Improved Three-Way Split Formulas
for Binary Polynomial Multiplication

Murat Cenk!, Christophe Negre!»23, and M. Anwar Hasan'

! Department of Electrical and Computer Engineering,
University of Waterloo, Canada
2 LIRMM, Université Montpellier 2, France
3 Team DALI, Université de Perpignan, France

Abstract. In this paper we deal with 3-way split formulas for binary
field multiplication with five recursive multiplications of smaller sizes.
We first recall the formula proposed by Bernstein at CRYPTO 2009
and derive the complexity of a parallel multiplier based on this formula.
We then propose a new set of 3-way split formulas with five recursive
multiplications based on field extension. We evaluate their complexities
and provide a comparison.

1 Introduction

Several cryptographic applications like those relying on elliptic curve cryptogra-
phy [7l9] or Galois Counter Mode [8] require efficient finite field arithmetic. For
example, ciphering a message using the ElGamal [3] scheme over an elliptic curve
requires several hundreds of multiplications and additions in the finite field.

In this paper we will consider only binary fields. A binary field Fon» can be
viewed as the set of binary polynomials of degree < n. An addition of two el-
ements in Fon consists of a bitwise XOR of the n coefficients and it can be
easily implemented either in software or hardware. The multiplication is more
complicated: it consists of a polynomial multiplication and a reduction modulo
an irreducible polynomial. The reduction is generally quite simple since the ir-
reducible polynomial can be chosen as a trinomial or pentanomial. The most
challenging operation is thus the polynomial multiplication.

The degree n of the field Fa» used in today’s elliptic curve cryptography (ECC)
is in the range of [160, 600]. For this size of polynomials, recursive methods like
Karatsuba [6] or Toom-Cook [TT|I2] are considered to be most appropriate. Sev-
eral parallel multipliers have been proposed based on such approaches [T0J5].
They all have subquadratic arithmetic complexity, i.e., the number of bit oper-
ations is O(n'*¢), where 0 < ¢ < 1, and they are logarithmic in time. When
such a subquadratic complexity multiplier is implemented in hardware in bit
parallel fashion, well known approaches include 2-way split formulas with three
recursive multiplications and 3-way split formulas with six recursive multiplica-
tions [I0U5]. Recently, Bernstein in [I] has proposed a 3-way split formula with
only five recursive multiplications.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 384-B9g, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improved Formulas for Binary Polynomial Multiplication 385

In this paper we also deal with the 3-way splits and propose new formulas
for binary polynomial multiplication with five recursive multiplications. We use
the extension field F4 to obtain a sufficient number of elements to be able to
apply the multi-evaluation (i.e., evaluation at multiple elements) and interpo-
lation method. This leads to Toom-Cook like formulas. We study the recursive
complexity of the proposed formulas and evaluate the delay of the corresponding
parallel multiplier.

The remainder of this paper is organized as follows: in Section 2] we review
the general method based on multi-evaluation and interpolation to obtain 3-way
split formulas. We then review Bernstein’s formula and evaluate a non-recursive
form of its complexity. In Section Bl we present a new set of 3-way formulas
based on field extension. We evaluate the complexity and the delay of a parallel
multiplier based on these formulas. Complexity comparison and some concluding
remarks are given in Section [l

2 Review of 3-Way Splitting Methods for Polynomial
Multiplication

In this section we review the general approach to the design of 3-way split formu-
las for binary polynomial multiplication. Then we review the 3-way split methods
with five multiplications of [I] and study its complexity. Pertinent lemmas along
with their proofs are given in Appendix [Al

2.1 General Approach to Design 3-Way Split Multiplier

A classical method to derive Toom-Cook like formulas consists of applying the
multi-evaluation and interpolation approach. Let us consider two degree n — 1
polynomials A(X) = S a;X* and B(X) = Y b X in R[X], where R
is an arbitrary ring and n a power of 3. We split A and B in three parts:
A= Z?:o A; X™/3 and B = Z?:o B; X™/3 where A; and B; are degree n/3 — 1
polynomials. We replace X™/? by the indeterminate Y in these expressions of
A and B. We then fix four elements ag,...,as € R plus the infinity element
a = o0. Finally we multi-evaluate A(Y') and B(Y) at these five elements and we
multiply term by term A(«;) and B(a;) for ¢ = 1,...,5, which provides C(«a;)
of C(Y) = A(Y) x B(Y) at those five elements.

These five multiplications can be computed by recursively applying the same
process for degree n/3 — 1 polynomial in X. We then interpolate C(Y") to obtain
its polynomial expression in Y. Specifically, if we define the Lagrange polynomial
as Ly(Y) = H;L#i (};:‘Z) for i = 1,...,4 and Loo = [[i—,(Y — a;) then
we have

C(Y) = Li(Y)C(ai) + C(00) Lo (Y).
i=1
We obtain the regular expression of C' as a polynomial in X by replacing Y
by X™/3.

