
A Core Calculus for Provenance

Umut A. Acar1, Amal Ahmed2, James Cheney3, and Roly Perera1

1 Max Planck Institute for Software Systems
{umut,rolyp}@mpi-sws.org

2 Indiana University
amal@cs.indiana.edu
3 University of Edinburgh

jcheney@inf.ed.ac.uk

Abstract. Provenance is an increasing concern due to the revolution in sharing
and processing scientific data on the Web and in other computer systems. It is
proposed that many computer systems will need to become provenance-aware in
order to provide satisfactory accountability, reproducibility, and trust for scien-
tific or other high-value data. To date, there is not a consensus concerning ap-
propriate formal models or security properties for provenance. In previous work,
we introduced a formal framework for provenance security and proposed formal
definitions of properties called disclosure and obfuscation.

This paper develops a core calculus for provenance in programming languages.
Whereas previous models of provenance have focused on special-purpose
languages such as workflows and database queries, we consider a higher-order,
functional language with sums, products, and recursive types and functions. We
explore the ramifications of using traces based on operational derivations for the
purpose of comparing other forms of provenance. We design a rich class of prove-
nance views over traces. Finally, we prove relationships among provenance views
and develop some solutions to the disclosure and obfuscation problems.

1 Introduction

Provenance, or meta-information about the origin, history, or derivation of an object,
is now recognized as a central challenge in establishing trust and providing security
in computer systems, particularly on the Web. Essentially, provenance management in-
volves instrumenting a system with detailed monitoring or logging of auditable records
that help explain how results depend on inputs or other (sometimes untrustworthy)
sources. The security and privacy ramifications of provenance must be understood in
order to safely meet the needs of users that desire provenance without introducing new
security vulnerabilities or compromising the confidentiality of other users.

The lack of adequate provenance information can cause (and has caused) major prob-
lems, which we call provenance failures [11]. Essentially, a provenance failure can arise
either from failure to disclose some key provenance information to users (for exam-
ple, if a years-out-of-date story causes investors to panic about a company’s financial
stability [7]), or from failure to obfuscate some sensitive provenance information (for
example, if a Word document is published with supposedly secret contributors’ identi-
ties logged in its change history [27]). To address these problems, a number of forms

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 410–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Core Calculus for Provenance 411

of provenance have been proposed for different computational models, including why
and where provenance [6], dependency provenance [9], and a variety of other ad hoc
techniques [3,24].

Prior work on provenance and security. Our previous work [9] appears to have been
the first to explicitly relate information-flow security to a form of provenance, called
dependency provenance. Provenance has been studied in language-based security by
Cirillo et al. [13] and by Swamy et al. [26,25]. Both focus on specifying and enforcing
security policies involving provenance tracking alongside many other concerns, and
not on defining provenance semantics or extraction techniques. Work on secure au-
diting [21,19] and expressive programming languages for security is also related, but
this work focuses on explicitly manipulating proofs of authorization or evidence about
protocol or program runs rather than automatically deriving or securing provenance
information.

There is also some work directly addressing security for provenance [12,8,15]. Chong
[12] gave candidate definitions of data security and provenance security using a trace
semantics, based in part on an earlier version of our trace model. Davidson et al. [15]
studied privacy for provenance in scientific workflows, focusing on complexity lower
bounds. Cheney [8] gave an abstract framework for provenance, proposed definitions of
properties called obfuscation and disclosure, and discussed algorithms and complexity
results for instances of this framework including finite automata, workflows, and the
semiring model of database provenance [18].

In this paper, we build on prior work on provenance security by studying the dis-
closure and obfuscation properties of different forms of provenance in the context of a
higher-order, pure, functional language. To illustrate what we mean by provenance, we
present examples of programming with three different forms of provenance in Trans-
parent ML (TML), a prototype implementation of the ideas of this paper.

1.1 Examples

Where-provenance. Where-provenance [6,5] identifies at most one source location from
which a part of the output was copied. For example, consider the following TML ses-
sion:

- f [(1,2), (4,3), (5,6)];
val it = [(5,6), (3,4), (1,2)]

Without access to the source code, one can guess that f is doing something like

reverse ◦ (map (λ(x, y).if x < y then (x, y) else (y, x)))

However, by providing where-provenance information, the system can explain whether
the numbers in the result were copied from the input or constructed in some other way:

- trace (f [(1@L1,2@L2),(4@L3,3@L4),(5@L5,6@L6)]);
it = <trace> : ({L1:int,...}, (int*int) list) trace
- where it;
val it = [(5@L5,6), (3@L4,4), (1@L1,2)]

412 U.A. Acar et al.

This shows that f contrives to copy the first elements of the returned pairs but construct
the second components.

Dependency provenance. Dependency provenance [9] is an approach that tracks a set
of all source locations on which a result depends. For example, if we have:

- g [(1,2,3), (4,5,6)];
val it = [6,6] : int list

we again cannot tell much about what g does. By tracing and asking for dependency
provenance, we can see:

- trace (g [(1@L1,2@L2,3@L3),(4@L4,5@L5,6@L6)]);
val it = <trace> : ({L1:int,...}, int list) trace
- dependency it;
val it = [6@{L1,L2,L3}, 6@{L1,L2,L3}]

This suggests that g is simply summing the first triple and returning the result twice,
without examining the rest of the list. We can confirm this as follows:

- trace (g ((1@L1,2@L2,3@L3)::[]@L));
val it = <trace> : ({L1:int,...}, int list) trace
- dependency it;
val it = [6@{L1,L2,L3}]

The fact that L does not appear in the output confirms that g does not look further into
the list.

Expression provenance. A third common form of provenance is an expression graph
or tree that shows how a value was computed by primitive operations. For example,
consider:

- (h 3, h 4, h 5)
val it = (6,24,120);

We might conjecture that h is actually the factorial function. By tracing h and extracting
expression provenance, we can confirm this guess (at least for the given inputs):

- trace (h (4@L));
val it = <trace> : ({L:int}, int) trace
- expression it;
val it = 24@{L * (L-1) * (L-2) * (L-3) * 1}

In this case where-provenance and dependency provenance would be uninformative
since the result is not copied from, and obviously depends on, the input.

This kind of provenance is used extensively in workflow systems often used in e-
science [20], where the main program is a high-level process coordinating a number of
external (and often concurrent) program or RPC calls, for example, image-processing
steps or bulk data transformations, which we could model by adding primitive image-
processing operations and types to our language. Thus, even though the above exam-
ples use fine-grained primitive operations, this model is also useful for coarse-grained
provenance-tracking.

