacks for 68 system calls used by the extracted
slices.

To implement our tool, it is necessary to extract CFGs and call graphs from binaries.
We leverage the disassemble result of IDA Pro in our current implementation. It is well-
known that indirect jumps can be difficult to resolve for binaries. Although IDA Pro
does resolve certain indirect jumps, it may miss control-flow and call dependencies,
which is one source of incompleteness in our implementation.

3.2 Evaluation Setup and Results

We aim at detecting unsafe component loadings in applications. Because the detection
of unsafe loadings from the system libraries is performed by the operating system, we
only resolve the application components in the extraction phase.

The checking phase for a target specification requires the information on the first
directory searched by the OS for the resolution and the relevant normal file system
state (cf., Definition 26 and Section 2.2). We obtain this information by analyzing the
extracted parameters and the applications. For example, suppose that an application p
loads an unknown component by invoking LoadLibrary with the component’s file-
name. In this case, we can infer the directory where p is installed because Microsoft
Windows first checks the directory where p is loaded. Regarding the normal file sys-
tem state, we installed the applications with the default OS configuration and detected
unsafe loadings for each application. In this setting, we assume that 1) the default file
system state is normal, and 2) the application itself is benign in that does not cause
installed applications to have unintended component loadings.

Detection Results and Scalability. Table 1 shows our analysis results on nine pop-
ular Windows applications. We chose these applications as our test subjects because
they are important applications in wide-spread use. The results show that our technique
can effectively detect, from program binaries, unsafe component loadings potentially
loaded at runtime. Note that the results of the extraction phase for Seamonkey and
Thunderbird are identical. This is likely because both applications are part of the
Mozilla project and use the same set of program components.

We rely on IDA Pro for disassembling binaries, and Table 1 includes the time that
it took IDA Pro to disassemble the nine applications. This time dominates our analysis
time as we show later. These are large applications, and also we only need to disassem-
ble the code once for all the subsequent analysis.
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Table 1. Analysis of the static detection

Resolved files Context-sensitive Emulation Unsafe loadings / Specifications

# Size (MB) Disasm. time Call sites Slices
Slice inst. (#)

Failures Loadtime Runtime
mean max

Acrobat Reader 9.3.2 18 38.2 34m 12s 85 145 5.1 40 34 12 / 109 40 / 111
Firefox 3.0 13 12.5 10m 48s 21 25 2.7 26 3 9 / 77 12 / 22
iTunes 9.0.3 2 25.1 11m 32s 53 128 13.7 187 74 18 / 36 31 / 54
Opera 10.50 3 11.6 12m 46s 28 30 3.0 29 2 8 / 28 11 / 28
Quicktime 7.6.5 17 40.5 9m 15s 70 119 13.5 54 58 19 / 109 19 / 61
Safari 5.31 24 37.5 11m 03s 72 137 5.8 48 33 16 / 158 67 / 104
Seamonkey 2.0.4 15 14.5 20m 44s 34 40 1.7 24 2 9 / 88 20 / 38
Thunderbird 3.0.4 15 15.0 19m 38s 34 40 1.7 24 2 9 / 88 20 / 38
Foxit Reader 3.0 2 10.2 5m 20s 18 18 2.1 13 5 10 / 24 6 / 13

Table 2. Analysis of scalability

Software

Detection time Relative cost of slice construction

Open (s) Call site (s) Slicing (s) Emulation (s) Total (s)
# of analyzed functions # of inst. of analyzed functions

Demand-driven Static Demand-driven Static
mean max total total mean max total total

Acrobat Reader 9.3.2 95.68 0.03 3.11 6.17 104.93 1.4 3 205 264,551 48.4 220 7,019 9,907,069
Firefox 3.0 41.69 0.03 0.19 0.22 42.13 1.0 1 25 63,550 34.4 158 859 3,071,548
iTunes 9.0.3 15.47 0.03 23.53 16.80 55.83 2.2 5 280 42,689 222.3 7,017 28,460 3,612,724
Opera 10.50 15.35 0.03 0.20 0.57 16.15 1.0 1 30 54,387 28.1 140 843 2,789,126
Quicktime 7.6.5 46.70 0.02 4.65 25.64 77.01 1.9 7 221 63,995 84.4 1,542 10,038 4,885,911
Safari 5.31 48.34 0.02 1.96 3.70 54.02 1.5 7 201 80,899 49.5 500 6,788 5,058,285
Seamonkey 2.0.4 37.51 0.02 0.19 0.52 38.24 1.0 1 40 79,636 30.9 125 1,236 3,840,465
Thunderbird 3.0.4 37.22 0.02 0.22 0.53 37.99 1.0 1 40 78,520 30.9 125 1,236 3,782,799
Foxit Reader 3.0 12.08 0.01 0.17 0.28 12.54 1.2 3 22 56,439 22.8 72 411 2,032,545

According to our analysis of context-sensitive emulation, the number of slices is gen-
erally larger than that of the call sites. This indicates that parameters for loading library
calls can have multiple values, confirming the need for context-sensitive slices. The av-
erage number of instructions for the slices is quite small, which empirically validates
our analysis design decisions.