386 M. Cenk, C. Negre, and M.A. Hasan

2.2 Bernstein’s 3-Way Split Formula

In this subsection, first we review the 3-way split formula with five recursive
multiplications presented by Bernstein in [I]. We then derive its complexity
results. We consider two degree n — 1 polynomials A and B in F5[X] where n
is a power of 3. We split these two polynomials in three parts and then replace
X"/3 by Y and consider them as polynomial in R[Y] where R = Fy[X]

A=Ag+ AY + AY? and B = By + B1Y + B.Y?

with degy A;,degy B; < n/3. Bernstein uses a multi-evaluation and interpola-
tion approach by evaluating the polynomials at these five elements 1,0, X, X 4+ 1
and oo of R U {oo}. We denote C' as the product of A and B. We then define
the pairwise products of the evaluations of A(Y) and B(Y) at 0,1, X, X 4+ 1 and
oo as follows

Py = AoBy (eval. at 0),
Pl = (Ao + A1 + Ag)(Bo + Bl + Bg) (eval. at 1),
Py = (Ao + A X + A2X2)(Bo + B1X + B2X2) (eval. at X),
P = ((Ao + A+ A+ (A X + AQXQ))
X ((BO —+ Bl =+ BQ) + (BlX + BQXQ)) (eval. at X + 1),
P4 = AQBQ (eval. at OO)

Bernstein has proposed the following expressions for the reconstruction of C:

U=Py+ (Py+P)X and V = P, + (P> + P3)(X"/3 4+ X), then
(U+V + Py(X*+ X)) (X234 xn/3) (1)

C =U+ Py(X4/3 4 Xn/3)
+ Py(+)+ X4 X

2.3 Asymptotic Complexity of the Bernstein Method

We evaluate the complexity of the formula of Bernstein when they are applied
recursively. This complexity will be expressed in terms of the number of bit
addition denoted as Sg(n) and the number of bit multiplication denoted Sg(n).
The complexities of the computation of the five products Py, P;, P>, P3 and P,
are given in Table[7in Appendix [Bl Note that the degrees of R3, R}, Ry and R
are all equal to n/3+ 1, while the degrees of Ay, By, A2, B2, Ry and R] are equal
to n/3 — 1. Consequently, the products Py, P; and P, have their degree equal to
(2n/3 — 2) and the degrees of P» and Ps are equal to (2n/3 + 2).

The formulas in Table[dcan be applied only once since the five products involve
polynomials of degree n/3—1 and n/3+1. In order to have a fully recursive method,
we express the product of degree n/3 + 1 polynomials in terms of one product of
degree n/3 — 1 polynomial plus some additional non-recursive computations.

For this purpose, we consider P = Z?:/g+1piXi and QQ = ZZL:/SH ¢ X"t We
first rewrite P as P = P'Jr(pn/3X”/3+pn/3+1X”/3+1) and Q = Q’+(qn/3X"/3+
Gn/3+1X™/3T1) and then if we expand the product PQ we obtain

Improved Formulas for Binary Polynomial Multiplication 387

PQ=PQ + (Pn/?,Xn/3 +Pn/3+1Xn/3+1)Q, + (Qn/3Xn/3 + Qn/3+1Xn/3+1)P/
(TN ~

~ ~ ~ i

" e) M Nt
+ (Pn/sxn/3 + Pn/3+1Xn/3+)(Qn/3Xn/3 + %/3+1Xn/3+).
. ~ -

My

The product M; can be performed recursively since P’ and Q' are of degree
n/3 — 1 each. The other products My, M3 and M, can be computed separately
and then added to M;. The computation of Ms and Ms is not difficult, each
consisting of 2n/3 bit multiplications and n/3 — 1 bit additions. We compute the
product My as follows

x2n/3+1 2n/3+2

My = Pn/3Qn/3X2n/3 + (Pn/3+1n/3 + Pr/3n/s+1) + Pn/3+19n/3+1X

and this requires one bit additions and four bit multiplications. Finally, the
complexities Sg (n/3) and Sg(n/3) consist of the complexity of each product M;
plus 2n/3 4+ 1 bit additions for the sum of these five products. This results in the
following complexity:

{S@(n/3+2) =Sg(n/3) +4n/3, 3)
Sg(n/3+2)=38g(n/3)+4n/3 + 4.

Ezxplicit computations of the reconstruction. We now review the sequence of
computation proposed by Bernstein in [I] for the reconstruction. This sequence
first computes the two polynomials U and V defined in ({l) and then computes
C. The details are given in Table B in Appendix [Bl

With regard to the division of W = (U +V + Py(X* + X))(X?"/3 + X"/3) by
X? + X in the reconstruction () (i.e., the computation of W’ in Table B), we
remark that W is of degree n, so we can write W = w, X" 4+ ... + w1 X + wp.
Since X2 + X = X (X + 1), the division can be performed in two steps: first we
divide W by X which consists of a shift of the coefficients of W and then we
divide W/X = w, X" ' +...+w; by X + 1. The result W = W/(X? + X) has
its coefficients defined as follows:

’
Wy_j = Wp + Wp_1 + -+ + Wn_jq2.

