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Abstract. We consider the question of the adequacy of symbolic models ver-
sus computational models for the verification of security protocols. We neither
try to include properties in the symbolic model that reflect the properties of the
computational primitives nor add computational requirements that enforce the
soundness of the symbolic model. We propose in this paper a different approach:
everything is possible in the symbolic model, unless it contradicts a computa-
tional assumption. In this way, we obtain unconditional soundness almost by con-
struction. And we do not need to assume the absence of dynamic corruption or the
absence of key-cycles, which are examples of hypotheses that are always used in
related works. We set the basic framework, for arbitrary cryptographic primitives
and arbitrary protocols, however for trace security properties only.

1 Introduction

The automatic analysis of security protocols has been quite successful since 1990, yield-
ing several tools [[10/17l23]]. However, when the outcome of one of these provers is “the
protocol is secure”, it must be understood as “secure in our model”. Nothing guaran-
tees that the necessary abstractions are relevant to actual implementations. For instance,
consider the Needham-Schroder-Lowe protocol [20]. It has been proved secure by all
the above-mentioned provers. However, there are several attacks, for instance when the
encryption scheme does not guarantee the ciphertext integrity [26] or when the pair-
ing is associative [21] or when some random number could be confused with some
pairings [8]].

For this reason, it is important to investigate what exactly the assumptions are, on
the cryptographic primitives’ implementations, that guarantee the faithfulness of the
abstraction. (It is called soundness in the literature).

There are a lot of works providing some soundness results, typically the works ini-
tiated by Backes et al [Sl3l6] and Abadi et al [1L15/13]]. They essentially prove that a
given symbolic model is fully abstract with respect to a computational one, assuming
some properties of the security primitives. This guarantees that the security proofs that
have been completed in the abstract model are also valid in a computational model.
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However, these works require a very large set of assumptions, that are not always em-
phasized. For instance in [7]] the complete list of assumptions for public-keys is listed;
it is a long list of strong hypotheses, that are not fullfilled by most actual protocols.
[L3] make even less realistic assumptions, in order to get a stronger soundness result
(which includes more security properties). All these results typically assume that no
key cycles can ever be created, that bitstrings can be parsed in deterministic polynomial
time into terms, that there is no dynamic corruption, that keys are certified, etc. These
assumptions, as well as reasons why they are not realistic enough is discussed in [14].
Furthermore, each primitive requires a new soundness proof and each combination of
primitives also requires a new soundness proof, unless much stronger properties are
assumed [12]. Currently, it seems more realistic to use CRYPTOVERIF [11], complet-
ing the proofs directly in the computational model, than using a soundness result [2].
Is it really impossible to avoid manipulating computation times, probabilities, bitstring
lengths... ?

In this paper, we advocate a new way of performing proofs in a symbolic, abstract,
model, while keeping strong, computational guarantees establishing a general sound-
ness result, but without establishing many specific soundness results for specific prop-
erties of primitives. Such properties can later be proven and added.

The idea is to design a symbolic setting, in which any adversarial action is possi-
ble, unless it contradicts some axiom expressing a property that must be satisfied under
standard computational assumptions. In other words, computational properties, such as
IND-CCA, can be (symbolically) axiomatized and added to the system in order to limit
the possible adversarial moves. We do not require the axiomatization to be complete.
The idea is to only list properties that we know for certain about the implementation,
and allow any symbolic move consistent with those properties. In this way, either we
find an attack, in which case there is at least one possible set of primitives satisfying the
assumed properties and for which the security goal is violated, or the axioms were suffi-
cient to ensure the security of the protocol, in which case any implementation fulfilling
these axioms will ensure the security.

This approach has several advantages:

1. Though the proofs are performed in a symbolic setting, they are computationally
valid.

2. Thanks to our result (Theorem [2)), adding a new cryptographic primitive only re-
quires to design an axiomatization of this primitive and prove it sound due to the
cryptographic assumptions: the additional soundness proof is short and modular; it
focuses on designated properties instead of considering whole execution models.

3. We may be able prove the security of protocols with weaker assumptions on the

primitives. For instance, if we prove the security using only axioms that are sound

for IND-CPA encryption, then IND-CPA will be a sufficient hypothesis for security.

In each security proof, all assumptions are clearly and formally stated as axioms.

In case an attack is found, it may be sufficient to add an axiom (expressing stronger

hypotheses on the computational implementation of the primtives) ruling out the

attack, then try proving again.

6. We may consider any cryptographic primitive, including XOR for instance (for
which there are strong limitations of the computational soundness approach [4/25])).
Dynamic corruption, key cycles, etc. are not a priori discarded.

v ok
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Related works. The most closely related works are probably those that consider a proof
system that is sound w.r.t. the computational semantics, such as [168]. Though these
works are related, as far as the computational semantics of the logic is concerned, the
overal strategy is completely different. We do not try to design a proof system working
directly in the computational model: we only use first-order logic and standard inference
rules in the symbolic model. Our approach is more inspired by circumscription [19],
however circumscribing what is not possible. In other words, we do not design inference
rules, we modify the transition system instead. This is similar in spirit to [24]], in which
any property of the hash function, that is not explicitly forbidden by some axiom, is
considered as valid.

Contents of the paper. In this paper, we only state the framework of the method, prove
a general soundness theorem in the case of trace properties, and prove soundness of an
example axiom expressing secrecy of an IND-CCA encryption.

More precisely, protocols are identified to a formal transition system in the same
spirit as CoSP [7]]: we do not commit to a very particular way of specifying such a tran-
sition system. The possible transitions are, roughly, defined by a formula, that guards
the transition by constraining the input message, a state move and a message that is sent
out when the guard is satisfied. Such transitions can be interpreted in different models:
symbolic models, in which the messages are terms and the guards are interpreted in
a Herbrand model, or computational models, in which messages are bitstrings. In the
symbolic models, we constrain the input messages to be deducible from the previous
outputs and the public information. Such a deducibility condition is formalised using a
deducibility predicate, whose interpretation is not fixed. This is a main difference with
classical protocol verification: the attacker capabilities are not fixed, but rather they
parametrize the model. Actually, we consider any attacker capability, that does not con-
tradict the (computationally sound) axioms. On the computational side, the attacker is
any probabilistic polynomial time Turing machine: the deduction capabilities are given
by any such machine. These models are explained in the sections[2.2]

