Skip to main content

Inherited Diseases of the Glomerular Basement Membrane

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Nephrology

Abstract

The glomerular basement membrane (GBM) is a vital component of the filtration barrier of the kidney and is primarily composed of a highly structured matrix of type IV collagen along with laminin isoforms, nidogens, and the heparan sulfate proteoglycans: perlecan, agrin, and type XVIII collagen. Specific isoforms of type IV collagen, the α3(IV), α4(IV), and α5(IV) isoforms, assemble into trimers that are required for normal GBM function. Mutations in these type IV collagen isoforms cause dysfunction of the GBM that varies depending on genotype and sex and is called Alport syndrome. Classic Alport syndrome is characterized by glomerular hematuria with variably progressive chronic kidney disease, sensorineural hearing loss, and ocular findings. Mutations in laminin β2 cause Pierson syndrome manifesting as congenital nephrotic syndrome. Additional disorders with abnormal findings in the GBM on kidney biopsy include nail-patella syndrome and MYH9-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Keith A. The genius of William Bowman. Br Med J. 1930;1(3614):701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bowman W. On the structure and use of the Malpighian bodies of the kidney, with observations on the circulation through that gland. Philos Trans R Soc Lond. 1842;132:57–80.

    Google Scholar 

  3. Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3(2):1.

    Article  CAS  Google Scholar 

  4. Matsubayashi Y, et al. A moving source of matrix components is essential for de novo basement membrane formation. Curr Biol. 2017;27(22):3526–34.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boutaud A, et al. Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem. 2000;275(39):30716–24.

    Article  CAS  PubMed  Google Scholar 

  6. Vanacore R, et al. A sulfilimine bond identified in collagen IV. Science. 2009;325(5945):1230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhave G, et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat Chem Biol. 2012;8(9):784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCall AS, et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell. 2014;157(6):1380–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalluri R, et al. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest. 1997;99(10):2470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lössl P, et al. Analysis of nidogen-1/laminin γ1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes. PLoS One. 2014;9(11):e112886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lennon R, et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol. 2014;25(5):939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naba A, et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111.014647.

    Article  PubMed  CAS  Google Scholar 

  13. Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017;57–58:12–28.

    Article  PubMed  CAS  Google Scholar 

  14. Hobeika L, et al. Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli. Kidney Int. 2017;91(2):501–11.

    Article  CAS  PubMed  Google Scholar 

  15. Goldberg S, et al. Maintenance of glomerular filtration barrier integrity requires laminin alpha5. J Am Soc Nephrol. 2010;21(4):579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abrahamson DR, et al. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol. 2009;20(7):1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffes MW, et al. Quantitative glomerular morphology of the normal human kidney. Lab Invest. 1983;49(1):82–6.

    CAS  PubMed  Google Scholar 

  18. Ramage IJ, et al. Glomerular basement membrane thickness in children: a stereologic assessment. Kidney Int. 2002;62(3):895–900.

    Article  PubMed  Google Scholar 

  19. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol. 1974;60(2):423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karnovsky MJ, Ainsworth SK. The structural basis of glomerular filtration. Adv Nephrol Necker Hosp. 1972;2:35–60.

    CAS  PubMed  Google Scholar 

  21. Tojo A, Endou H. Intrarenal handling of proteins in rats using fractional micropuncture technique. Am J Physiol. 1992;263(4 Pt 2):F601–6.

    CAS  PubMed  Google Scholar 

  22. Russo LM, et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 2007;71(6):504–13.

    Article  CAS  PubMed  Google Scholar 

  23. Park CH, Maack T. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J Clin Invest. 1984;73(3):767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dane MJ, et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am J Pathol. 2013;182(5):1532–40.

    Article  CAS  PubMed  Google Scholar 

  25. Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol. 2006;290(1):F111–6.

    Article  CAS  PubMed  Google Scholar 

  26. Friden V, et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 2011;79(12):1322–30.

    Article  CAS  PubMed  Google Scholar 

  27. Smithies O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci USA. 2003;100(7):4108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogston AG. The spaces in a uniform random suspension of fibres. Trans Faraday Soc. 1958;54:1754.