These computations require n — 2 bit additions: we perform sequentially the
additions wj = wj | + w;;2 starting from w;,_, = wy,. The corresponding delay
is then equal to (n — 2)Dg where Dg is the delay of a bit addition.

Overall Arithmetic Complexity Now we evaluate the overall complexity of Bern-
stein’s method (Table [and B in Appendix [B)). By adding the number of bit
additions listed in the two tables in Appendix [B] we obtain Sg(n) = 3Sg(n/3) +
28¢(n/3 + 2) 4+ 35n/3 — 12 and for the bit multiplication we have Sg(n) =
38g(n/3) + 28g(n/3 + 2). In order to obtain a recursive expression of the com-
plexity, we replace Sg(n/3+2) and Sg (n/3+2) by their corresponding expression
in terms of Sg(n/3) and Sg(n/3) given in ([@). We then obtain the following:

c— {S@(n) =5S8g(n/3) — 4:,”3” —12,

388 M. Cenk, C. Negre, and M.A. Hasan

Then we apply Lemma [from Appendix [A] and we obtain the following:

- S@(TL) — 327n10g3(5) _ 4?é'n + 3’ (4)
Sg(n) = Tnlogs(®) —4p — 2,

Delay of parallel computation based on Bernstein’s method Here we evaluate the
delay of a parallel multiplier based on Bernstein’s formula. We will denote D(n)
the delay required for a multiplication of two degree n — 1 polynomial where n
is a power of 3. The delay will be expressed in terms of the delay of bit addition
denoted as Dg and the delay of bit multiplication denoted as Dg. For this, we
have drawn a data-flow graph of the multi-evaluation and the reconstruction
part of the computation. These graphs are shown in Figure [Il from which we
remark that the critical path delay is D(n/3) + (n + 8)Dg. For example, this is
the delay of the critical path which starts from Ag or A; exiting at R4 in the
multi-evaluation, then goes through a multiplier of polynomial of degree n/3+ 1
which has a delay of D(n/3)+1 (cf. @), and finally enters the reconstruction in
P3 and ends at C'. Since we have assumed that n is a power of 3, we transform

Fig. 1. Multi-evaluation (left) and reconstruction (right) data flow

D(n) = D(n/3) + (n + 8)Dg into a non-recursive expression, by applying it
recursively and using D(1) = Dg.
D(n) = (n+8)Dg + (n/3+8)Dg + (n/9+8)Dg + ... + (3 +8)Dg + Dg
5

3 Three-Way Formulas Based on Field Extension

In this section we present an approach based on field extension which provides
3-way split formulas with five recursive multiplications. We consider two bi-
nary polynomials A = Y7 'a; X" and B = Y1) b; X' with n = 3% As

Improved Formulas for Binary Polynomial Multiplication 389

before, we split A and B in three parts A = Ay + A; X™/3 + A, X?"/3 and
B = By + B X"/3 + B, X?"/3 where A; and B; have degree < n/3. We would
like to use the approach based on multi-evaluation at five elements reviewed in
Subsection [Zl1 The problem we faced is that there are not enough elements in
Fy: we can only evaluate at the two elements of Fy and at infinity. Bernstein
used the two elements X and X + 1 in order to overcome this problem. We use
here a different approach: in order to evaluate at two more elements we will
consider the method proposed in [2[T2] which uses a field extension. Specifically,
we consider an extension Fy = Fa[a]/(a® + a + 1) of degree 2 of Fy. Afterwards,
we evaluate the polynomials at 0, 1, &, & + 1 and co. The resulting evaluations
and recursive multiplication are given below:

P() :A()BO in]FQ[X],

P, =(Ag+ A1 + A2)(Bo + By + Ba2) in Fo[X],

Py = (Ag + Az + a(A1 + A2))(Bo + B2 + a(By + Bz)), in Fy[X], (6)
[X]
[X]

Py = Ay By in Fo[X].

The reconstruction of C' = A x B uses the classical Lagrange interpolation. An
arranged form of this interpolation is given below

C=(Po+X"3P)(14+X")+ (P + (1 +a)(Pe 4 P3))(X™/? 4 X?/3 1 X™) -
+a(Py + P3)X™ + P, X?/3 4 pyx™/3 M
Note that if we evaluate a binary polynomial at 0, 1 or co we obtain a polynomial
in Fo[X] and on the other hand if we evaluate the same polynomial at o or a+1
we obtain a polynomial in F4[X]. These multiplications are performed recursively
by splitting and evaluating at the same set of points recursively. We will give a
sequence of computations for (@) and (7) dealing with the two following cases:
the first case is when the formulas are applied to A and B in F4[X] and the
second case is when A and B are in Fo[X].