Next, we need to speficy the axioms and the (trace) security properties. We con-
sider any first-order formula, that is built on the predicate symbols, that are used in the
guards, as well as the deducibility predicate symbol. We need such general formulas,
since we need to constrain the symbolic models of the deducibility relations, i.e., the
symbolic attacker capabilities, according to the computational assumptions on the prim-
itives. Typically, we may consider an axiom of the form: “if a plaintext can be deduced
(resp. computed) from a ciphertext and a set of messages ¢, then the decryption key has
been sent out or else the plaintext can be deduced (resp. computed) from ¢”, that reflects
some property of the encryption scheme. The meanings of these axioms/security prop-
erties become clear when we define a computational interpretation of such formulas,
which we provide in the section

The Section 3] is devoted to the main result, which states a general trace-mapping
soundness property: independently of the primitives and their specific characteristics, if
there is a computational attack, then there is a symbolic attack. Once more, the symbolic
attacker has any capability, that is consistent with the axioms. So, this result, though
subtle and not at all trivial to prove, is not surprising. The whole system was actually
carefully designed with this aim in mind.
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We also show in the Section ] some axiom examples, that are proven sound under
some standard cryptographic properties. We do not aim however at covering a large set
of axioms. Further axioms will be added to a library each time they are required for the
proof of a case study.

This paper aims at opening a new research direction: it seems very appealing and
promising. We need however to investigate several case studies. As a “proof of con-
cept”, we have designed a complete set of axioms and proved the NSL protocol in our
framework (available from the first-author’s web page or upon request). This sufficient
set of axioms shows also that some hypotheses of earlier works are not necessary (at
least for weak secrecy and authentication).

2 Symbolic and Computational Models

2.1 Terms and Frames

Terms are built out of a set of function symbols F that contains an unbounded set of
names A and an unbounded set of handles . Let X be an unbounded set of vari-
ables. Names and handles are zero arity function symbols. We will use names to denote
items honestly generated by agents, while handles will denote inputs of the adversary.
A ground term is a term without variables. Frames are sequences of terms together with
name binders: a frame ¢ can be written (vn).p; +— t1,...,pn — t, Where p1,...p,
are place holders that do not occur in ty,...,t, and n is a sequence of names. fn(¢),
the free names of ¢ are names occurring in some t; and not in n. The variables of ¢ are
the variables of ¢1, ..., %,.

Example 1. We typically use a randomized public-key encryption symbol: {m}7 Ko
is intended to represent the encryption of the plaintext m with the public-key of the
principal ), with a random seed r. More generally, we consider the example when
there is a set of constructors 7. = {{ } ,(, ),e ,d ,K }, and a set of destructors
Fa={dec( , )ym(),m( )},and F = F.UF4UN UH.

2.2 Formulas

Let P be a set of predicate symbols over tems. P is assumed to contain the equality
= (which is interpreted as a congruence), used as t; = to, and a predicate -, which
takes as arguments an n-tuple of terms on its left and a term on its right (and which is
intended to model the computation capabilities), that is, written as ¢y, ..., t,, - t. (More
precisely, it is an infinite sequence of predicates, with arguments n + 1.)

We are not interested in any specific symbolic interpretation of these predicate sym-
bols. We wish to consider any possible symbolic interpretation, that satisfies some re-
quirements; the aim is to allow anything that is not forbidden by explicit assumptions.

Example 2. Vx,Vy.({2} g, = {y}‘;/KQ — x = y) is such a formula, the validity of
which follows from the uniqueness of decryption.
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Let M denote then any first-order structure that interprets the function and predicate
symbols of the logic. We only assume that = is interpreted in M as the equality in the
underlying domain D 4. The relation in M (that is, a relation for elements in D),
interpreting the deducibility predicate |- is denoted as 4.

Given an assigment o of elements in D to the free variables of term ¢, we write
[t]%4 for the interpretation of ¢ in M ([ %, is the unique extension of ¢ into a homo-
morphism of F-algebras).

For any first order structure M over the functions F and predicates P, given a first
order formula # and an assignment ¢ of elements in the domain of M to the free vari-
ables of 0, the satisfaction relation M, o = 0 is defined as usual in first-order logic.

Example 3. Consider the public-key encryption setting of example [[I We may use
unary predicate symbols to restrict sets of data. Assume for instance that W is sup-
posed to represent the set of agent names, and M is supposed to represent well formed
terms (that are equal to a term built with symbols in F,).

W (w1 (dec(h,db))) A M (m2(dec(h, db)))

is a formula, that expresses that the handle i can be decrypted and projected into two
components, one of which is an agent name.

2.3 Protocols

We do not stick to any particular syntax for the definition of protocols. We only assume
that it defines a transition system as follows. @ is a set of control states, together with a
finite set of free variables.

Definition 1. A protocol is a recursive (actually PTIME) set of tuples

(q(n),qd' (n-n'),{x1,...,2k) , 2,7, 5)

where q,q' € Q, x1,...,Tk, x are variables n,n’ are finite sequences of names, 1 is a
first order formula over the set of predicate symbols P and function symbols F and the
names n. U n/, whose free variables are in {x1,...,x,,x} and s is a term whose free
variables are in {x1,...,x,,z}.

For example, 1 can be a formula such as dec(z, k) = n, that checks that the current
input is a ciphertext whose plaintext is a previously generated nonce n: ¢ guards the
transition. s is the output message, when the transition succeeds. The intended meaning
of these rules is that a transition from the sate ¢ to the state ¢’ is possible, given the
previous inputs x1, . .., Z, and the new input z, if the formula 1) is satisfied. In such a
case, the names n' are generated and the message s is sent.

Such a formalism is quite general; we only assume here (for simplicity) a single, pub-
lic, communication channel. Typically, applied 7-calculus processes can be translated
into such transition rules, that are similar to the CoSP framework of [7]].
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Example 4. Consider a single session of the NSL protocol. The states consist of pairs of
the local states of each of the processes for A and B. Instead of listing the transitions as
tuples, we write 1 : ¢(n) = ¢/(n) and they are diplayed in the figure[Il In this version
of the protocol, the responder is willing to communicate with anybody, hence only
checks W (r; (dec(y,dKp))); the intended meaning of W is a set of agent names. If

(A ey
_

T ‘Z(l)4<n,7“y r'") qf(n,r, ")
1
d ,dK =B {ma (mg (dec(x,dK o))} T

w1 (dec(z A)) R Kp P Y—

A my(ma(dec(z,dK 4))) = n

B (mo(dec(y,dK 5)).n’))}T
W (1 (dec(y, dK ))) 5o, gy (P dRED O ek gk o,
: qy (n',r") qy (n',r")

A M (w3 (dec(y, dK )))

dec(z,dKpg)) =n' : qP(n/,r/) — q2B(n/,T/)

Fig. 1. The 3 transitions of 1 session of NSL

we wish to describe an unbounded number of sessions, we need to record in the control
state the states of every (opened) A-session and (opened) B-session. This yields an
infinite, yet recursive, set of transition rules.