A Core Calculus for Provenance 413

Provenance security. The three models of provenance above represent useful forms
of provenance that might increase users’ trust or confidence that they understand the
results of a program. However, if the underlying data, or the structure of the com-
putation, is sensitive, then making this information available may lead to inadvertent
vulnerabilities, by making it possible for users to infer information they cannot ob-
serve directly. This is a particular problem if we wish to disclose part of the result of
a program, and provenance that justifies part of the result, while keeping other parts of
the program’s execution, input, or output confidential. As a simple example, consider
a program if x �= 1 then (y, y) else (z, w). If x is sensitive, but z and w happen to
both equal 42, then it is safe to reveal the result (42, 42). However, any of the above
forms of provenance make it possible to distinguish which branch was taken because
the two different copies of 42 in z and w will have different provenance. Thus, if the
provenance information is released then a principal can infer that the second branch was
taken, and hence, x = 1. In technical terms, we cannot disclose any of the above forms
of provenance for the result while obfuscating the fact that x = 1.

1.2 Summary

Contributions. In this paper, we build on, and refine, the provenance security frame-
work previously introduced by Cheney [8]. We introduce a core language with re-
playable execution traces for a call-by-value, higher-order functional language, and
make the following technical contributions:

– Refined definitions of obfuscation and disclosure (Sec. 2).
– A core calculus defining traced execution for a pure functional programming lan-

guage (Sec. 3).
– A generic provenance extraction framework that includes several previously-studied

forms of provenance as instances (Sec. 4).
– An analysis of disclosure and obfuscation guarantees provided by different forms

of provenance, including techniques based on slicing execution traces (Sec. 5).

Outline. Section 2 briefly recapitulates the framework introduced by Cheney [8] and
refines some definitions. We present the (standard) syntax and tracing semantics of
TML in Section 3. In Section 4 we introduce a framework for querying and extracting
provenance views from traces, including the three models discussed above. Section 5
presents our main results about disclosure, obfuscation, and trace slicing. Section 6
presents related work and Section 7 concludes.

2 Background

We recapitulate the main components of the provenance security framework of Ch-
eney [8]. The framework assumes a given set of traces T , together with a collection
Q of possible trace queries Q : T → B. These represent properties of traces that the
system designer may want to protect or that legitimate users or attackers of the system
may want to learn. In the previous paper, we considered refinements to take into account

414 U.A. Acar et al.

the knowledge of the principals about the possible system behaviors. In this paper, we
assume that all traces T are considered possible by all principals, for simplicity.

For each principal A, fix a set ΩA of the possible provenance views offered to A, and
a function PA : T → ΩA mapping each trace to A’s provenance view of the trace. For
the purposes of this paper, we do not consider interactions among multiple principals,
so we typically consider only one principal and omit the A subscripts. We may write
(Ω,P : T → Ω) or just (Ω,P) for a provenance view. Also, we sometimes write
Q : Ω → B for a provenance query, that is, a query on a provenance view.

Given this framework, we proposed the following definitions:

Definition 1 (Disclosure). A query Q is disclosed by a provenance view (Ω,P) if for
every t, t′ ∈ T , if P (t) = P (t′) then Q(t) = Q(t′).

In other words, disclosure means that there can be no traces t, t′ that have the same
provenance view but where one satisfies the query and the other does not.

Definition 2 (Obfuscation). A query Q is obfuscated by a provenance view (Ω,P) if
for every t in T , there exists t′ ∈ T such that P (t) = P (t′) and Q(t) �= Q(t′).

Thus, obfuscation is not exactly the opposite of disclosure; instead, it means that for
every trace there is another trace with the same provenance view but different Q-value.
This means that a principal that has access to the provenance view but not the trace
cannot be certain that Q is satisfied or not satisfied by the underlying trace.

The definitions above turn out to be too strong; in this paper we will also consider
some weaker versions of disclosure and obfuscation.

Definition 3. We say that P : T → Ω positively discloses Q : T → B via query
Q′ : Ω → B if for every t, if Q′(P (t)) then Q(t).

In other words, positive disclosure means that there is a query Q′ on the provenance
that safely overapproximates Q on the underlying trace. If Q′(P (t)) holds then we
know Q(t) holds but otherwise we may not learn anything about t.

Definition 4. We say that P positively obfuscates Q : T → B if for every t satisfying
Q there exists a trace t′ falsifying Q such that P (t) = P (t′).

In other words, positive obfuscation means that the provenance never reveals that Q
holds of the trace, but it may reveal that Q fails. This weaker notion is useful for assert-
ing that sensitive data is protected: if the sensitive data is not present in the trace then it
is harmless to reveal this, but if the sensitive data is present then the provenance should
hide enough information to make its presence uncertain.

Dual notions of negative disclosure and obfuscation can be defined as positive dis-
clossure or obfuscation of ¬Q respectively.

Proposition 1. If P both positively discloses and negatively discloses Q via Q′, then
P discloses Q. Similarly, if P both positively and negatively obfuscates Q then P ob-
fuscates Q.

In the previous paper, we gave several examples of instances of this framework. Here,
for illustration, we just review one such instance, given by finite automata.

A Core Calculus for Provenance 415

Types τ ::= b | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | μα.τ | α
Type contexts Γ ::= [x1 : τ1, . . . , xn : τn]

Code pointers κ ::= f(x).e

Matches m ::= {inl(x1).e1; inr(x2).e2}
Values v ::= c | (v1, v2) | inl(v) | inr(v) | roll(v) | 〈κ, γ〉
Expressions e ::= c | x | ⊕(e) | let x = e1 in e2

| (e1, e2) | fst(e) | snd(e) | inl(e) | inr(e)
| roll(e) | unroll(e) | fun κ | case e ofm | (e e′)

Traces T ::= c | x | ⊕(T) | let x = T1 in T2

| (T1, T2) | fst(T) | snd(T) | inl(T) | inr(T)
| roll(T) | unroll(T) | fun κ

| case T �inl x.T1 | case T �inr x.T2 | (T1 T2) �κ f(x).T

Environments γ ::= [x1 �→ v1, . . . , xn �→ vn]

Fig. 1. Abstract syntax of Core TML

Example 1 (Automata provenance framework). The set of traces TM of an automaton
M = (Σ,Q, q0, δ, F) is the set Q(ΣQ)∗ of alternating sequences of states and alphabet
letters. The queries are simply regular subsets of TM . The provenance views are given
by finite-state transducers. We showed that disclosure is decidable for all queries and
views and that obfuscation is decidable for all queries and views whose range is finite.
It is unknown whether obfuscation is decidable in the general case.

We now proceed to instantiate the framework with traces generated by a much richer
language, with corresponding notions of trace query and provenance view.

3 Core Language

We will develop a core language for provenance based on a standard, typed, call-by-
value, pure language, called Transparent ML, or TML. The syntax of TML types, ex-
pressions, traces, and other syntactic classes is shown in Figure 1. We include standard
constructs for dealing with binary pairs, binary sums, recursive types, and recursive
functions; more general constructs such as records, datatypes, or simultaneous recur-
sive functions can of course be handled without difficulty. In f(x).e, both f and x are
variable names; f is the name of the recursively defined function while x is the name
of the argument.