3.1 Explicit 3-Way Splitting Formulas

In this subsection, we provide a sequence of computations for (@) and (7]) when A
and B are taken in Fy4[X] or in F3[X]. We split the computations of (@) and ()
in the three different steps . We first give the formulas for the multi-evaluation,
then for the products and finally for the reconstruction.

Multi-evaluation formulas. The proposed steps to compute the multi-evaluation
of A and B are detailed in Table[Il The formulas are the same for polynomials
in Fy[X] and in F3[X]. The only difference between these two cases is the cost
of each computation. For the evaluation of the cost of each operation in Fy[X]
we have used the following facts:

e A sum of two elements of Fy is given by (ag + a1a) + (bo + b1a) = (ag +
bo) + (a1 + b1)a and requires 2 bit additions. Consequently, the sum of two
degree d — 1 polynomials in F4[X] requires 2d bit addition.

390 M. Cenk, C. Negre, and M.A. Hasan

Table 1. Cost of multi-evaluation for the new three-way split formulas

Computations Cost in F4 Cost in Fq

#O #O

R1:A0+A1, RllzBo+B1 4n/3 2n/3

Rs :A1+A2, R/2 = B1+ B> 4n/3 27’L/3
R3 = aRa, R; = aR) 2n/3 0
Ri=Ri+Rs(=A(a+1)),R,=Ri+R; 4n/3 0

Rs = R4+ Rz (= A(w)), Rs=R,+ R, 4n/3 2n/3

Rs = R1 + Az (= A(1)), Rt =Ry + Bz 4n/3 2n/3

Total 22n/3 8n/3

Table 2. Cost of products for the new three-way split formulas

Computations Cost in Fy Cost in Fo
#D #® #D #
Py = AoBo Sry,0(n/3) Sry,e(n/3) Sry,@(n/3) Sry,0(n/3)
P1 = ReRg Sry,0(n/3) Srye(n/3) Sry,@(n/3) Sry,0(n/3)
P, = RsR; Sry,0(n/3) Sry,e(n/3) Sry,@(n/3) Sry,0(n/3)
Py = R4R), Sr,0(n/3) Srye(n/3) Sr,,0(n/3) Sr,,0(1/3)
Py = A2Bs Sry,0(n/3) Sry,0(n/3) Sry,0(n/3) Sry,0(n/3)
Total 55ks,0(5) 55,,0(5) 3Sm,0(5) +25r,0(5) 3Sk,0(5) + 25km,0(5)

e The multiplication of an element a = ag + a1« in Fy by a: it is given by
ac = ay + (ag + a1)a and thus requires one bit additions. This implies that
the multiplication of a degree d — 1 polynomial of F4[X] by « requires d bit
additions.

When A and B are taken in F3[X], we use the following facts to save some
computations

e Since the additions performed for Ry, Re, R} and R involve polynomials in
Fy[X] with degree n/3 — 1, they all require n/3 bit additions.

e For R3 (resp. Rj), the multiplication of Ry (resp. R)) by « is free since the
coefficients of the polynomial Ry (resp. R5) are in Fo.

e The addition in Ry (resp. Rj) involves a polynomial with coefficients in Fy
and a polynomial with coefficients in alFs; it is thus free of any bit operation.

e The operation in each of Rs, R, Rg and Ry is an addition of polynomial in
Fy[X] with a polynomial in F4[X] and thus no bit additions are required for
the coefficient corresponding to «.

Using these facts and also using that A; and B; are degree n/3 — 1 polynomials
and P; is a degree 2n/3 — 2 polynomial, we evaluate each step of Table[Iland then
deduce the complexity of the multi-evaluation by adding the cost of each step.

Recursive products. In Table [2] we give the cost of the five recursive products.
In the case of a multiplication in F4[X], all the polynomials are in F4[X] and

Improved Formulas for Binary Polynomial Multiplication

Table 3. Three-way split formulas - Reconstruction

Reconstruction in Fy

Computations
Uy=P+P;
Us = alUy (I a(PQ +P3))
Us; = (1+CM)U1 (: (1+CM)(P2+P3))
Ur=Pi+Us (=P+ 1+ a)(P2+ P3))
Us = Us(X™/® + X0/ 4 X3/3)
Us=Po+ X"*P, (=P + X3Py

Ur=Us(1+X") (= Po+ X"3P)(1+X™)) 0

C=U;+Us+ X"Us
+P2X2n/3 +P3Xn/3

Total
Reconstruction in Fs
Computations
U =P+ P
Uz = [aUi]cte

Us = [(1 4+ @)Ui]cte
Uy = [Pl + UB]cte
Us = [Ua(X™/? 4+ X203 4 X5%)] e
Us = [Po + X"/? Pi]cte
U7 = [U6(1 + Xn)]cte
C =1[Ur +Us + X"Us]cte
+P2X2n/3 + PBXn/B]cte
Total