Definition 2. A symbolic state of the network consists of:

— a control state q € @ together with a sequence of names (that have been generated
so far) ny, ..., ng

— a sequence constants called handles hq, . .., hy, (recording the attacker’s inputs)

— a ground frame ¢ (the agents outputs)

— a set of formulas © (the conditions that have to be satisfied in order to reach the

state).
A symbolic transition sequence of a protocol I1 is a sequence
(q0(n0), D, 0,0) = ... = (Gm(nm), (M1, - s hm)  Dm, Om)
if, for every m — 1 > 4 > 0, there is a transition rule
(qi(i), giv1(cigr), (@1, .., 25) , 2,9, 8)

such thatn = e 7AN] \041', Pit1 = (V’I’L)((b, A SPiUH—l), ni+1 = n;¥n, @i-‘rl =6,;U
{¢i &b hiy1,¥pioit1} where o; = {x1 — hy,...,2; — h;} and p; is a renaming of
the sequence «; into the sequence n;. We assume a renaming that ensures the freshness
of the names n: n N n; = 0.

Definition 3. Given an interpretation M, a transition sequence of I1
(QO(”O)v 0, ¢o, 0) .7 (Qm(”m)v <h17 A hm> s &> Om)
is valid w.r.t. M if, for everym —1 > i > 0,
ME Ot
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Example 5. We show the beginning of a possible branch in the symbolic execution of
NSL.

(q0,0,¢0,0) (q1,Hi,¢1,01) (g2, Ha, ¢2,02) (g3, Hz,¢3,03) (qa, Hs, ¢4, 64)

> e > e > e > e

Wheren = n,7, 1", n',1", g0 = (g5, 43’) (n), and q1 = (g1', 45")(n), @2 = (ai', a7’ ) (n),
and g3 = (¢3', ¢P)(n) and ¢4 = (¢4', ¢&)(n). In other words, we interleave the actions
of A and B, as in an expected execution and assume that the two processes were first
activated (if not, we could introduce two transitions activating the processes).

- ¢0 = VK kpAB(P0 = (A, B,eKa,eKp)),

=10

- Hy = (hy),
¢1 extends ¢ with p1 — {(A,n) } ek ..,
61 ={¢got h1}

- Hy = (h1, ha),

¢ extends ¢ with py > {(B, (w3 (dec(hs, dK )) ,n'))} T (ecthg aK )’
62 = 91 @] {d)l H hg, M(7T2 (dec(hg, dKB)))7 W(’]Tl (dec(h27dKB)))}
— Hjs = (h1, ha, hs), ;
¢3 extends ¢o with p3 > {72 (72 (dec(hs, dK4)))} ik,
63 = 92 U {(f)g F h3, 1 (7T2 (dec(h37dKA))) =n,m (dec(h37dKA)) = B},
- Hy = (h1,ha, h3, ha), ¢4 = ¢3,
@4 = @3 U {¢3 }— h4,d€6‘(h4, dKB)) = ’I’L/},

Let M be a model in which 7 (dec(hs,dKp)) = A and

ho =m {<Aa n>}£KBv hs =m {<Bv <nan/>>}2}(A7 hy =m {n, Z/I/(Bv

and F is simply the classical Dolev-Yao deduction relation. Then the execution se-
quence is valid w.r.t. M, and this corresponds to the correct execution of the NSL
protocol between A and B.

There are however other models in which this transition sequence is valid. For in-
stance let M’ be such that hy =r¢ n and ¢1 Fae nand n =p {(A, 1)}, (and
hs, hy as above). We get again a valid transition sequence w.r.t. M’. Though, in what
follows, we will discard such sequences, thanks to some axioms.

Example 6. Consider again the transitions of the example[5l Now consider a model M
in which ng, {B,n,n'}{ ;. Fm {B,no,n'} g, for an honestly generated nonce ng
that can be chosen by the attacker: the transition sequence of the previous example is
also valid w.r.t. this model. This will yield an attack, using a malleability property of the
encryption scheme, as in [26]]. Discarding such attacks requires some properties of the
encryption scheme (for instance IND-CCA). It can be ruled out by a non-malleability
axiom (the discussion of which is out of the scope of this paper, but included in the NSL
proof referred to in the introduction).

From these examples, we see that unexpected attacks can be found when some assump-
tion is not explicitly stated as an axiom to limit adversarial capabilities.
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2.4 Axioms and Security Properties

For simplicity, we only consider reachability security properties. The extension to any
trace property should not be very difficult: it suffices to record some values along the
trace. Security properties (and, later, axioms) are first-order formulas that may contain
state-dependent predicates and/or predicates that get fixed interpretation. As in the pre-
vious sections, M is an arbitrary first-order structure and o is an assignment of the free
variables to elements of D .

First, we add atomic formulas (/3, S1s...,8n F t, where (/3 is just part of the syntax of
this predicate (not an input of the predicate), which aims at ranging over frames (when
interpretating the predicate) and is evaluated in every state. For ¢1, ..., ¢, closed terms,
Mo, (t1,.. . tm) ,nEdys1,...,sp Bt iff M,oEs1,...,8n,t1,...,tm F L.

In addition, we consider the following atomic formulas, whose evaluation only de-
pends on the state, independently of the first-order structure M.

- RandGen(s) (s is a ground term) expresses that s has been randomly generated:
Mo, {t1,...,tm), (n1,...,n) = RandGen(s) iff s & {ny,...,ng}

-tC gfg (t is a ground term) expresses that ¢ is a subterm of the messages sent so far:
Mo, (t,....tm),n ELC ¢ iff tis a subterm of some ¢;.