We abbreviate functional terms of the form f(x).e using the letter κ, when conve-
nient; similarly, we often abbreviate the expression {inl(x1).e1; inr(x2).e2} as m. We
sometimes refer to κ or m as a code pointer or match pointer respectively; in a fixed
program, there are a fixed finite number of such terms and so we can share them instead
of explicitly copying them when used in traces.

416 U.A. Acar et al.

γ, e ⇓ v, T

γ, x ⇓ γ(x), x γ, c ⇓ c, c γ, fun κ ⇓ 〈κ, γ〉, fun κ

γ, e ⇓ v, T

γ,⊕(e) ⇓ ⊕̂(v),⊕(T)

γ, e1 ⇓ v1, T1 γ, e2 ⇓ v2, T2

γ, (e1, e2) ⇓ (v1, v2), (T1, T2)

γ, e ⇓ (v1, v2), T

γ, fst(e) ⇓ v1, fst(T)

γ, e ⇓ v, T

γ, inl(e) ⇓ inl(v), inl(T)

γ, e1 ⇓ v1, T1 γ[x �→ v1], e2 ⇓ v2, T2

γ, let x = e1 in e2 ⇓ v2, let x = T1 in T2

γ, e ⇓ v, T

γ, roll(e) ⇓ roll(v), roll(T)

γ, e ⇓ roll(v), T

γ, unroll(e) ⇓ v, unroll(T)

(inl(x1).e1 ∈ m) γ, e ⇓ inl(v), T γ[x1 �→ v], e1 ⇓ v1, T1

γ, case e ofm ⇓ v1, case T �inl x1.T1

(inr(x2).e2 ∈ m) γ, e ⇓ inr(v), T γ[x2 �→ v], e2 ⇓ v2, T2

γ, case e ofm ⇓ v2, case T �inr x2.T2

γ, e1 ⇓ 〈κ, γ′〉, T1

(κ = f(x).e) γ, e2 ⇓ v2, T2 γ′[f �→ 〈κ, γ′〉, x �→ v2], e ⇓ v, T

γ, (e1 e2) ⇓ v, (T1 T2) �κ f(x).T

Fig. 2. Dynamic semantics of Core TML: selected rules for expression evaluation

3.1 Dynamic Semantics

We augment a standard large-step operational semantics for TML by adding a parameter
T , which records a trace of the evaluation of the expression. The judgment γ, e ⇓ v, T
says that in environment γ, expression e evaluates to value v with trace T . (Traces were
defined in Figure 1.) Many of the trace forms are isomorphic to the corresponding ex-
pression forms. The exceptions are the case and application evaluation rules. In either
case, the first argument is evaluated to determine what expression to evaluate to obtain
the final result. For case traces, we record the trace of the case scrutinee and the taken
branch. Traces can contain free variables and so we re-bind the variable in the trace
of the taken branch. Similarly for an application we record the traces of the function
subexpression and the argument subexpression, and also record the trace of the evalua-
tion of the body of the function. Again, since the body trace can mention the function
and argument names as free variables, we re-bind these variables.

We want to emphasize at this point that we do not necessarily expect that implemen-
tations routinely construct fully detailed traces along the above lines. Rather, the trace
semantics is proposed here as a candidate for the most detailed form of provenance we
will consider. Recording and compressing or filtering relevant information from traces
in an efficient way is beyond the scope of this paper.

Trace Replay. We equip traces with a semantics that relates them to expressions. We
write γ, T � v for the replay relation that reruns a trace on an environment (possibly
different from the one originally used to construct T). The rules for most trace forms
are the same as the standard rules for evaluating the corresponding expression forms.

A Core Calculus for Provenance 417

γ, T � v

γ, T � inl(v) γ[x1 �→ v], T1 � v1

γ, case T �inl x1.T1 � v1

γ, T � inr(v) γ[x2 �→ v], T2 � v2

γ, case T �inr x2.T2 � v2

γ, T1 � 〈κ, γ′〉 γ, T2 � v2, T
′
2 γ′[f �→ 〈κ, γ′〉, x �→ v2], T � v

γ, (T1 T2) �κ f(x).T � v

Fig. 3. Dynamic semantics of Core TML: selected rules for trace replay

Figure 3 shows the rules for replaying case and application traces. Essentially, these
rules require that the same control flow branches are taken as in the original run. If
the input environment is different enough that the same branches cannot be taken, then
replay fails.

3.2 Basic Properties of Traces

In this section, we identify key properties of traces, including type safety, and the con-
sistency and fidelity properties that characterize how traces record the evaluation of an
expression.

Determinacy and Type Safety. We employ a standard type system for expressions, with
straightforward extensions to handle traces. Determinacy of typechecking and type-
safety can be established for expression evaluation and trace replay. Types do not play
a significant role in the main technical results, however, so we elide the details.

Consistency and Fidelity. We say that a trace T is consistent with an environment γ if
there exists v such that γ, T � v. Evaluation produces consistent traces, and replaying
a trace on the same input yields the same value:

Theorem 1 (Consistency). If γ, e ⇓ v, T then γ, T � v.

Furthermore, the trace produced by evaluation is faithful to the original expression, in
the sense that whenever the trace can be successfully replayed on a different input, the
result (and its trace) is the same as what we would obtain by rerunning e from scratch,
and the resulting trace is the same as well. We call this property fidelity.

Theorem 2 (Fidelity). If γ, e ⇓ v, T and γ′, T � v′ then γ′, e ⇓ v′, T .

4 Provenance Views and Trace Queries

4.1 Provenance Extraction

Many previous approaches to provenance can be viewed as performing a form of anno-
tation propagation. The idea is to decorate the input with annotations (often, initially,
unique identifiers) and propagate the annotations through the evaluation. For example,
in where-provenance, annotations are optional tags that can be thought of as pointers
showing where output data was copied from in the source [6,5]. Other techniques, such

418 U.A. Acar et al.

F(x, γ̂) = γ̂(x)

F(let x = T1 in T2, γ̂) = F(T2, γ̂[x �→F(T1, γ̂)])

F(c, γ̂) = cFc

F(⊕(T1, . . . , Tn), γ̂) = (⊕̂(v1, . . . , vn))
F⊕(a1,...,an)

where vai
i = F(Ti, γ̂)

F((T1, T2), γ̂) = (F(T1, γ̂),F(T2, γ̂))
⊥

F(fst(T), γ̂) = v
F1(a,b)
1

where (vb1, v̂2)
a = F(T, γ̂)

F(inl(T), γ̂) = inl(F(T, γ̂))⊥

F((case T) �inl x.T1, γ̂) = vFL(a,b)

where inl(v̂)a = F(T, γ̂)
and vb = F(T1, γ̂[y �→v̂])

F(fun κ, γ̂) = 〈κ, γ̂〉Fκ
F((T1 T2) �κ f(x).T, γ̂) = vFapp(a,b)

where 〈κ, γ̂′〉a = F(T1, γ̂)
and v̂2 = F(T2, γ̂)

and vb = F(T, γ̂′[f �→〈κ, γ̂′〉a, x �→v̂2]))

Fig. 4. Generic extraction (selected rules)

as why-, how-, dependency, and workflow provenance, can also be defined in terms of
annotation propagation [18,17,4,10].