#D
dn/3 —2
2n/3 -1
0
dn/3 —2
dn/3 —4
2n/3 —2
20n/3 — 10
36n/3 — 21
#D
dn/3 —2
0
/3 — 1
2n/3 -1
2n/3 —2
n/3—1
0
10n/3 —5
21n/3 — 12

391

thus the cost of the recursive products are Sg, ¢(n/3) and S, &(n/3). For the
multiplication in Fy[X], there are three products which involve polynomials in
Fy[X] incurring a cost of S, ¢(n/3) and Sr, & (n/3); the two other products are

in F4[X] and thus the corresponding cost is Sg,,(n/3) and Sg,.g(n/3).

Reconstruction. In Table [J] we give the sequence of computations for the recon-
struction of the product C. For the computation in F4[X], we evaluate the cost
of each computation by using the same facts as in the multi-evaluation compu-
tations. For the computation in Fa, since the resulting polynomial C' is in Fo[X]
we can save some computations. We use the following facts:

e P53 and Py are degree 2n/3 — 2 polynomials in F4[X].

e P, P, and P;5 are degree 2n/3 — 2 polynomials in F2[X]; so we don’t need

to add their bits corresponding to a.

e The polynomial C' is in Fo[X]; consequently, we do not need to compute the
coeflicients corresponding to «. Indeed, if a = ag + a1 and b = by + by we
denote [a 4 b]cte = ap + bo which requires only one bit addition. We use the

same notation for the polynomials.

392 M. Cenk, C. Negre, and M.A. Hasan

3.2 Complexity Evaluation

We now evaluate the complexity of the formulas given in Tables [l Bl and Bl We
first evaluate the complexity for a multiplication in F4[X].

Complexity of the formulas in Fy[X] We obtain the following complexities in
terms of the number of bit additions and multiplications

{SM@(n) = 58F,.0(n/3) + 58n/3 — 21, ®)
8F4,®(n) = 58F4,®(n/3)'

Now, in order to derive a non-recursive expression of the complexity, we need
to know the cost of a multiplication in Fy4. There are two ways to perform such
multiplication:

e The first method computes the product of a = ag + a1 and b = bg + by« as
follows:

(a0 + a1@) x (bg + bra) = apbp + (apb1 + a1bo)a + a1b1(1 + «).

This requires 3 bit additions and 4 bit multiplications.
e The second method computes the product of a = ag + a1 and b = by + by«
as follows:

(G,o + ala) X (bo + bla) = (ao + al)(bo + bl)a + (G,obo + G,lbl)(l + (,Y).
This requires 4 bit additions and 3 bit multiplications.

The choice among these methods depends on the relative cost of a bit addition
compared to that of a bit multiplication. If the bit multiplication is cheaper,
then the first method is advantageous, otherwise it is the second method.

Using Lemma [l for (§) with the initial condition S, (1) = 3 and Sp, (1) =
4, the first method leads to the complexity C below. Similarly, using Lemma [I]
for) with the initial condition Sg, q(1) = 4 and S, ¢(1) = 3, the second
method leads to the complexity C’ below.

C— Sr,,e(n) = 1Z7n1°g3<5) —29n + 241 o — Sr,e(n) = 1‘111 nloes(®) _ 29 4 241,
Sk, 0(n) = 4n'oe3(®) Sr,.0(n) = 3n'es(),
9)

Complezity of recursive 3-way splitting multiplication in Fo[X] We evaluate now
the overall complexity of the proposed three-way split formulas for polynomials in
Fy[X]. If we add the complexity results given in Tables[I] 2land 8] we obtain the
number of bit additions and bit multiplications expressed in terms of Sy, &(n/3)
and Sp,.¢(n/3) as follows

S]Fz’@(n) = QSM,@(TL/?)) -+ SSFZ’@(H/?)) -+ 29%/3 — 12,

Sevo(n) = 288, @ (n/3) + 388, o (n/3). (10)

Improved Formulas for Binary Polynomial Multiplication 393

We now derive a non-recursive expression from the previous equation. This is
done in two steps: we first replace Sp, »(n/3) and Sg, g(n/3) by their corre-
sponding non-recursive expression, then we solve the resulting recursive expres-
sion of S, & (n) and Sp, ¢ (n). We can replace Sp,,g(n/3) and Sy, ¢(n/3) by the
non-recursive expressions C or C’ given in (@)). To this effort, since these com-
putations are essentially identical, we only treat in detail the computation of
Sr,,e(n/3). In ([I0), we replace Sk, g (n/3) by its expression given in (@) and we
obtain Sg, ¢ (n) = 3Sk,,e(n/3) + ' n'°#s() — 29 — 3/2 Then a direct applica-
tion of Lemma [from Appendix [Al yields a non-recursive expression as follows:
S, 0(n) = 908 — W logy(n) — 73 + 3.