— We also may use the derived predicate (as an abbreviation):

fresh(z, ¢) = RandGen(z) Az IZ ¢

C and RandGen() are interpreted predicates since their interpretation does not de-
pend on M. Bound variables that appear within an interpreted predicate are called
constrained variables. As in other works on constrained logics (see for instance [18]),
such variables are used to schematize several first-order formulas and are replaced with
ground terms built on F. Therefore, the interpretation of axioms and security properties
that may involve interpreted predicates, is modified, only in case of a quantification on
a constrained variable x, in which case x is replaced by any (or some, for existential
quantification) ground term:

If x is a constrained variable (that is, € has an interpreted predicate and x appears in
it), then,

Mo, (t1,...,tn),(n1,...,nK) E V.0

iff, for every ground term ¢,
Mo, (t1,... tn), (n1,...,nk) E0{x—t}

We have a similar definition for existential quantifications of such variables. All other
cases follow the classical definition of the first-order satisfaction relation[] This yields
a satisfaction relation M, o, (t1,...,tm),n = 0, and thus of M, 0, ¢, n = 0 with ¢

"It would in fact be possible to avoid the notion of constrained variables if we defined D to
be a free F-algebra, and = a congruence relation on it (as opposed to the equality of D A¢), and
later parts of the paper could be adjusted accordingly. However, since constrained variables are
more convenient for automatic verification, the authors decided to present the theory utilizing
them.
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having the terms (¢1, ..., t,,). When 6 has no free variable, we may omit o. Similarly,
if 6 does not contain atomic formulas that depend on ¢ (resp. n), we may omit these
components: we get back to the satisfaction relation of section 2.2l

We define now the satisfaction relation in a state:

M, (q,{h1,..., ), 0, dm,0) EO iff M, ., n 0.

Definition 4. A symbolic interpretation and a protocol satisfy the security property 0,
written as

M, IT =0,

if for any sequence of transitions that is executable in M and that yields the state
(Qma <h17 ey hm> s Ty ¢?’VL7 Qm);

Ma (qm7 <h17 RN} hm> y im, ¢ma Qm) ': 0.

Example 7. Concerning security properties, consider the NSL protocol. We may state
the confidentiality of n: .
—pn

Consider now an authenticity property. We modify slightly the states of the transition
system, including a commitment on the nonce on which the parties are supposed to
agree. We let ¢; be a special function symbol, that takes as arguments A, B, n1, no: who
commits, for who and the corresponding nonces. ¢;(A, B, ny, ma(ma(dec(x, dKg))))
is sent at the end by the initiator. For the responder, there is a similar commitment:
at the end of the protocol, B emits ¢, (7 (dec(x,dKg)), B, ma(dec(y,dKp),n2)). We

state as axioms that c;, ¢, cannot help the attacker and cannot be forged. For instance:
Yxa Y, =z, w'¢7 Ci(x7 Y, 2, 'U}) V 2, W andvxa Y, 2, U)(j) F Ci(x7 Y, 2, 'U}) - Ci(xa Y, =z, U}) E

¢. The agreement property (on ) may then be stated (for instance) as:
Vo, y, 2, w.er(z,y, z,w)) E ¢ — Ia'2'w (ci(z,y, 2, w ) Edpre=a'Az=2 Aw=uw)
That is: x’s view of z, w is the same as y’s view of z, w.

With such a definition, for any security property and any protocol there will (almost)
always be an interpretation for which the property is violated. Hence we restrict the
class of symbolic interpretations, ruling out the interpretation whose all computational
counterparts would violate some security assumption on the primitives. More precisely,
we consider a set of axioms A, which is a set of first-order formulas in the same for-
mat as the security properties. We restrict our attention to symbolic interpretations that
satisfy A.

Example 8. - For instance we could include in A a formula
fresh(k, ¢) — (¢ - k)

that states that an attacker cannot guess (except with negligible probability) a ran-
domly generated name. Adding such an axiom in A rules out symbolic interpreta-
tions in which this deduction is possible.
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— If the computational implementation is such (e.g. they are tagged), we may include,

Va,y,z, A,r(x,y) # {2}k,

stating that pairs and ciphertexts cannot be confused.

We will see more examples in Section 4l
We may assume w.l.o.g that the axioms and security properties are just (universally
quantified) clauses.

2.5 Computational Interpretation

The computational interpretations are just a special case of interpretation of our formu-
las, when they do not depend on the state of the transition system. We define them again
here, since we wish to introduce some additional notions. Also, the computational exe-
cutions of the protocols rely on a concrete adversary, given by a Turing machine, while
in general, the interpretation of functions and predicates need not to be computable.

We consider a familly computational algebras, parametrized by a security parameter
7, in which each function symbol is interpreted as a polynomially computable function
on bitstrings (that may return an error message). Given then a sample 7 of names (for
every name n, its interpretation is a bitstring 7(n)), every ground term ¢ is interpreted
as a bitstring [t], in such a way that [ ], is a homomorphism of F-algebras. More
generally, if o is an assignment of the variables of ¢ to bitstrings [¢]2 is the (unique)
extension of 7 (on names) and ¢ (on variables) as a homomorphism of F-algebras.

Similarly, all predicate symbols are interpreted as polynomially computable func-
tions on bitstrings. The equality predicate is interpreted as a strict equality on bitsrings:
T ¢ t1 = t2 if [t1] - is not an error, [¢2], is not an error and [t1], = [t2].

This interpretation is extended to arbitrary closed formulas whose atomic formulas
do not depend on the state. This yields the satisfaction relation 7 =¢ 6. We will define
later the computational interpretation of arbitrary formulas in a given state.

We now define computational executions.

Definition 5. Given a set of transition rules, a computational state consists of

— A symbolic state s (that is itself a tuple q(n, h, ¢, ©))

— a sequence of bitstrings (b1, ..., by, ) (the attacker’s outputs)
— A sequence (b}, ..., b)) of bitstrings (the agents outputs)

— The configuration vy of the attacker.

Definition 6. Given a PPT interactive Turing machine M and a sample T, a sequence
of transitions

(507(2);136;70) R (sm7<b17"'abm>a< lla'“ablm>77m)
is (computationally) valid w.r.t. M and 7 if

— S0 — + -+ —> Sy, IS a transition sequence of the protocol
— foreveryi =0,..m —1, s; = (q;(ni), hi, di, 0;), Gir1 = (vn).¢; - w;, [us]r =
b;
+1
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— foreveryi1 =0, ...,m — 1, there is a configuration ., of the machine M such that
ry 8 Vi
vi Far Vi B Yie1 and v] is in a sending state, the sending tape containing b;y1,
Yit1 IS in a receiving state, the receiving tape containing bj_ |
— foreveryi=0,...m—11,{x1— b1,...,x— bip1} E° Oit1.

Intuitively, b’y is the attacker’s initial knowledge and we simply replaced symbolic de-
ductions/symbolic models of the section [2.3| with computations/computational models.