Based on this observation, we define a provenance extraction framework in which
values are decorated with annotations and extraction functions take traces and return
annotated values that can be interpreted as useful provenance information. We apply
this framework to specify several concrete annotation schemes and extraction functions.

Extraction framework. Let A be an arbitrary set of annotations a, which we usually
assume includes a blank annotation⊥ and a countably infinite set of identifiers � ∈ Loc,
called locations. We define A-annotated values v̂ (or just annotated values, when A is
clear) using the following grammar:

v̂ ::= va γ̂ ::= [x1 �→ v̂1, . . . , xn �→ v̂n]

v ::= c | (v̂1, v̂2) | inl(v̂) | inr(v̂) | 〈κ, γ̂〉 | roll(v̂)

We write γ̂ for annotated environments mapping variables to annotated values. We de-
fine an erasure function |v̂| that maps each annotated value to an ordinary value by
erasing the annotations. Similarly, |γ̂| is the ordinary environment obtained by erasing
the annotations from the values of γ̂.

We will define a family of provenance extraction functions F(T, γ̂) that take a trace
T and an environment γ̂ and return an annotated value. Each such F can be specified by
giving the following annotation-propagation functions:

Fc,Fκ : A

F1,F2,FL,FR,Fapp,Funroll : A×A → A

F⊕ : A× · · · ×A → A

A Core Calculus for Provenance 419

Each function shows how the annotations involved in the corresponding computational
step propagate to the result. For example, F1(a, b) gives the annotation on the result of
a fst-projection, where a is the annotation on the pair and b is the annotation of the
first element. Figure 4 shows how to propagate annotations through a trace given basic
annotation-propagation functions.

Remark 1. The extraction framework hard-wires the behavior of certain operations
such as let, inl(), inr(), and application. It would also be possible to extend the
framework to provide to customize their behavior; however, this functionality is not
needed by any of the forms of provenance in this paper, and it is not clear whether there
are natural provenance models that require them.

Theorem 3. Every generic provenance extraction function is compatible with replay:
that is, for any γ̂, T, v, if |γ̂|, T � v then |F(T, γ̂)| = v.

Where-provenance. Where-provenance can be defined via an annotation-propagating
semantics where annotations are either labels � or the blank annotation ⊥. We define
the where-provenance semantics W(T, γ̂) using the following annotation-propagation
functions:

Wc,Wκ = ⊥
W1,W2,WL,WR,Wapp,Wunroll = λ(x, y).y

W⊕ = λ(a1, . . . , an).⊥

Essentially, these functions preserve the annotations of data that are copied, and anno-
tate computed or constructed data with ⊥. This semantics is similar to that in Buneman
et al. [5] and previous treatments of where-provenance in databases, adapted to TML.

Theorem 4. Suppose |γ̂|, e ⇓ v′, T . If an annotated value va appears in W(T, γ̂) with
annotation a �= ⊥, then va is an exact copy (including any nested annotations) of a
part of γ̂.

Expression provenance. To model expression provenance, we consider expression an-
notations t consisting of labels �, blanks ⊥, constants c, or primitive function applica-
tions ⊕(t1, . . . , tn). We define expression-provenance extraction E(T, γ̂) in much the
same way as W, with the following differences:

Ec = c E⊕(t1, . . . , tn) = ⊕(t1, . . . , tn)

It would also be straightforward to define a translation from traces to provenance graphs
(for example, Open Provenance Model graphs [23]).

The correctness property for expression provenance states that the expression anno-
tation correctly recomputes the value it annotates.

Theorem 5. Suppose |γ̂|, e ⇓ v′, T , where each subvalue in γ̂ is annotated with a copy
of itself. If an annotated value ve appears in E(T, γ̂) with e �= ⊥, then e is a closed
expression evaluating to |v|.

420 U.A. Acar et al.

Dependency provenance. To extract dependency provenance, we will use annotations
φ that are sets of source locations {�1, . . . , �n}. Initial annotations consist of distinct
singleton sets {�}. We define D(T, γ̂) using the following propagation functions:

Dc,Dκ = ∅
D1,D2,DL,DR,Dapp,Dunroll = λ(x, y).x ∪ y

D⊕ = λ(a1, . . . , an).a1 ∪ · · · ∪ an

This semantics is based on the dynamic provenance tracking semantics given by Ch-
eney et al. [9], generalized to TML.

This definition satisfies the dependency-correctness property introduced in [9]. This
property requires an auxiliary relation ≈� that says that two annotated values are equal
except possibly at parts labeled by �, whose straightforward definition we omit. Then
we can show:

Theorem 6. Suppose |γ̂|, e ⇓ v, T and γ̂′ ≈� γ̂ and |γ̂′|, e ⇓ v′, T ′. Then we have
D(T, γ̂) ≈� D(T

′, γ̂′).

This says that the label of a value in the input propagates to all parts of the output where
changing the value can have an impact on the result.

Path annotations. For annotations to be useful when the full input is unavailable, we
consider annotations where the locations � are paths that uniquely address parts of
the input environment. We write path(γ) for the environment γ with each compo-
nent annotated with the path to that component. More generally, we define pathp(γ)
as [x1 := pathp.x(γ(x1)), . . . , xn := pathp.xn

(γ(xn))] where pathp(v) is defined as
follows:

pathp(c) = cp

pathp((v1, v2)) = (pathp.1(v1), pathp.2(v2))
p

pathp(inl(v)) = inl(pathp.1(v))
p

pathp(inr(v)) = inr(pathp.1(v))
p

pathp(〈κ, γ〉) = 〈κ, pathp(γ)〉p

For example, path([x = (1, 2), y = inl(4)]) = [x = (1x.1, 2x.2)x, y = inl(4y.inl)y].

4.2 Patterns, Partial Traces, and Trace Queries

We introduce patterns for values, environments and traces. The syntax of patterns (pat-
tern environments) is similar to that of values (respectively environments), extended
with special holes:

p ::= c | (p1, p2) | inl(p) | inr(p) | roll(p) | 〈κ, ρ〉 | ♦ | �
ρ ::= [x1 �→ p1, . . . , xn �→ pn]

Patterns actually denote binary relations on values. The hole symbol � denotes the total
relation, while the exact-match symbol ♦ denotes the identity relation. (The ♦ pattern
is used in backward disclosure slicing.)