We then apply the same method to other complexities. Below we list the final
non-recursive expression for each case.

Sky@(n) = 1] /%) — Pnlogy(n)

C= -5 42
Sry,0(n) = 4n'°83®) _ 3n 1
Sepiolm) = "0~ 2 log ())
= S
Sk 0(n) == 3nlogs(®) _opn

3.3 Delay Evaluation

We evaluate the delay of the 3-way split multiplier by drawing the data flow of
the 3-way multiplier in F4[X] and in Fo[X]. The sequence of operations for these
two cases (Fy and F3) are essentially the same: their only difference is on the
reconstruction: in the Fo[X] multiplication the operations are restricted to Fs.
The data flow shown in Figure [2 is valid for both cases. We now evaluate the
critical path delay for the multiplication in F4[X] and then for the multiplication
in Fy[X].

Fig. 2. Multi-evaluation (left) and reconstruction (right) data flow

394 M. Cenk, C. Negre, and M.A. Hasan

Delay of the multiplier in F4[X]. The critical path is made of the following three
parts:

e The critical path in the multi-evaluation data-flow begins in As, goes through
three @’s and one multiplication by « and then ends in R;. Since a multi-
plication by « consists of one bit addition, the delay of this critical path is
4Dg.

e The path goes through a multiplier for degree n/3 — 1 polynomials with a
delay of Dp,(n/3).

e Finally, in the reconstruction part, the path enters the reconstruction in P,
and goes through one multiplication by (1+ «) and three additions and then
in a multi-input &. A careful observation of this last multi-input addition
shows that the delay in terms of the 2-input @ gate is 2Dg. Consequently,
the critical path delay of this part is 6Dg.

By summing up the above three delay components, we obtain a recursive ex-
pression of the delay as Dy, (n) = 10Dx + D, (n/3). After solving this inductive
relation, we obtain the following non-recursive expression:

D, (n) = (10logg(n) + 2)Dg + D, (12)

Delay of the multiplier in F3[X]. The critical path is the same as the critical path
for the multiplication in F4[X]. The only difference is that the multiplication by
a and (1 + «) does not give any delay since it consists of some permutation of
the coefficients. Consequently, the recursive expression of the delay is Dg,(n) =
8Dx + Dr,(n/3) and this yields the corresponding non-recursive expression to be

D]F2 (n) =10 10g3(’l’L)D@ + D@. (13)

4 Complexity Comparison and Conclusion

In this paper, we have first reviewed Bernstein’s recently proposed formula for
polynomial multiplication using the 3-way split that requires five recursive multi-
plications. We have carefully evaluated its cost and have provided a non-recursive
form of its complexity. We have then presented a new set of 3-way split formulas
for binary polynomial multiplication based on field extension. For the proposed
formulas, we have computed two non-recursive forms of the complexity: one min-
imizes the number of bit additions and the other minimizes the number of bit
multiplications. We have also evaluated the time delays of parallel multipliers
based on the proposed formulas.

Assuming that n is a power of three, the resulting complexities of Bernstein’s
and the proposed formulas are reported in Table @l As it can be seen from
Table M, in the asymptotic sense, the ratio of the total number of bit level
operations (addition and multiplication combined) of the Bernstein formula and
that of either of the proposed formulas is close to (8:5+7) '~ ()82 We can also

(26.75+4)
remark that the proposed method are less expensive in term of bit addition,

Improved Formulas for Binary Polynomial Multiplication 395

consequently if the cost of a bit multiplication is twice the cost of a bit addition
then the complexity of the proposed method become smaller than the one of
Bernstein approach. On the other hand, when those formulas are applied to
parallel implementation for polynomial multipliers, Bernstein’s formula leads to
a time delay linear in n, while the proposed ones are logarithmic.

Table 4. Complexities of the three approaches considered in this article

Algorithm So(n) Se(n) Delay

Bernstein [1]) 18.5n'°83%) —21.5n +3 7n'°83(®) —4p — 2 (1.5n + 8log,(n) — 1.5) Dg

(Cin @ +Dg

C from) 26.751°83) — 9.67nlogs(n) 4n'°83(®) — 3pn 10logs(n)Dg + Dg
—27.5n + 0.75

C’ from) 27.75n'°83®) — 9.67nlogs(n) 3n'°83) —2n 10logs(n)Dg + Dg
—28.5n +0.75

Improvement for multiplication of polynomials of size n = 2° - 37. Our proposed
method can also be used to design efficient multipliers for more generic values
of n. To illustrate this point, we now consider the situation where we want to
perform A x B where A and B are of degree n — 1 where n = 2-37. A direct
approach to perform this operation consists of first applying the Karatsuba for-
mula which breaks this multiplication into three multiplications of polynomials
of degree 37 — 1. If these three multiplications are performed using Bernstein’s
approach, then the cost of A x B is 3 times the complexity of one instance of
Bernstein’s approach plus 7n/2 — 3 bit additions for Karatsuba.