2.6 Computational Validity of Security Properties and Axioms

We already considered the computational satisfaction of formulas, except for formulas
that depend on the states. Given a PT Turing machine .4, we define then

ATE, .ty Ht it A([ti]r, - [ta]s) = [t~

The difficulty now is that we do not want to define A, 7 =° é Ft — é F to as
A, 7 E ¢Ftaor A, 7 |~ ¢ F t1. In order to understand this, consider for instance the
formula

0: Yxr(@d {t}Ert— {1} CoVAKC oVt

We want (intuitively) IND-CCA encryption schemes to satisfy this formula. However,
consider an instance of this axiom in which gfg is the pair ¢ = vning.(ny,na), and t is
n1. Now, let A be a machine which, oninput [(n1,n2)]-, [{n1}}x]- returns ny and, on
input [(n1, n2)], only, returns [ns],. Forevery 7, A, 7 =¢ 6. Hence, whatever security
is provided by the encryption scheme, there is an attack on the property.

This paradox comes from the deterministic interpretation of the deducibility rela-
tion: while, symbolically, it is a relation, it must be a function in the computational
setting since we cannot consider non-deterministic machines. The intended interpreta-
tion therefore involves several machines: roughly, for any machine that can compute
[t]- from [@] -, [{t}. ]+, either there is a machine that can compute [t] from [¢], or
else the actual frame contains either dK or {t}7 . These two machines need of course
to be independent of 7. This is the definition that we formalize now for arbitrary security
properties.

Let M be an interactive PPT Turing machine with a special challenge control state
q.. We may regard this machine as an attacker, who moves to the state g. when (s)he
thinks that (s)he is ready to break the security property.

In what follows, S is any (polynomial time) non-negligible set of interpretations of
names, and S is the set of all name interpretations. M, IT =° 0 iff M, II, St ¢ 0
and IT =° 0 if M, IT |=° 0 for every M with g..

We introduce machines that compute witnesses for the unconstrainted quantified
variables.

- M, II, S ¢ 3z.0 iff there is a PT machine A, such that M, IT, S, A, ¢ 6
- M,II,S, Ayys ..., Ag,, = V.0 iff for any probabilistic polynomial time ma-
chine A,, M, II, S, Ay,,..., Az, , Az E€ O



200 G. Bana and H. Comon-Lundh

If x is a constrained variable, the interpretation of Vz.6 is analogous to the symbolic
case: M, II, S, Ay,,..., Ay, =°¢ Va0 if and only if for every ground term ¢, the
satisfaction M, IT, S, Ay, , ..., Ay, E° 0{x — t} holds (and similarly for existential
quantification). If o is a sequence of machines, one for each free variable x of 6,

- M,II, S0 =°01 NO2iff M, II, S, 0 =€ 6 and M, II,S,0 |=° 05.

- M,II, S 0 =° 6,V 0, iff there are sets S; U Sy = S such that M, I, 51,0 ¢ 64
and M7 H7 527 [ ):C 92.

- M,II,S,0 ¢ 6; — 6, iff for any S’ C S non-negligible, M, I1, 5,0 = 64
implies M, IT, 5", 0 |=° 6,

- M,II, S, o ¢ =6 iff for any S’, if M, I1, S’,0 =° 0, then S N S’ is negligible

— in the case of an atomic formula P(t1,...,¢,) where P ¢ {I, C, RandGen()},
M, II, S, 0 =° P(ty,...,t,) if there is an overwhelming subset S’ of S such that
the following holds. For any 7 € \S’, consider the unique valid computation (if there
is one) of IT with respect to M, 7 that yields a configuration of M, which is in the
control state ¢, with a bitstring b on the output tape. Let g(n) be the control state
reached at this point and ¢ be the restriction of 7 to n. Let b,, = A, (b, ¢) for every
A, € o, and « be the sequence of assignments x +— b,. Then ([t1]2, ..., [t.]2) €
[P]. X

— For the deducibility predicate, M, II,S,0 =° ¢,t1,...,t, = t if for all non-
negligible S’ C S, there is a non-negligible S” C S’ such that there is a PT
Turing machine Ap such that, for all 7 € S”, the unique valid computation (if
there is one) of II with respect to M, 7 that yields a configuration of M, which
is in the control state g, with a bitstring b on the output tape, an actual frame ¢,,
and such that, letting b, = A4 (b, ¢) where ¢ = 7(n) for the names n in the cur-
rent state, for every A, € o, and « be the sequence of assignments x +— by,
AD([[d)m]]ﬂ Htl]]gv RN th]]gv b) = Ht]]?'

- M,II,S,0 E°¢t,...,t, F tis defined exactly as above, however removing ¢.

— If P is an interpreted predicate, M, I1,S,0 | P(t1,...,ty,) iff there is an over-
whelming subset S’ C S such that, for any 7 € .S’, the unique valid computation
of IT with respect to M, 7 that yields a computational state (¢(n, h, ¢, ©),b, b, ¥)
in the control state g. such that P(t1,...,t,) is true in g(n, h, ¢, @). (Remember
that the evaluation of such predicates do not depend on the model).

M, IT E""P 0 (read “M, II satisfies  with non negligible probability”) if there is a
non-negligible set S and a PPT machine A such that A(nq,...,ng, b1,. .., by) returns
1 iff there is a 7 € S such that, for all 4, 7(n;) = b; and M, IT, S =° 6.

Lemma 1. If M,II,S,0 E° 0 and S’ C S, then we also have M, 11,5, 0 =° 6.

Proof. We proceed by induction on 6. Since M, IT are fixed, we sometimes omit these
components.

- If 6 is a atomic formula P(ty,...,¢,) and P ¢ {F,fresh(),C}, then, by def-
inition, there is an overwhelming subset S; C S such that, for any 7 € 57,
([ta]%, - -, [tn]®) € [P]- If S” € S, we choose S; = S’ N Sy. It is an over-
whelming subset of S” and, for any 7 € S1, ([t1]2, - .., [tn]$) € [P]-
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— If 6 is a formula qAb, t1,...,t, F t, then for any non negligible S; C S, there is
a non-negligible S; C S; and there is a machine A, such that, for any 7 € S,
A([ol-, [t1]2, - - -, [tn]) = [¢]2. If S’ C S is non negligible, then any non-
negligible 57 C S’ is also a non-negligible S} C S, hence the result.

— Other atomic formulas with = and C are rather trivial.