A Core Calculus for Provenance 421

v ≈p v

v ≈� v′ v ≈♦ v c ≈c c

v1 ≈p1 v′1 v2 ≈p2 v′2
(v1, v2) ≈(p1,p2) (v

′
1, v

′
2)

v ≈p v′ C ∈ {inl, inr, roll}
C(v) ≈C(p) C(v′)

γ ≈ρ γ′

〈κ, γ〉 ≈〈κ,ρ〉 〈κ, γ′〉

γ ≈ρ γ′ ⇐⇒ ∀x ∈ dom(ρ). γ(x) ≈ρ(x) γ
′(x)

Fig. 5. Equality modulo patterns

� p = p � = p ♦ p = p ♦ = p[♦/�]

(p1, p2) (p′1, p
′
2) = (p1 p′1, p2 p′2) c c = c

C(p) C(p′) = C(p p′) C ∈ {inl, inr, roll}
〈κ, ρ〉 〈κ, ρ′〉 = 〈κ, ρ ρ′〉

(ρ ρ′)(x) =

⎧

⎨

⎩

ρ(x) ρ′(x) x ∈ dom(ρ) ∪ dom(ρ′)
ρ(x) x ∈ dom(ρ)\dom(ρ′)
ρ′(x) x ∈ dom(ρ′)\dom(ρ)

Fig. 6. Least upper bounds of patterns and environments

We say that v matches v′ modulo p (written v ≈p v′) if v and v′ match the structure
of p, and are equal at corresponding positions denoted by ♦. Moreover, we say p � v
if v ≈p v, and we write p � p′ for the least upper bound (join) of two patterns. Rules
defining ≈p and � are given in Figures 5 and 6.

When p � v, we write v|p for the pattern obtained by replacing all of the ♦-holes in
p with the corresponding values in v. For example, (1, 2)|(♦,�) = (1,�). Similarly, we
write γ|ρ for [x1 = γ(x1)|ρ(x1), . . . , xn = γ(xn)|ρ(xn)].

We also consider partial traces, usually written S, which are trace expressions where
some subexpressions have been replaced with �:

S ::= · · · | �

As with patterns, we write S � T to indicate that T matches S, that is, S can be made
equal to T by filling in some holes.

For the purpose of disclosure and obfuscation analysis, we will consider the “traces”
to be triples (γ, T, v) where T is consistent with γ and v, that is, γ, T � v. We refer to
such a triple as a consistent triple. Furthermore, to analyze forms of provenance based
on annotation we will consider consistent annotated triples (γ̂, T, v̂) where v̂ = F(T, γ̂).
We consider trace or provenance queries built out of partial values and partial traces.
We will later also consider queries derived from different forms of provenance, based
on annotated triples.

Definition 5. 1. Let φ(γ) be a predicate on input environments. An input query
INγ.φ(γ) is defined as {(γ, T, v) | γ, T � v and φ(γ)}. As a special case, we
write INρ for INγ.(ρ � γ).

422 U.A. Acar et al.

2. Let φ(v) be a predicate on output values. An output query OUTv.φ(v) is de-
fined as {(γ, T, v) | γ, T � v and φ(v)}. As a special case, we write OUTp =
OUTv.(p � v).

5 Disclosure and Obfuscation Analysis

5.1 Disclosure

We first consider properties disclosed by various forms of provenance considered above.
Both where-provenance and expression provenance disclose useful information about
the input. Dependency provenance does not disclose input information in an easy-to-
analyze way, but is useful for obfuscation, as discussed later.

For where-provenance, we consider input queries Qv0,� = INγ. (γ.� = v0) and out-
put queries Q′

v0,�
= OUTv. (v.� = v0), where � is a path and v0 is a value. Such a

query tests whether the value at a given path in γ or v matches the provided value.

Theorem 7. The provenance view (γ, T, v) �→ W(T, path(γ)) positively disclosesQv0,�

via Q′
v0,�

.

For expression-provenance, let γ(t) be the result of evaluating t in γ with all paths � re-
placed by their valuesγ.� in γ. We consider queriesQt,v0 = INγ. (γ(t) = v0), where t is
an expression provenance annotation and v0 is a value. Such a query tests whether evalu-
ating an expression e over γ yields the specified value. For example, INγ. x.1 + y.2 = 4
holds for γ = [x = (1, 2), y = (2, 3)], because γ(x.1) + γ(y.2) = 1 + 3 = 4. We also
consider output queries Q′

t,v0 = OUTv. (v̂1
t appears in v and |v̂1| = v0), that simply

test whether an annotated copy of v0 appears in the output with annotation t.

Theorem 8. The provenance view (γ, T, v) �→ E(T, path(γ)) positively disclosesQt,v0

via Q′
t,v0 .

Expression provenance and where-provenance are also related in the following sense:

Theorem 9. Where-provenance is computable from expression-provenance.

Proof. Where-provenance annotations can be extracted from expression-provenance
annotations by mapping locations � to themselves and all other expressions to ⊥.

Note that this implies that for a function like “factorial”, the where-provenance of the
output is always ⊥. Hence, any query disclosed by where-provenance is disclosed by
expression-provenance, and any query obfuscated by expression-provenance is also ob-
fuscated by where-provenance.

We now consider a form of trace slicing that takes a partial output value and removes
information from the input and trace that is not needed to disclose the output. We show
that such disclosure slices also disclose generic provenance views (Theorem 11). Thus,
disclosure slices form a quite general form of provenance in their own right.

Definition 6. Let γ, T ⇓ v, and suppose S � T and ρ � γ. We say (ρ, S) is a dis-
closure slice with respect to partial value p if for all γ′ � ρ and T ′ � S such that if
γ′, T ′

� v′, we have p � v iff p � v′.