    Article  Google Scholar 

  29. Lawrence MG, et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci USA. 2017;114(11):2958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kestila M, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  31. Putaala H, et al. The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet. 2001;10(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  32. Fissell WH, Miner JH. What is the glomerular ultrafiltration barrier? J Am Soc Nephrol. 2018;29(9):2262–4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldberg S, et al. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 2009;24(7):2044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van den Hoven MJ, et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008;73(3):278–87.

    Article  PubMed  CAS  Google Scholar 

  35. Khalil R, et al. Glomerular permeability is not affected by heparan sulfate glycosaminoglycan deficiency in zebrafish embryos. Am J Physiol Renal Physiol. 2019;317(5):F1211–6.

    Article  CAS  PubMed  Google Scholar 

  36. Brenner BM, Hostetter TH, Humes HD. Molecular basis of proteinuria of glomerular origin. N Engl J Med. 1978;298(15):826–33.

    Article  CAS  PubMed  Google Scholar 

  37. Kiritsi D, Has C, Bruckner-Tuderman L. Laminin 332 in junctional epidermolysis bullosa. Cell Adhes Migr. 2013;7(1):135–41.

    Article  Google Scholar 

  38. Jeanne M, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90(1):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chew C, Lennon R. Basement membrane defects in genetic kidney diseases. Front Pediatr. 2018;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Naylor RW, Morais M, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2021;17(2):112–27.

    Google Scholar 

  41. Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol. 2006;17(3):813–22.

    Article  CAS  PubMed  Google Scholar 

  42. Collar JE, et al. Red cell traverse through thin glomerular basement membranes. Kidney Int. 2001;59(6):2069–72.

    Article  CAS  PubMed  Google Scholar 

  43. Fogo AB, et al. AJKD atlas of renal pathology: Alport syndrome. Am J Kidney Dis. 2016;68(4):e15–6.

    Article  PubMed  Google Scholar 

  44. Saus J, et al. Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J Biol Chem. 1988;263(26):13374–80.

    Article  CAS  PubMed  Google Scholar 

  45. Gossain VV, Gerstein AR, Janes AW. Goodpasture’s syndrome: a familial occurrence. Am Rev Respir Dis. 1972;105(4):621–4.

    CAS  PubMed  Google Scholar 

  46. Zenker M, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13(21):2625–32.

    Article  CAS  PubMed  Google Scholar 

  47. Kreidberg JA, et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 1996;122(11):3537–47.

    Article  CAS  PubMed  Google Scholar 

  48. Pozzi A, et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev Biol. 2008;316(2):288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Has C, et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med. 2012;366(16):1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck LH Jr, Salant DJ. Membranous nephropathy: from models to man. J Clin Invest. 2014;124(6):2307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomas NM, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sethi S, et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020;98(5):1253–64.

    Article  CAS  PubMed  Google Scholar 

  53. Merchant ML, et al. Proteomic analysis identifies distinct glomerular extracellular matrix in collapsing focal segmental glomerulosclerosis. J Am Soc Nephrol. 2020;31(8):1883–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guthrie LG. “Idiopathic”, or congenital, hereditary and familial hematuria. Lancet. 1902;1:1243–6.

    Article  Google Scholar 

  55. Alport AC. Hereditary familial congenital haemorrhagic nephritis. Br Med J. 1927;1:504–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hinglais N, Grunfeld J-P, Bois LE. Characteristic ultrastructural lesion of the glomerular basement membrane in progressive hereditary nephritis (Alport’s syndrome). Lab Invest. 1972;27:473–87.

    CAS  PubMed  Google Scholar 

  57. Spear GS, Slusser RJ. Alport’s syndrome: emphasizing electron microscopic studies of the glomerulus. Am J Pathol. 1972;69:213–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Churg J, Sherman RL. Pathologic characteristics of hereditary nephritis. Arch Pathol. 1973;95:374–9.