This can be done more efficiently as follows. We perform this multiplica-
tion by first splitting the two polynomials in two parts A = Ag + X"/2A; and
B = By + X"/?2B;. We then perform Ay x (By + aB;) and A; x (Bg + aB;)
using the proposed formulas for multiplication in F4[X] of Subsection Bl This
provides the four products A;B; for 4,5 € {0,1}. The product C = A x B is
then reconstructed as C = AgCy + X"/Q(AOBl + A1By) + B1 A1 X™. The cost
of this approach is thus two times the cost a degree n/3 — 1 multiplications in
F,[X] plus 2n bit additions for the reconstruction. The resulting complexities
are reported in Table

Table 5. Complexities of a multiplication of polynomials of size n = 2 - 37

Method Se(n) Se(n)
Karatsuba and Bernstein [I] (C in @)) 20.1n'°#3®) —35.75n + 6 7.6n'°%3®) —6n —6
With C from Subsection 3] 19.37n1°83() — 29 +10.5 2.17n'°%:() —3p
With €’ from Subsection B 20.1n'°835) — 29n +10.5 2.89n'°%3(5) —2p

Ezxplicit complexity for polynomial multiplication with practical size. In Table
we give complexity results of polynomial multiplication for n = 27-37 with cryp-
tographic sizes, specifically, in the range [160, 500]. The complexities correspond

396 M. Cenk, C. Negre, and M.A. Hasan

to the combination of Karatsuba (cf [I]) and the formula of Bernstein or the
proposed formulas. To get the complexity based on the proposed formulas in
the special case where ¢ > 1 and 7 > 1, we apply Karatsuba recursively up
to obtain polynomials of size 2 - 3/ and then we apply the strategy presented
above to multiply such polynomials. The resulting complexity shows that, for
j > 1inn = 2° x 3/, our approach yields better space and time complexities
for the considered fields. The fact that our space complexity is better is due to
the terms —9.67nlogs(n)) in C and €’ in ([[Il) which are non-negligible for the
above-mentioned sizes of polynomials.

Table 6. Complexities for polynomial multiplication of size n = 2* - 39 € [160, 500]

162 = 2 - 34 192 =26 .3 216 = 23 . 33
Method
#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.
Karat. and Bern. [I] 12147 30036 155 15309 35472 29 20655 50397 72
Karat. and C in (II) 4757 26217 43 7533 30126 28 8271 42765 39
Karat. and ¢’ in (I} 3588 27386 43 5832 31827 28 6264 44772 39
— 35 _ o8 _ 55 .32
Method 243 = 3 256 = 2 288 = 2° . 3
#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.
Karat. and Bern. [1] 20901 52591 403 6561 34295 24 33291 79026 43
Karat. and C in (II) 11771 65167 50 6561 34295 24 14013 65661 35
Karat. and ¢’ in (I} 8889 68049 50 6561 34295 24 10692 68982 35
324 = 22 .34 384 = 27 . 31 432 = 24 . 33
Method
#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.
Karat. and Bern. [1] 36441 91239 158 45927 107757 32 61965 152700 75
Karat. and C in ([I) 14271 79782 46 22599 91719 31 24813 129804 42
Karat. and ¢’ in (II) 10764 83289 46 17496 96822 31 18792 135825 42

Acknowledgement. This work was supported in part by an NSERC grant
awarded to Dr. Hasan.

References

1. Bernstein, D.J.: Batch Binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 317-336. Springer, Heidelberg (2009)

2. Cenk, M., Kog, C., Ozbudak, F.: Polynomial Multiplication over Finite Fields
Using Field Extensions and Interpolation. In: 19th IEEE Symposium on Computer
Arithmetic, ARITH 2009, pp. 84-91 (2009)

3. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory 31(4), 469-472 (1985)

4. Fan, H., Hasan, M.A.: A New Approach to Subquadratic Space Complexity Parallel
Multipliers for Extended Binary Fields. IEEE Transactions on Computers 56(2),
224-233 (2007)

5. Fan, H., Sun, J., Gu, M., Lam, K.-Y.: Overlap-free Karatsuba-Ofman Polynomial
Multiplication Algorithm (May 2007)

6. Karatsuba, A.A.: The Complexity of Computations. In: Proceedings of the Steklov
Institute of Mathematics, vol. 211, pp. 169-183 (1995)

7. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203—
209 (1987)

8. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode
(GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343-355. Springer, Heidelberg (2004)

Improved Formulas for Binary Polynomial Multiplication 397

9. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417-426. Springer, Heidelberg (1986)

10. Sunar, B.: A generalized method for constructing subquadratic complexity GF(2")
multipliers. IEEE Transactions on Computers 53, 1097-1105 (2004)

11. Toom, A.L.: The Complexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers. Soviet Mathematics 3, 714-716 (1963)

12. Winograd, S.: Arithmetic Complexity of Computations. Society For Industrial &
Applied Mathematics, U.S. (1980)

A Lemmas and Their Proofs

In this section we provide two lemmas which gives the non-recursive solution
to inductive expression. These solutions are required to obtain a non-recursive
expression of the complexity of the formula presented in the paper. The proof
of Lemma [I] can be found in [4].