A Core Calculus for Provenance 423

p, T
disc−→ S, ρ

�, T
disc−→ �, [] p, x

disc−→ x, [x �→ p] p, c
disc−→ c, [] 〈κ, ρ〉, fun κ

disc−→ fun κ, ρ

〈κ′, ρ〉,fun κ
disc−→ fun κ′,�

p2, T2
disc−→ S2, ρ2[x �→ p1] p1, T1

disc−→ S1, ρ1

p2, let x = T1 in T2
disc−→ let x = S1 in S2, ρ1 ρ2

♦, T1
disc−→ S1, ρ1 · · · ♦, Tn

disc−→ Sn, ρn

p,⊕(T1, . . . , Tn)
disc−→ ⊕(S1, . . . , Sn), ρ1 · · · ρn

p1, T1
disc−→ S1, ρ1 p2, T2

disc−→ S2, ρ2

(p1, p2), (T1, T2)
disc−→ (S1, S2), ρ1 ρ2

(p,�), T
disc−→ S, ρ

p, fst(T)
disc−→ fst(S), ρ

p, T
disc−→ S, ρ

inl(p),inl(T)
disc−→ inl(S), ρ

p, T
disc−→ S, ρ

inl(p),inr(T)
disc−→ inr(�), []

p, T
disc−→ S, ρ

roll(p),roll(T)
disc−→ roll(S), ρ

roll(p), T
disc−→ S, ρ

p, unroll(T)
disc−→ unroll(S), ρ

p1, T1
disc−→ S1, ρ1[x1 �→ p] inl(p), T

disc−→ S, ρ

p1, case T �inl x1.T1
disc−→ case S �inl x1.S1, ρ ρ1

p, T
disc−→ S, ρ[f �→ p1, x �→ p2] p1 〈κ, ρ〉, T1

disc−→ S1, ρ1 p2, T2
disc−→ S2, ρ2

p, (T1 T2) �κ f(x).T
disc−→ (S1 S2) �κ f(x).S, ρ1 ρ2

fvs(κ) = {x1, . . . , xn}
♦, fun κ

disc−→ fun κ, [x1 �→ ♦, . . . , xn �→ ♦]
♦, T1

disc−→ S1, ρ1 ♦, T2
disc−→ S2, ρ2

♦, (T1, T2)
disc−→ (S1, S2), ρ1 ρ2

♦, T disc−→ S, ρ

♦, inl(T) disc−→ inl(S), ρ

♦, T disc−→ S, ρ

♦, inr(T) disc−→ inr(S), ρ

♦, T disc−→ S, ρ

♦, roll(T) disc−→ roll(S), ρ

Fig. 7. Disclosure slicing (selected rules)

Note that by this definition, minimal disclosure slices exist (since there are finitely many
slices) but need not be unique. For example, both �∨true and true∨� are disclosure
slices showing that true∨ true evaluates to true, but �∨� is not a disclosure slice.

Figure 7 shows selected rules defining a disclosure slicing judgment p, T
disc−→ ρ, S.

Basically, the idea is to push a partial value backwards through a trace to obtain a partial
input environment and trace slice. The partial input environment is needed to handle
local variables in traces; for example, in the rule for let, we first slice through the
body of the let, then identify the partial value showing the needed parts of the let-bound
value, and use that to slice backwards through the first subtrace. Slicing for application
traces is similar, but more complex due to the closure environments. Note also that the
special ♦ patterns are used to slice backwards through primitive operations even when

424 U.A. Acar et al.

we do not know the values of the inputs or results. (Another possibility is to annotate
the traces of primitive operations with these values.)

Lemma 1. If γ, T � v then for any p � v there exists S � T and ρ � γ such that

p, T
disc−→ S, ρ. Moreover, there is a unique least such S and ρ.

We choose a functionDiscp(γ, T, v) on consistent triples (γ, T, v)whose value is (γ|ρ, S)
where p, T

disc−→ S, ρ and S, ρ are the least slices (obtained by determinizing the slicing
algorithm by applying the first, hole-propagating rule greedily before any other rule).
The idea is that we slice using the rules in Figure 7 and then transform ρ by filling in all
♦-holes with the corresponding values in γ. Note that the v parameter is irrelevant and
is included only so that Discp is a uniform function from consistent triples to slices.

To prove the correctness of this disclosure slicing algorithm, we need a stronger
notion of equivalence. Recall the definition of v ≈p v′ as shown in Figure 5. Using this
relation, we can prove the correctness of the slicing relation as follows:

Lemma 2. Assume γ, T � v and p, T
disc−→ S, ρ.

1. If p � v then for all γ′ ≈ρ γ and T ′ � S, if γ′, T ′ ⇓ v′ then v′ ≈p v.
2. If p �� v then for all γ′ ≈ρ γ and T ′ � S, if γ′, T ′ ⇓ v′ then p �� v′.

Proof. Both parts follow by induction on the structure of slicing derivations.

Correctness follows as a consequence of the above two properties.

Theorem 10. Discp discloses OUTp.

Proof. Suppose Discp(γ, T, v) = Discp(γ
′, T ′, v′). Then (γ|ρ, S) = (γ′|ρ′ , S′) where

p, T
disc−→ S, ρ and p, T ′ disc−→ S′, ρ′. Hence, S = S′ and γ|ρ = γ′|ρ′ , which in turn im-

plies γ ≈ρ γ′. Suppose that OUTp(γ, T, v) holds; that is, p � v. Then by Lemma 2(1),
v′ ≈p v so p � v′. Conversely, suppose p �� v. Then by Lemma 2(2), we have p �� v′.

Disclosure from slices. Finally, we link disclosure for value patterns to disclosure for
generic provenance views. Essentially, we show that for any F, the disclosure slice for p
positively discloses the F-provenance annotations of values matching p. Informally, this
means that disclosure slices provide a highly general form of provenance specialized to
a part of the output: one can compute and reveal the disclosure slice and others can then
compute any generic provenance view from the slice, without rerunning the original
computation or consulting input data or subtraces that are dropped in the slice.

Theorem 11. Assume |γ̂|, T � v and p � v. Suppose p, T
disc−→ S, ρ. Suppose that F

is a generic extraction function. Then the annotations associated with p in F(T, γ̂) can
be correctly extracted from S using only input parts needed by ρ. That is, suppose we
have γ̂ ≈ρ γ̂′ (lifting ≈− to annotated values in the obvious way) and T ′ � S, where
|γ̂′|, T ′

� v′. Then we have F(T, γ̂) ≈p F(T ′, γ̂′).

A Core Calculus for Provenance 425

5.2 Obfuscation

We now consider obfuscating properties of traces. We first consider what can be ob-
fuscated by the standard provenance views. Where-provenance, essentially, obfuscates
anything that can never be copied to the output or affect the control flow of something
that is copied to the output. Similarly, expression provenance obfuscates any part of
the input that never participates in expression annotations. In both cases, we can poten-
tially learn about parts of the input that affected control flow, however. For example,
if x = 1 then 1 else y does not obfuscate the value of x in either model, provided
y comes from the input, since we can inspect the annotation of the result to determine
that x = 1 or x �= 1.

Given that we want to ensure obfuscation, we consider conservative techniques that
accept (or construct) only provenance views that successfully obfuscate, but may reject
some views or construct views that are unnecessarily opaque.

There are several ways to erase information from traces (or other provenance views)
to ensure obfuscation of input properties. One way is to re-use the static analysis of
dependency provenance (in [9], for example) to identify parts of the output that suf-
fice to make it impossible to guess sensitive parts of the input. Alternatively we can
use dynamic dependency provenance to increase precision, by propagating dependency
tracking information from the input to the output.