    CAS  PubMed  Google Scholar 

  59. Kashtan C, et al. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis. J Clin Invest. 1986;78:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McCoy RC, et al. Absence of nephritogenic GBM antigen(s) in some patients with hereditary nephritis. Kidney Int. 1982;21:642–52.

    Article  CAS  PubMed  Google Scholar 

  61. Olson DL, et al. Diagnosis of hereditary nephritis by failure of glomeruli to bind anti-glomerular basement membrane antibodies. J Pediatr. 1980;96:697–9.

    Article  CAS  PubMed  Google Scholar 

  62. Atkin CL, et al. Mapping of Alport syndrome to the long arm of the X chromosome. Am J Hum Genet. 1988;42:249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hostikka SL, et al. Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc Natl Acad Sci USA. 1990;87(4):1606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barker DF, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–7.

    Article  CAS  PubMed  Google Scholar 

  65. Gunwar S, et al. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J Biol Chem. 1998;273(15):8767–75.

    Article  CAS  PubMed  Google Scholar 

  66. Rheault MN, et al. X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant. 2010;25(3):764–9.

    Article  CAS  PubMed  Google Scholar 

  67. Storey H, et al. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol. 2013;25(12):2740–51.

    Google Scholar 

  68. Pescucci C, et al. Autosomal-dominant Alport syndrome: natural history of a disease due to COL4A3 or COL4A4 gene. Kidney Int. 2004;65(5):1598–603.

    Article  CAS  PubMed  Google Scholar 

  69. Fallerini C, et al. Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clin Genet. 2014;86(3): 252–7.

    Google Scholar 

  70. Moriniere V, et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J Am Soc Nephrol. 2014;25:2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kashtan CE, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV alpha345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018;93(5):1045–51.

    Article  PubMed  Google Scholar 

  72. Crockett DK, et al. The Alport syndrome COL4A5 variant database. Hum Mutat. 2010;31(8):E1652–7.

    Article  PubMed  Google Scholar 

  73. Lemmink HH, et al. The clinical spectrum of type IV collagen mutations. Hum Mutat. 1997;9(6):477–99.

    Article  CAS  PubMed  Google Scholar 

  74. Jais JP, et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol. 2000;11(4):649–57.

    Article  CAS  PubMed  Google Scholar 

  75. Gross O, et al. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counseling. Nephrol Dial Transplant. 2002;17:1218–27.

    Article  PubMed  Google Scholar 

  76. Yamamura T, et al. Genotype-phenotype correlation and the influence of the genotype on response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int. 2020;98(6):1605–14.

    Article  CAS  PubMed  Google Scholar 

  77. Tsiakkis D, et al. Genotype-phenotype correlation in X-linked Alport syndrome patients carrying missense mutations in the collagenous domain of COL4A5. Clin Genet. 2012;82(3):297–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mochizuki T, et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet. 1994;8(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  79. Lemmink HH, et al. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet. 1994;3(8):1269–73.

    Article  CAS  PubMed  Google Scholar 

  80. Longo I, et al. COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int. 2002;61(6):1947–56.

    Article  CAS  PubMed  Google Scholar 

  81. Jais JP, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol. 2003;14:2603–10.

    Article  PubMed  Google Scholar 

  82. Pochet JM, et al. Renal prognosis in Alport’s and related syndromes: influence of the mode of inheritance. Nephrol Dial Transplant. 1989;4(12):1016–21.