- If0 = —0,, M, I1,S,0 =° 0 iff for any S; C S such that M, I, S1,0 ¢ 64,
S1 N S is negligible. In that case, for any S’ C S, S’ NSy is also negligible, hence
the result (we do not use here the induction hypothesis).

- If0=60,Vv05,85,0 ':C 61 V 05 implies S =51USsand S, 0 ':C 01,52, 0 ':C 0.
If S’ C S, then ST =51 NS C S1and S5 = S NS C Sy, hence, by induction
hypothesis, S, o =° 01 and S5, 0 |=° 0;. It follows that (S” =)S]US5 [=° 01V 02

- If 0 = 6, N 605, we simply use the induction hypothesis for 6; and 62, with the same
S’ CS.

— If 6 = Jx.61, then we use the induction hypothesis with the same S, S’ (and a
different o). Similarly for universal quantification.

3 Computational Soundness

We assume here that, in any formula, the negations appear only in front of an atomic
formula.

Theorem 1. Let II be a protocol, s1 — ... — Sy, be a symbolic transition sequence
of II and M be a probabilistic polynomial time interactive Turing machine. If there is a
non-negligible set of coins S such that, for any 7 € S, there is a sequence of transitions
(50, b0, by, v0) = -+ = (Sm>bm, bl Ym) that is computationally valid w.r.t. M, T
and ~yy, is in the challenge state q., then for any formula 6, M, I1, S |=¢ 0 implies there
is a symbolic model S such that sy — - -+ — Sy, is a valid symbolic execution w.r.t. S

and S = 6.

Proof. We assume in this proof that there are only two predicate symbols: = and F.
The extension to other predicate symbols is straightforward.

For any term ¢ with free variables z1, . .., x, and machines A,,, ..., A;,, and any
sample 7 € S, let [t],, be the computational interpetation of ¢, in which each vari-
able x; is interepreted according to o(7)(z;) = Ag,(br,7(n)) if b, is the bitstring
on the output tape of v,,, and n is the set of names in the state s,,, for the execution
corresponding to .

Given a a decreasing chain of non-negligible sets of coins S O S1 O S2 O ..., we
define a first-order structure Mg, 5g,>... as follows. The domain of Mg, 5g,>... is the
set of terms built on the function symbols, the names and the additional constants A
for any PT machine A. The interpretation of the predicate symbols is given, for any
assignment o of the variables z1, ..., x, to machines A,,, ..., A, by:

- Ms,28,2...,0 = t = wiff there is an i such that V7 € S;, [t]; »(r) = [u]+,0¢r)
- Mg,58,0...,0 = t1, ..., ty F tiff thereis a PT algorithm A, an 4 such that V7 € 57,
A(ﬂtl]]T,U(T)) ey [[tn]]T,U(T)) = [[t]]T,G(T)'
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Let
Ms = Mgoso..

Remark 1. Notice, that the definition is such that for S; © S D ...and S7 2 S, D ...,
if for some m € N, S = S, for all i > m, then Mg,>5s,>...,0 = 6 if and only if
Msios,o.,0 = 0. This is rather trivially true for 6 atomic formula, and hence true
for any formula.

Let 6 be a formula with free variables x1,...,x, such that only atomic formulas
are negated. We prove, by induction on ¢ that, if on a non-negligible set of coins .S,
M, II,S,0 = 0, then for any decreasing chain of non-negligible subsets S O S; D
S D ..., there is a decreasing chain of non-negligible subsets S| 2 S5 O .... such
that S} C S, forall ¢ = 1,2, ..., and for any decreasing chain of non-negligible subsets
Si’ D) Sé/ D ... with SZ” - S{ foralle=1,2,..., MS{’QS;Q....7U ': 0.

— Suppose § = ¢t = u. We know from Lemma [I] that M, IT, S,c E=° 0 implies
M, I, S o =° 0 for any subset S’ C S. Hence, given any decreasing chain of
non-negligible subsets S O S1 D Sy D ..., it suffices to choose S; = S; for every
i

- Ifd=t#wand S O S; DSy D ....is any decreasing sequence of non-negligible
sets, let S] = S, for every 7. For any decreasing sequence of non-negligible sets
S C S, forall i, since S/, 0 =° t # uby lemma[ll {7 € S : [t]r- = [u]+.0
is negligible. Hence there is at least one 7 € S/ such that [t], , # [u]r .. Hence
Msyosyo..,0 FEL=u.

— For 6 = t4,...,t, F t, again given any decreasing chain of non-negligible subsets
S 251 D852 D ..., itsuffices to choose S, = S;.

- Ifo = é, ui,...,ur - t, we may replace é with the frame ¢,,, of the symbolic state
Sm (this is because for any 7 € S, we reach the same symbolic state s,,), hence we
are back to the previous case.

- If0 = t4,...,t, t/ t, given any decreasing chain of non-negligible subsets S D
S1 2 S2 D ..., it suffices to choose S} = S;, as M, II, 5" 0 =€ t1,....tn F tis
not true on any non-negligible .S’

- Ifo = q}, t1,...,ty t7 t, as before, we may replace (/3 with the frame in s,,, and we
are back to the previous case.

- If 0 = 6, V6, then S, 0 |=° 6 means that there are S” and S” such that S'US” = S
and S',0 E° 01 and S”,0 |E° 2. At least one of the two sets S’, S” is non-
negligible. Take any decreasing chain of non-negligible subsets S O 51 O Sz D
..... Then either S'N'S; D S' NSy D .... is a non-negligible chain, or S” N.S; D
S” N Sy D .... is a non-negligible chain. (Because if both are negligible from a
certain point on, then there is an 4 such that S’ N S; and S” N.S; are both negligible,
but that contradicts that their union, S; is not negligible.) Suppose the first. Notice,
that the first is a chain in .S’. Then, by the induction hypothesis for 6, there is a
chain § D S’ D 51 2 S} D ... such that S, C S’ N S; and for any non-negligible
decreasing chain S7" 2 S5 D ... with S} C S}, Mgrogy5..,0 = 01. Then
Msyosyo...,0 = 0. So the same S7 O S5 O ... works for 6.