This is similar to using static analysis or dynamic labels for information flow secu-
rity; the difference is one of emphasis. In information flow security, we usually identify
high- or low-security locations and try to certify that high-security data does not affect
the computation of low-security data; here, instead, we identify a high-security prop-
erty of the trace (e.g. that the input satisfies a certain formula) and try to determine what
parts of the output do not depend on sensitive inputs, and hence can be safely included
in the provenance view. However, these techniques do not provide guidance about what
parts of the trace can be safely included in the provenance view.

Here, we develop an alternative approach based on traces. Consider a pattern ρ � γ
that erases all information that is considered sensitive. We construct an obfuscation slice
by re-evaluating T on ρ as much as possible, to compute a sliced trace S and partial
value p. We erase parts of T and of the original output value that depend on the erased
parts of ρ. Thus, any part of the trace or output value that remains in the obfuscation
slice is irrelevant to the sensitive part of the input, and cannot be used to guess it.

Figure 8 shows a syntactic algorithm for computing obfuscation slices as described
above. Many rules are essentially generalizations of the rules for evaluation to allow for
partial inputs, outputs and traces. The rules of interest, near the bottom of the figure,
show how to handle attempts to compute that encounter holes in places where a value
constructor is expected. When this happens, we essentially propagate the hole result
and return a hole trace. This may be unnecessarily aggressive for some cases, but is
necessary for the case and application traces where the trace form gives clues about the
control flow.

We define Obfρ(γ, T, v) as (p, S) where ρ, T
obf−→ p, S. We can show that this is

total for well-formed, ♦-free traces and input environments.

Lemma 3. If γ, T � v and ρ � γ and ρ, T
obf−→ p, S then p � v and S � T .

426 U.A. Acar et al.

ρ, T
obf−→ p, S

ρ, x
obf−→ ρ(x), x ρ, c

obf−→ ρ(x), c ρ, fun κ
obf−→ 〈κ, ρ〉,fun κ

ρ, T1
obf−→ p1, S1 ρ[x �→ p1], T2

obf−→ p2, S2

ρ, let x = T1 in T2
obf−→ p2, let x = S1 in S2

ρ, T1
obf−→ v1, S1 · · · ρ, Tn

obf−→ vn, Sn

ρ,⊕(T1, . . . , Tn)
obf−→ ⊕(v1, . . . , vn),⊕(S1, . . . , Sn)

ρ, T1
obf−→ p1, S1 ρ, T2

obf−→ p2, S2

ρ, (T1, T2)
obf−→ (p1, p2), (S1, S2)

ρ, T
obf−→ (p1, p2), S

ρ, fst(T)
obf−→ p1, fst(S)

ρ, T
obf−→ p, S

ρ, inl(T)
obf−→ inl(p),inl(S)

ρ, T
obf−→ inl(p), S ρ[x1 �→ p], T1

obf−→ p1, S1

ρ, case T �inl x1.T1
obf−→ p1, case S �inl x1.S1

ρ, T
obf−→ p, S

ρ,roll(T)
obf−→ roll(p),roll(S)

ρ, T
obf−→ roll(p), S

ρ, unroll(T)
obf−→ p, unroll(S)

ρ, T1
obf−→ 〈κ, ρ0〉, S1 ρ, T2

obf−→ p2, S2 ρ[f �→ 〈κ, ρ0〉, x �→ p2], T
obf−→ p, S

ρ, (T1 T2) �κ f(x).T
obf−→ p, (S1 S2) �κ f(x).S

ρ, Ti
obf−→ �, Si

ρ,⊕(T1, . . . , Tn)
obf−→ �,�

ρ, T
obf−→ �, S

ρ,fst(T)
obf−→ �,�

ρ, T
obf−→ �, S

ρ, unroll(T)
obf−→ �,�

ρ, T
obf−→ �, S

ρ,case T �inl x1.T1
obf−→ �,�

ρ, T1
obf−→ �, S1

ρ, (T1 T2) �κ f(x).T
obf−→ �,�

Fig. 8. Obfuscation slicing (selected rules)

Lemma 4. If γ, e ⇓ v, T and ρ � γ and ρ, T
obf−→ p, S then for all γ′ � ρ, if γ′, e ⇓

v′, T ′ then ρ, T ′ obf−→ p, S.

Theorem 12. For traces generated by terminating expressions, and ρ with holes of
nonsingular types, and ρ′ � ρ, we have Obfρ positively obfuscates INρ′ .

Proof. Suppose INρ′ holds of (γ, T, v) where ρ′ � ρ. Then ρ � ρ′ � γ. Moreover,
since the inclusion is strict, ρ must contain holes that can be replaced with different
values, so there exists another γ′ � ρ that differs from ρ′. Since T was generated by a
terminating expression, we know that γ′, e ⇓ v′, T ′ can be derived for some v′, T ′. By

Lemma 4 (and the easily-verified determinacy of
obf−→) we know that ρ, T ′ obf−→ p, S,

hence Obfρ(γ′, T ′, v′) = (p, S) = Obfρ(γ, T, v), as required.

5.3 Discussion

The analysis in section 5.1 gives novel characterizations of what information is dis-
closed by where-provenanceand expression provenance. Essentially, where-provenance

A Core Calculus for Provenance 427

discloses information about what parts of the input are copied to the output, while ex-
pression provenance additionally discloses information about how parts of the input can
be combined to compute parts of the output. The analysis in section 5.1 also shows (in
a formal sense) that where-provenance and expression provenance are closely related:
one can obtain where-provenance from expressions simply by erasure. Moreover, we
can obtain a number of intermediate provenance models based on transductions over
expression-provenance annotations.

The disclosure slicing algorithm is based on an interesting insight (which we are
exploring in concurrent work on slicing): at a technical level, the information we need
for program comprehension via slicing (to understand how a program has evaluated its
inputs to produce outputs) is quite similar to what we need for provenance. Although we
have identified connections between provenance and slicing before [9], our disclosure
and obfuscation slicing algorithms provide further evidence of this close connection.

6 Related Work

There is a huge, and growing, literature on provenance [3,10,24,22], but there is little
work on formal models of provenance and none on provenance in a general-purpose
higher-order language. Due to space limits, we confine our comparison to closely re-
lated work on formal techniques for provenance, and on related ideas in programming
languages and language-based security. We refer the interested reader to the aforemen-
tioned surveys for more information on provenance in workflows and databases, and
to [11,8] for further discussion of prior work on provenance security.

Provenance. This work differs from previous work on provenance in databases in
several important ways. First, we consider a general purpose, higher-order language,
whereas previous work considers database query languages of limited expressiveness
(e.g., monotone query languages), which include unordered collection types with
monadic iteration operations but not sum types, recursive types or first-class functions.
Second, we aim to record traces adequate to answer a wide range of provenance queries
in this general setting, whereas previous work has focused on particular kinds of queries
(e.g., where-provenance [6,5], why-provenance [6], how-provenance [18,17]).