    CAS  PubMed  Google Scholar 

  83. Colville DJ, Savige J. Alport syndrome. A review of the ocular manifestations. Ophthalmic Genet. 1997;18(4):161–73.

    Article  CAS  PubMed  Google Scholar 

  84. Gubler M, et al. Alport’s syndrome: a report of 58 cases and a review of the literature. Am J Med. 1981;70:493–505.

    Article  CAS  PubMed  Google Scholar 

  85. Kashtan CE, et al. Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol. 2013;28(1):5–11.

    Article  PubMed  Google Scholar 

  86. Kim KH, et al. Structural-functional relationships in Alport syndrome. J Am Soc Nephrol. 1995;5(9):1659–68.

    Article  CAS  PubMed  Google Scholar 

  87. Rheault MN. Women and Alport syndrome. Pediatr Nephrol. 2012;27(1):41–6.

    Article  PubMed  Google Scholar 

  88. Grunfeld J-P, et al. Renal prognosis in women with hereditary nephritis. Clin Nephrol. 1985;23:267–71.

    CAS  PubMed  Google Scholar 

  89. Lee JM, et al. Features of autosomal recessive Alport syndrome: a systematic review. J Clin Med. 2019;8(2):178.

    Article  PubMed Central  Google Scholar 

  90. Savige J, et al. Retinal basement membrane abnormalities and the retinopathy of Alport syndrome. Invest Ophthalmol Vis Sci. 2010;51(3):1621–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rhys C, Snyers B, Pirson Y. Recurrent corneal erosion associated with Alport’s syndrome. Kidney Int. 1997;52:208–11.

    Article  CAS  PubMed  Google Scholar 

  92. Burke JP, Clearkin LG, Talbot JF. Recurrent corneal epithelial erosions in Alport’s syndrome. Acta Ophthalmol. 1991;69:555–7.

    Article  CAS  Google Scholar 

  93. Teekhasaenee C, et al. Posterior polymorphous dystrophy and Alport syndrome. Ophthalmology. 1991;98:1207–15.

    Article  CAS  PubMed  Google Scholar 

  94. Tan R, et al. Alport retinopathy results from “severe” COL4A5 mutations and predicts early renal failure. Clin J Am Soc Nephrol. 2010;5(1):34–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhou J, et al. Deletion of the paired a5(IV) and a6(IV) collagen genes in inherited smooth muscle tumors. Science. 1993;261:1167–9.

    Article  CAS  PubMed  Google Scholar 

  96. Antignac C, Heidet L. Mutations in Alport syndrome associated with diffuse esophageal leiomyomatosis. Contrib Nephrol. 1996;117:172–82.

    Article  CAS  PubMed  Google Scholar 

  97. Heidet L, et al. Diffuse leiomyomatosis associated with X-linked Alport syndrome: extracellular matrix study using immunohistochemistry and in situ hybridization. Lab Invest. 1997;76(2):233–43.

    CAS  PubMed  Google Scholar 

  98. Jonsson JJ, et al. Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome? J Med Genet. 1998;35(4):273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vitelli F, et al. Identification and characterization of a highly conserved protein absent in the Alport syndrome (A), mental retardation (M), midface hypoplasia (M), and elliptocytosis (E) contiguous gene deletion syndrome (AMME). Genomics. 1999;55(3):335–40.

    Article  CAS  PubMed  Google Scholar 

  100. Kashtan CE, et al. Aortic abnormalities in males with Alport syndrome. Nephrol Dial Transplant. 2010;25(11):3554–60.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kashtan CE, et al. Chronology of renal scarring in males with Alport syndrome. Pediatr Nephrol. 1998;12(4):269–74.

    Article  CAS  PubMed  Google Scholar 

  102. Gast C, et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2016;31(6):961–70.

    Article  CAS  PubMed  Google Scholar 

  103. Malone AF, et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014;86(6):1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pierides A, et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2009;24(9):2721–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rumpelt HJ. Hereditary nephropathy (Alport syndrome): correlation of clinical data with glomerular basement membrane alterations. Clin Nephrol. 1980;13(5):203–7.

    CAS  PubMed  Google Scholar 

  106. Kashtan CE, Kleppel MM, Gubler MC. Immunohistologic findings in Alport syndrome. Contrib Nephrol. 1996;117:142–53.

    Article  CAS  PubMed  Google Scholar 

  107. Gubler MC, et al. Autosomal recessive Alport syndrome: immunohistochemical study of type IV collagen chain distribution. Kidney Int. 1995;47(4):1142–7.