We now discuss the evaluation of our tool’s scalability. To this end, we measure its
detection time and the efficiency of its backward slicing phase. Table 2 shows the de-
tailed results of detection time and relative cost of slice construction. The results show
that our analysis is practical and can analyze all nine large applications within minutes.
To further understand its efficiency, we compared cost of our backward slicing with one
of standard SDG-based slicing. Although we do expect to explore fewer instructions
with a demand-driven approach, we include the comparison in Table 2 to provide con-
crete, quantitative data. For a standard SDG-based approach, one has to construct the
complete SDG before performing slicing. We thus measured how many functions and
instructions there are in each application as these numbers indicate the cost of this a
priori construction (cf. the two columns labeled “Static total”). As the table shows, we
achieve orders of magnitude reduction in terms of both the number of functions and the
number of instructions analyzed.

Comparison with Dynamic Detection. To evaluate our tool’s code coverage, we com-
pare unsafe loadings detected by the static and dynamic analyses. In particular, we
detected unsafe component loadings with the existing dynamic technique [21] and com-
pared its results with our static detection. To collect the runtime traces, we executed
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Table 3. Static detection versus dynamic detection [21]

Software
Component loadings Unsafe loadings Static reachability

Dynamic Static ∩ Dynamic Static ∩ Reachable Unknown

Acrobat Reader 9.3.2 14 111 11 2 40 1 32 7
Firefox 3.0 16 22 11 6 12 4 1 7
iTunes 9.0.3 5 54 2 3 31 1 29 1
Opera 10.50 20 28 13 9 11 4 7 0
Quicktime 7.6.5 6 61 4 2 19 1 9 9
Safari 5.31 27 104 24 17 67 15 52 0
Seamonkey 2.0.4 24 38 12 9 20 6 0 14
Thunderbird 3.0.4 25 38 11 6 20 5 0 15
Foxit Reader 3.0 6 13 1 0 6 0 6 0

our test subjects one by one with relevant inputs (e.g., PDF files for Acrobat Reader)
and collected a single trace per application. Please note that the dynamically detected
unsafe loadings are only a subset of all real unsafe loadings.

In this evaluation, we focus on application-level runtime unsafe loadings as loadtime
dependent components are loaded by OS-level code. Table 3 shows the detailed results.
We see that our static analysis can detect not only most of the dynamically-detected
unsafe loadings but also many additional (potential) unsafe loadings, most of which we
believe are real and should be fixed. Next we closely examine the results.

Static-only Cases. Our static analysis detects many additional potential unsafe loadings.
We carefully studied these additional unsafe loadings manually. In particular, we ana-
lyzed whether they are reachable from the entry points of the programs, i.e., whether
there exist paths from the entry points to the call sites of the unsafe loadings in the pro-
grams’ interprocedural CFGss (ICFGs). In this analysis, we consider the main function
of an application and the UI callback functions as the entry points of the application’s
ICFG. Table 3 shows our results on this reachability analysis. Note that those loadings
marked as “Unknown” may still be reachable as it is difficult to resolve indirect jumps
in binary code, so certain control flow edges may be missing from the ICFGs. All the
statically reachable unsafe loadings lead to component-load hijacking if 1) the corre-
sponding call sites are invoked and 2) the target components have not been loaded yet.

Although it is difficult to trigger the detected call sites dynamically (due to the size
and complexity of the test subjects), we believe most of the call sites are dynamically
reachable as dead-code is uncommon in production software. As a concrete example
of unsafe loading, Foxit Reader 3.0 has a call site for loading MAPI32.DLL, which is
invoked when the current PDF file is attached to an email message. This loading can
be hijacked by placing a file with the same name MAPI32.DLL into the directory where
Foxit Reader 3.0 is installed.

Dynamic-only Cases. According to Table 3, our technique misses a few of the dynami-
cally detected unsafe loadings. We manually examined all these cases, and there are two
reasons for this: system hook dependency and failed emulation, which we elaborate next.

First, Microsoft Windows provides a mechanism to hook particular events (e.g.,
mouse events). If hooking is used, a component can be loaded into the process to handle
the hooked event. This component injection introduces a system hook dependency [41].
Such a loading may be unsafe, but since it is performed by the OS at runtime and is not
an application error, we do not detect it.
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Second, our extraction phase may miss some target component specifications due to
failed emulations. If this happens, we may miss some unsafe loadings even if their corre-
sponding call sites are found. Emulation failures can be caused by the following reasons.

External Parameters. A target specification may be defined by a parameter of an ex-
ported function that is not invoked. For example, suppose that a function foo exported
by a component A loads a DLL specified by foo’s parameter. If foo is not invoked by
A, the parameter’s concrete value will be unknown. One may mitigate this issue by ana-
lyzing the data flow dependencies among the dependent components. However, such an
analysis does not guarantee to obtain all the target specifications, because the exported
functions are often not invoked by the dependent components.