- If & = 61 A 0, by definition, S,0 ¢ 6; and S,0 ¢ 6. By induction hy-
pothesis for 61, given any decreasing chain of non-negligible subsets S O S; D
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S2 D ..., there is a chain S D S}; D S}, D ... with Sj; C S, such that,
for any non-negligible decreasing chain S7 2 S5 D ... with S/ C 51, for all
i, Msiosys.,0 E 6. By induction hypothesis for 5, there is a chain S 2
So91 2 Shy D ... with S}, C S, such that, for any non-negligible decreasing
chain S7 2 Sy O ... with S;" C S, for all i, Msy55y5..,0 = 2. Since
S, € S1;, by the choice of S7,, we also have that for any non-negligible decreas-
ing chain S D S§ D ... with S} C S}, for all ¢, Msyosys.. 0 E 6:. Hence,
for any non-negligible decreasing chain S} 2 5§ D ... with S}/ C S}, for all i,
Misiosyo..,0 = 01 A s Thus, taking S; = S5, works.

- If = 3.0, then there is an A, for which we have that S, A, , ..., A, , Az E° 6.
By induction hypothesis, forachain S O S; O S D ..., thereis achain S| O S5 D
... with S C .S;, such that, for any non-negligible S;" C S}, Msrosy5..,0,2 =
A = 61. But then this implies Mgy 5sy5..,0 = 32.0;. So the same S 2 S5 2
... works.

- If § = Vb4, then for all A,, S, Ay,,...; Az, Az E€ 01. Let’s fix S O S D
So O .... Enumerate all possible algorithms for A,: Aj, As,... First we show
that for Ay, S, Ay, ..., Az, A1 [E=° 01 holds. By induction hypothesis, there is a
chain Sj; 2 Si, 2 Si3 2 ... with S7, C S,, such that, for any non-negligible
Si’ D) Sé’ D .., if SZN - Siz for all ¢, then MS{’QS&’Q..mva — A ): 0,. Take
now Ag. Then S, Ay, , ..., Az, A2 E° 61 holds. By the induction hypothesis, there
is a chain S5; D S5, D ... with S5, C S1,, such that, for any non-negligible chain
S1 285 O ... such that S}' C S, forall i, Msyosyo 0,2 — Az = 1. But,
because of Remark[I] it is also true, that for the chain S7; D S%y 2 S43 D ..., for
any non-negligible S{ O 5S4 D ..., with SY C S, and S} C S}, fori = 2,3...,
Misiosys.., 0,2+ Az [= 01, as it does not matter what the first set is. Further-
more, since Sy; C 57, holds, we also have Ms/55r5.., 0,7+ Ay = 6. Contin-
uing in this manner, we get a chain S7; 2 S5, O S%; D .... Then, take any chain
SY 2.8y O ..., with S] C SJ;. Clearly, because of the construction, S; C 57, also
holds (as Sj; C S7;. Hence we have Msy5sy5., 0, — Ay [= 01. Further, since
S C S, fori=2,3...,and S C S7;, we also have Misi5sy5..50,7 > Az =
01. And so on, we have for all n, Mgiogsy5..,0,7 — A, = 61. Now, if v is any
term in the domain of our models, Mgr>55y5.., 0,2 = v = 0;. Indeed, let v’ be
the term v, in which any .4; occurring in v is replaced with a variable x; and o’
be x; — A;. The algorithm, that computes, for every 7 € S, [v]; , can be con-
structed from the A; and is PT. Hence there is an index n such that, for any 7 € S,
Ay, outputs [v'] o+. Therefore, we also have Ms/55r5...,0 = Va1, and that is
what we wanted to prove. O

The above result can be applied to a formula 6 that is the conjunction of

— the intermediate conditions (that are part of the symbolic states) ©
— finitely many computationally valid axioms A
— a formula that expresses the existence of an attack. NotSec.

Then it can be read as follows: if there is a computational attack, corresponding to a
symbolic trace s; — - -+ — Sy, then this symbolic trace is valid in a model, which is
also a model of A and NotSec.
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Consider then a symbolic procedure, that discards only symbolic states, in which
© A A is inconsistent. Then the symbolic procedure will not miss any attack. More
precisely, we get:

Theorem 2. For a bounded number of sessions, if there is a computational attack, there
is also a symbolic attack.

In other words, if the protocol is symbolically secure, then it is also computationally
secure.

It might be true for an undbounded number of sessions as well, but we need the
boundedness assumption if we wish to derive the theorem from the theorem [Tk The
trick is, that in the bounded case, if there is a computational attack, there is also a com-
putational attack corresponding to a fixed sequence of symbolic states. This is simply
because the bounded number of sessions ensures that there are only finitely many possi-
ble sequences, and if there is a computational attack, that is, the property expressing the
attack is satisfied on some non-negligible set, then it must be satisfied non-negligibly
on one of the possible sequences.

4 Examples of Axioms

4.1 Examples of Axioms That Are Computationally Valid

Increasing capabilities: gf) Fy— rj;, rhky
Function of derivable items: ¢ -t ApFta Ao APt = dF ft1,ta, ... tn)
Self derivability: gZA), tHt

The validity of these axioms is straightforward. We also include the following:

No telepathy: fresh(z, ¢) — ¢ tf
whose computational soundness follows from the polynomial bound on the machines
that interpret the deducibility relation on the one hand and the exponential number of
interpretations of any names, on the other hand.

4.2 Secrecy Axiom

The intuitive meaning of the following axiom is that the adversary cannot derive the
plaintext of a freshly generated encryption, unless its decryption key has been sent out,
or the plaintext could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCA?2, then the following axiom
0=Vixr (RandGen(K) A fresh(R,§) A &, {t}Fe bt — dK C oV o t)

is computationally valid.
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Proof. Suppose that it is not computationally valid. That is, there is a computational
structure (M, I1, S), with M, I, S |~ 0. There are PPT machines A = (A;, Ak, ARr)
such that M, IT,S, A [~ fresh(R,¢) A ¢, {t}E; Ft — dK C ¢ V ¢ F t.
Therefore, there is a S; C S non-negligible such that M, IT, S, A = fresh(R, (13) A
b, {t}E Ftand M, IT, 51, A dK C ® V & t. We claim that the second implies
that there is a non-negligible subset Sy of Sy such that M, IT,S2, A = —(dK C g?))
and M, I1, So, A |~ & | t. To see this, consider the following:

- Take So = S1\{7 | the computation of A on 7 yields a state ¢ such that ¢ = dK C
¢}. Clearly, M, I, S, A = ~(dK C ¢),and M, IT,S; \ So, A = dK C ¢

- Since M, 11,5, \ Sz, A |= dK T ¢, we have M, IT, Sy, A [~ ¢ I t, because
otherwise we would have M, 11,51, A E dK C é VvV okt contradicting
ML S, AEdAK T ¢ vV $Ft.