Lemma 1. Let a,b and i be positive integers and assume that a # b. Let n = b,
a # b and a # 1. The solution to the inductive relation { =6

Tn = aryp/p +cn+d,
1s as follows

bC d 1gb() bC d
= fo) a) _ .]_4
" (eJra—bJra—l)n a—bn a—1 (14)

Lemma 2. Let a,b and i be positive integers. Let n = b* and a = b and a # 1.

r =e,

The solution to the inductive relation Fn = aryy + o+ fnd +d, is

_ I I d
rnn<€+a—b5+a—1 n e + cnlogy(n) a1’ (15)

We prove the statement of Lemma [2] by induction on i where n = b.
e For ¢ =1, i.e., n = b we have
ry = ary + fb° +cb+d=ae+ fb° +cb+d (16)
Now we compare this value of 7, to the value given by the formula (5]
*(6°—a)

Ty = ae + fbbta + cblogy, (b) +
= ae + fb° + be + d.

d(a—1)
a—1

Consequently, the formula in ({3 is correct for n = b.
e We assume now that the formula is true for ¢ and we prove its correctness
for i 4+ 1. We first write

Fyidr = aryi + f0° + b’ 4+ d

398 M. Cenk, C. Negre, and M.A. Hasan

We then use the expression of r,: given by the induction hypothesis

roit1 = @ (aie+ fb‘sl();;é_i;ai) Loebi+ d(si—ll))) F U8 4 pitl 4 g
— aitle 4 b ab‘;’aiacz+1 n b&i) +e (Z-abi + bi-l—l) +d (a”;’i;a I 1)
— atle 1 [0 ab‘s(i;élifa"*'l) + cbi+log, (bi+1) + d (a’:_llq)

a

as required.

B Bernstein’s Three-Way Split Formula

In Table[[we give the multi-evaluation and the products for Bernstein’s formula.

Table 7. Cost of multi-evaluation and products for Bernstein’s 3-way split formula

Operations Computations Cost
#®
R1:A0+A1+A2,R/1:B0+Bl+32 4n/3 0
Multi-eval Ry = A1 X + A2 X2, Ry = B1 X + B X? 2n/3 —2 0
'R3:A0+R2, Ré:BO‘i'R,Q 2n/3—2 0
R4 = R1 + R, R}, =R] + R} 2n/3 —2 0
PO = AoBo S@(n/?)) S@(TL/S)
P = R1R/1 S@(TL/?)) S@(TL/-?))
Products P> = R3R3 Sg(n/3 + 2) Se(n/3 + 2)
Ps = R4R), Se(n/3+2) Sg(n/3 +2)
P4 = A2B2 S@(n/3) S@(TL/3)
Total 35@(3)4‘25@(34‘2) 3S®(g)

+10n/3 — 6 +255(5 +2)

In Table B we give explicit computations for the reconstruction of Bernstein’s
formula.

Table 8. Cost of reconstruction for Bernstein’s 3-way split formula

Computations #O
S =P+ Ps, 2n/3 +1
U=P+ (P + P)X"/? n—29
Reconstruction ¥ = 22+ S(X"? + X) n+4
W=U+V+Py(X"+X) ™/3 -3
W/:W/(X2+X) n—2
W = W(X/3 4 X"/3) 2n/3 — 1
C=U+ Py (X" 4 X34+ W” 5n/3 -3
Total 25n/3 — 6

Let us clarify the computation of S in Table B the coefficients of X?27/3+2
and X?"/3t1 in P, are the same as the coefficients of the corresponding terms
in Ps, therefore the degree of P, + Ps is of degree 2n/3 and this requires only
2n/3 + 1 bit additions.

	Improved Three-Way Split Formulas for Binary Polynomial Multiplication

	Introduction
	Review of 3-Way Splitting Methods for Polynomial Multiplication
	General Approach to Design 3-Way Split Multiplier
	Bernstein's 3-Way Split Formula
	Asymptotic Complexity of the Bernstein Method

	Three-Way Formulas Based on Field Extension
	Explicit 3-Way Splitting Formulas
	Complexity Evaluation
	Delay Evaluation

	Complexity Comparison and Conclusion
	References