Uninitialized Memory Variables. The slices may have instructions referencing memory
variables initialized at runtime. In this case, our slice emulation may be imprecise or fail.
To address this problem, it is necessary to extract the sequence of instructions from the de-
pendent components that initialize these memory variables and emulate the instructions
before slice emulation. Although it is possible to analyze memory values, such as the
Value Set Analysis (VSA) [34], it is difficult to scale such analysis to large applications.

Imprecise Inferred Function Prototypes. Our technique infers function prototypes by
analyzing parameters passed via the stack. However, function parameters may be passed
via other means such as registers. For example, the fastcall convention uses ECX
and EDX to pass the first two parameters. Therefore, when function parameters are
passed through unsupported calling conventions, the inferred function prototypes may
omit parameters that determine the new slicing criteria. For example, suppose that we
extract a context-sensitive sub-slice s from a function foo, and ECX is used as a param-
eter variable of s. In this case, we do not continue the backward slicing phase, because
the inferred prototype does not contain ECX. Although imprecisely inferred function
prototypes may lead to emulation failure, our results show that this rarely happens in
practice—we observed only 14 cases out of a total of 213.

Unknown Semantics of System Calls. Detailed semantics of system calls is often undoc-
umented, and sometimes even their names are not revealed. When we encounter such
system calls, we cannot analyze nor emulate them. When information of such system
calls becomes available, we can easily add analysis support for them.

Disassemble Errors. Our implementation relies on IDA Pro to disassemble binaries, and
sometimes the disassemble results are incorrect. For example, IDA Pro sometimes is
not able to disassemble instructions passing parameters to call sites for delayed loading.
Such errors can lead to imprecise slices and emulation failures.

4 Related Work

We survey additional related work besides the one on dynamic detection of unsafe load-
ings [21], which we have already discussed.

Our technique performs static analysis of binaries. Compared to the analysis of
source code, much less work exists [1, 3, 4, 6, 7, 19, 20, 34, 39]. In this setting, Value
Set Analysis (VSA) [3, 34] is perhaps the most closely related to ours. It combines nu-
meric and pointer analyses to compute an over-approximation of numerical values of
program variables. Compared to VSA, our technique focuses on the computation of
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string variables. It is also demand-driven and uses context-sensitive emulation to scale
to real-world large applications.

Starting with Weiser’s seminal work [43], program slicing has been extensively stud-
ied [40, 46]. Our work is related to the large body of work on static slicing, in par-
ticular the SDG-based interprocedural techniques. Standard SDG-based static slicing
techniques [1, 5, 13, 30, 35, 38] build the complete SDGs beforehand. In contrast, we
build control- and data-flow dependence information in a demand-driven manner, start-
ing from the given slicing criteria. Our slicing technique is also modular because we
model each call site using its callee’s inferred summary that abstracts away the internal
dependencies of the callee. In particular, we treat a call as a non-branching instruction
and approximate its dependencies with the callee’s summary information. This opti-
mization allows us to abstract away detailed data flow dependencies of a function using
its corresponding call instruction. We make an effective trade-off between precision and
scalability. As shown by our evaluation results, function prototype information can be
efficiently computed and yield precise results for our setting.

Our slicing algorithm is demand-driven, and is thus also related to demand-driven
dataflow analyses [14,33], which have been proposed to improve analysis performance
when complete dataflow facts are not needed. These approaches are similar to ours in
that they also leverage caller-callee relationship to rule out infeasible dataflow paths.
The main difference is that we use a simple prototype analysis to construct concise
function summaries instead of directly traversing the functions’ intraprocedural depen-
dence graphs, i.e., their PDGs. Another difference is that we generate context-sensitive
executable slices for emulation to avoid the difficulties in reasoning about system calls.

As we discussed earlier, instead of emulation, symbolic analysis [18, 37] could be
used to compute concrete values of the program variables. However, symbolic tech-
niques generally suffer from poor scalability, and more importantly, it is not practical
to symbolically reason about system calls, which are often very complex. The missing
implementation for undocumented system calls is the challenge for emulation, while
for symbolic analysis, complex system call implementation is an additional challenge.
We introduce the combination of slicing and emulation to address this additional chal-
lenge. Our novel use of context-sensitive emulation provides a practical solution for
computing the values of program variables.

5 Conclusion and Future Work

We have presented a practical static binary analysis to detect unsafe loadings. The core of
our analysis is a technique to precisely and scalably extract which components are loaded
at a particular loading call site. We have introduced context-sensitive emulation, which
combines incremental and modular slice construction with the emulation of context-
sensitive slices. Our evaluation on nine popular Windows application demonstrates the
effectiveness of our technique. Because of its good scalability, precision, and coverage,
our technique serves as an effective complement to dynamic detection [21]. For future
work, we would like to consider two interesting directions. First, because unsafe loading
is a general concern and also relevant for other operating systems, we plan to extend our
technique and analyze unsafe component loadings on Unix-like systems. Second, we
plan to investigate how our technique can be improved to reduce emulation failures.
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