Since M, II, S5, A - fi; I ¢, by the definition of the computational semantics of the
derivability predicate, there is a subset Sy of S such that on all subsets of Sy, there
is no PT algorithm that computes the interpretation of ¢ from the computational frame.
Then it is straightforward to check that M, IT, Sy, A = ﬂ(é Ft):

— Suppose it is not true, that is, M, IT, Sy, A }~= ﬂ(qg Ft).

— Then there is an S5 C Sy such that M, IT, Sy, A E o+t

— That implies that S5 has a subset on which there is an algorithm that computes the
interpretation ¢ from the computational frame, a contradiction.

Since Sy C So, we also have that M, I, 5S4, A = -(dK C ff;) and since Sy C S,
we also have M, IT, Sy, A = fresh(R, (/B) A ¢, {t}E, + t. Thatis, M, II,Ss, A |=
¢, {t} 2 -t and M, I, Sy, A |= fresh(R, ¢) and M, IT, Sy, A |= ~(dK C ¢) and
M, I Sy, A= —|(¢3 F t). We have to create an adversary Accaz that wins the CCA2
game. Letx = {t} 2.

Since M, II,S4, A = b, {t}E. I t holds, there is an S5 C Sy and an algo-
rithm C that computes the interpretation of ¢ from the interpretation of ¢ and {t}E,
on Ss. Clearly, M, I1, S5, A = fresh(R, ¢) and M, II, S5, A = ~(dK T ¢) and
M, I, S5, A = ﬂ(é F t¢). It may be the case that the S5 we have chosen depends
on evaluations of 7 that are determined after M reaches the challenge state g.. How-
ever, clearly, if we include all possible future evaluations, the set that we receive this
way, S’ will still be such that there is an algorithm C that computes the interpreta-
tion of ¢ from the frame at the challenge state ¢. and {t}F on S’. Moreover, it is
easy to see that M, IT, S', A = fresh(R, ) and M, II, 5", A = —(dK C ¢) and
M,II, 5", A |= =(¢  t) because these are properties that depend only on conditions
in the challenge stated, and not later ones.

Since M, II,5', A = dK [ ¢, the decryption key has never been sent.

We show that we can construct an algorithm Agc a2 that breaks CCA?2 security.

Let A7 mean the protocol adversary.

— Accas generates computational keys that A7 uses, except for the one correspond-
ingto K.
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The encryption oracle generates a random bit b.
The encryption oracle generates a computational key and publishes its public part.
Accaz encrypts with this key for encryptions with K, except for ¢.
Accaz simulates both the agents and A 7: It computes all messages that the agents
output according to their algorithm, and computes all messages that A outputs
according to its algorithm. This way it builds up ¢ and the bit strings corresponding
to them as well as the equations.
Whenever a decryption with dK has to be computed, there are two possibilities:
o If the ciphertext was created by Acca2 using the encryption algorithm, then it
knows the plaintext, so it can use it without decryption.
o If the ciphertext was created in some other way, the decryption oracle is used.
This can be freely done until x occurs.
When A reaches the challenge state ¢, using A;, Accaz computes the bit string
for ¢, and submits it to the encryption oracle as well as a random bit string that has
the same length as the plaintext.
According to our definition of satisfaction the computation by C is based on the
frame at the challenge state. We had M, IT, 5", A = fresh(R, ¢), which means
that R is independent of the items in ¢. Further, since we included all future ran-
dom choices in S/, R is also independent of S’. Hence having it encrypted by the
encryption oracle will not lose any information as long as the oracle encrypts the
correct bit.
The encryption oracle encrypts the interpretation of ¢ if b = 0, and encrypts the
random bit string if b = 1. It gives the result ¢ back to Accas.
Run C on the bit string ¢ returned by the oracle and on the bit strings of ¢y,.
If
e Accas receives the value for ¢ back using ¢ and if the execution is in S’, then
Accaz returns b4, = 0.
e Otherwise Accae throws a fair coin and stores bagc,, = 00r b, = 1
with probability 1/2.
We have Prob{b4..,, = b| S’ A b= 0} (the conditional probability of b 4., =
b given S’ and b = 0) is negligibly different from 1 because in this case the oracle
encrypts the correct string, and C’s computations are employed on the correct bit
string, and so it gives the interpretation of ¢. Note, we also use here that S” and the
interpretation of 2 do not correlate.
On the other hand, observe that Prob{b ..., = b | S" A b =1} —1/2is neg-
ligible. The reason is that when b = 1, the encryption oracle computes something
that has nothing to do with the protocol and ¢. So the probability of computing ¢
with or without the encryption in this case, is the same. But, remember, we had that
MITS" A = gfg I# t. This means that ¢ cannot be computed without the encryp-
tion anywhere and therefore the adversary’s computation on the fake encryption
cannot give good result by more than negligible probability. So the adversary will
end up throwing a coin in this case.
Putting the previous two points together, we have Prob{b..., = b | 5’} —
is non-negligible. Then, since outside S/, Accaz thows a coin, Prob{b ..., =
b} — ; is non-negligible, which means CCA2 security is broken. O
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5 Conclusions

We have shown a technique to define symbolic adversaries that are at least as strong as
computational adversaries. The basic idea is that, instead of listing all manipulations the
symbolic adversary is allowed to do, we allow the symbolic adversary to do anything
unless it contradicts some axioms, which are derived from the limitations of the com-
putational adversary. In a rather involved theorem, we showed that at least when only
bounded number of protocol sessions are allowed, to any computational attack there is
a corresponding symbolic attack. Further, we have shown a few axioms that arise from
the limitations of computational adversaries, and which are to limit the symbolic adver-
sary. Besides some rather trivially valid axioms, we showed the validity of a ”’secrecy
axiom”, that relies on IND-CCA2 security.

From our method, we can derive a verification procedure, simulating the (symbolic)
protocol rules, and checking at each computation step the consistency of the formulas
expressing that transitions are enabled, together with the axioms and the negation of
the security properties. In order to automate this process we mainly need a (hopefully
efficient) procedure checking the consistency of such a set of constrained formulas.
This is future work. We are however optimistic, because the examples of axioms that
we considered yield a saturated set of constrained formulas (as defined in [22]]). On the
other hand, as shown in [9]], the consistency of ground clauses, together with a saturated
set of clauses, can be performed in polynomial time.

We carried out a proof of a two sessions NSL, showing what are the minimal assump-
tions that guarantee its correctness, but we need to design an automated tool, in order
to carry out further experiments. Also extensions of the results to indistinguishability
properties could be investigated.
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