Provenance has also been studied extensively for scientific workflow systems
[3,24,14]. Most work in this area describes the provenance tracking behavior of a sys-
tem through examples and does not give a formal semantics that could be used to prove
correctness properties. An exception is Hidders et al. [20], which is the closest workflow
provenance work to ours. They model workflows using a core database query language
extended with nondeterministic, external function calls, and partially formalize a se-
mantics of runs, or sets of triples (γ, e, v) labeling an operational derivation tree.

Other related topics. Our trace model is partly inspired by previous work on self-
adjusting computation [1], where execution traces are used to efficiently recompute
functional programs under arbitrary modifications to their inputs. Provenance-like ideas
have also appeared in the context of bidirectional computation [2]. Dimoulas et al. study
correctness properties for blame in contracts based on semantic properties that, they

428 U.A. Acar et al.

suggest, may be related to provenance [16]. However, to our knowledge no formal re-
lationships between provenance and self-adjusting computation, bidirectional compu-
tation, or blame have been developed.

7 Conclusions

While the importance of understanding provenance and its security characteristics has
been widely documented, to date there has been little work on formal modeling of ei-
ther provenance or provenance security. In this paper, we elaborate upon the ideas intro-
duced in previous work [8], by instantiating the formal framework proposed there with
a general-purpose functional programming language and a natural notion of execution
traces. We showed how more conventional forms of provenance can be extracted from
such traces via a generic provenance extraction mechanism. Furthermore, we studied
the key notions of disclosure and obfuscation in this context. In the process we identi-
fied weaker positive and negative variants of disclosure and obfuscation, based on the
observation that the original definitions seem too strong to be satisfied often in prac-
tice. Our main results include algorithms for disclosure slicing, which traverses a trace
backwards to retain information needed to certify how an output was produced, and
obfuscation slicing, which reruns a trace on partial input (excluding sensitive parts of
the input), yielding a partial trace and partial output that excludes all information that
could help a principal learn sensitive data.

To summarize, our main contribution is the development of a general model of prove-
nance in the form of a core calculus that instruments runs of programs with detailed
execution traces. We validated the design of this calculus by showing that traces gener-
alize other known forms of provenance and by studying their disclosure and obfuscation
properties. There are many possible avenues for future work, including:

– identifying richer languages for defining trace queries or provenance views
– developing and implementing effective algorithms for trace slicing, and relating

these to program slicing
– extending trace and provenance models to handle references, exceptions, input/

output, concurrency, nondeterminism, communication, etc.

References

1. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM Trans. Pro-
gram. Lang. Syst. 28(6), 990–1034 (2006)

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang: resourceful
lenses for string data. In: POPL, pp. 407–419. ACM, New York (2008)

3. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Comput.
Surv. 37(1), 1–28 (2005)

4. Buneman, P., Cheney, J., Tan, W.-C., Vansummeren, S.: Curated databases. In: PODS,
pp. 1–12 (2008)

5. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit provenance in
query and update languages. ACM Transactions on Database Systems 33(4), 28 (2008)

A Core Calculus for Provenance 429

6. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

7. Carey, S., Rogow, G.: UAL shares fall as old story surfaces online. Wall Street Journal
(September 2008),
http://online.wsj.com/article/SB122088673--738010213.html

8. Cheney, J.: A formal framework for provenance security. In: CSF, pp. 281–293. IEEE (2011)
9. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathematical Struc-

tures in Computer Science 21(6), 1301–1337 (2011)
10. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Foun-

dations and Trends in Databases 1(4), 379–474 (2009)
11. Cheney, J., Chong, S., Foster, N., Seltzer, M., Vansummeren, S.: Provenance: A future his-

tory. In: OOPSLA Companion (Onward! 2009), pp. 957–964 (2009)
12. Chong, S.: Towards semantics for provenance security. In: Workshop on the Theory and

Practice of Provenance (2009), Informal online proceedings:
http://www.usenix.org/events/tapp09/

13. Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: TAPIDO: Trust and Authorization Via Prove-
nance and Integrity in Distributed Objects (Extended Abstract). In: Gairing, M. (ed.) ESOP
2008. LNCS, vol. 4960, pp. 208–223. Springer, Heidelberg (2008)

14. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportuni-
ties. In: SIGMOD, New York, NY, USA, pp. 1345–1350 (2008)

15. Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views for module
privacy. In: PODS, pp. 175–186 (2011)

16. Dimoulas, C., Findler, R.B., Flanagan, C., Felleisen, M.: Correct blame for contracts: no
more scapegoating. In: POPL, pp. 215–226. ACM, New York (2011)

17. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance. In: PODS,
pp. 271–280 (2008)

18. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40
(2007)

19. Guts, N., Fournet, C., Zappa Nardelli, F.: Reliable Evidence: Auditability by Typing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 168–183. Springer, Hei-
delberg (2009)

20. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: A Formal
Model of Dataflow Repositories. In: Cohen-Boulakia, S., Tannen, V. (eds.) DILS 2007.
LNCS (LNBI), vol. 4544, pp. 105–121. Springer, Heidelberg (2007)

21. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.: Aura: a
programming language for authorization and audit. In: ICFP, New York, NY, USA, pp. 27–38
(2008)

22. Moreau, L.: The foundations for provenance on the web. Foundations and Trends in Web
Science 2(2-3) (2010)

23. Moreau, L., et al.: The open provenance model core specification (v1.1). Future Generation
Computer Systems 27(6), 743–756 (2010)

24. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34(3), 31–36 (2005)

25. Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., Yang, J.: Secure distributed
programming with value-dependent types. In: ICFP, pp. 266–278 (2011)

26. Swamy, N., Corcoran, B.J., Hicks, M.: Fable: A language for enforcing user-defined security
policies. In: IEEE Symposium on Security and Privacy, pp. 369–383 (2008)

27. Varghese, S.: UK government gets bitten by Microsoft Word. Sydney Morning Herald
(July 2003),
http://www.smh.com.au/articles/2003/07/02/1056825430340.html

http://online.wsj.com/article/SB122088673--738010213.html
http://www.usenix.org/events/tapp09/
http://www.smh.com.au/articles/2003/07/02/1056825430340.html

	A Core Calculus for Provenance
	Introduction
	Examples
	Summary

	Background
	Core Language
	Dynamic Semantics
	Basic Properties of Traces

	Provenance Views and Trace Queries
	Provenance Extraction
	Patterns, Partial Traces, and Trace Queries

	Disclosure and Obfuscation Analysis
	Disclosure
	Obfuscation
	Discussion

	Related Work
	Conclusions
	References