    Article  CAS  PubMed  Google Scholar 

  108. van der Loop FT, et al. Identification of COL4A5 defects in Alport’s syndrome by immunohistochemistry of skin. Kidney Int. 1999;55(4):1217–24.

    Article  PubMed  Google Scholar 

  109. Massella L, et al. Epidermal basement membrane alpha 5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney Int. 2003;64(5):1787–91.

    Article  CAS  PubMed  Google Scholar 

  110. Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014;124(6):2325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Redahan L, et al. Familial MPGN – a case series: a clinical description of familial membranoproliferative glomerulonephritis amongst three Irish families. Ren Fail. 2014;36(8):1333–6.

    Google Scholar 

  112. Martin P, et al. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol. 1998;9:2291–301.

    Article  CAS  PubMed  Google Scholar 

  113. Voskarides K, et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol. 2007;18(11):3004–16.

    Article  CAS  PubMed  Google Scholar 

  114. Jefferson JA, et al. Autosomal dominant Alport syndrome linked to the type IV collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial Transplant. 1997;12(8):1595–9.

    Article  CAS  PubMed  Google Scholar 

  115. Gross O, et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 2003;63(2):438–46.

    Article  CAS  PubMed  Google Scholar 

  116. Cohen EP, Lemann J. In hereditary nephritis angiotensin-converting enzyme inhibition decreases proteinuria and may slow the rate of progression. Am J Kidney Dis. 1996;27:199–203.

    Article  CAS  PubMed  Google Scholar 

  117. Proesmans W, Van Dyck M. Enalapril in children with Alport syndrome. Pediatr Nephrol. 2004;19(3):271–5.

    Article  PubMed  Google Scholar 

  118. Webb NJ, et al. Efficacy and safety of losartan in children with Alport syndrome – results from a subgroup analysis of a prospective, randomized, placebo- or amlodipine-controlled trial. Nephrol Dial Transplant. 2011;26(8):2521–6.

    Article  CAS  PubMed  Google Scholar 

  119. Webb NJ, et al. Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr Nephrol. 2013;28(5):737–43.

    Article  PubMed  Google Scholar 

  120. Zhang Y, et al. Long-term treatment by ACE inhibitors and angiotensin receptor blockers in children with Alport syndrome. Pediatr Nephrol. 2016;31(1):67–72.

    Article  PubMed  Google Scholar 

  121. Gross O, et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012;81(5):494–501.

    Article  CAS  PubMed  Google Scholar 

  122. Gross O, et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syndrome. Kidney Int. 2020;97(6):1275–86.

    Article  CAS  PubMed  Google Scholar 

  123. Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Pediatr Nephrol. 2021;36(3):711–9.

    Google Scholar 

  124. Sayers R, et al. Role for transforming growth factor-beta 1 in Alport renal disease progression. Kidney Int. 1999;56:1662–73.

    Article  CAS  PubMed  Google Scholar 

  125. Ninichuk V, et al. Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J Am Soc Nephrol. 2005;16:977–85.

    Article  CAS  PubMed  Google Scholar 

  126. Zeisberg M, et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol. 2003;285(6):F1060–7.

    Article  CAS  PubMed  Google Scholar 

  127. Zeisberg M, et al. Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med. 2006;3(4):e100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Gomez IG, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125(1):141–56.

    Article  PubMed  Google Scholar 

  129. Dufek B, et al. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int. 2016;90(2):300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sugimoto H, et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA. 2006;103(19):7321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gross O, et al. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol Dial Transplant. 2009;24(3):731–4.

    Article  CAS  PubMed  Google Scholar 

  132. Daga S, et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur J Hum Genet. 2020;28(4):480–90.

    Article  CAS  PubMed  Google Scholar 

  133. Yamamura T, et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat Commun. 2020;11(1):2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin MH, et al. Laminin-521 protein therapy for glomerular basement membrane and podocyte abnormalities in a model of Pierson syndrome. J Am Soc Nephrol. 2018;29(5):1426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang D, et al. The chemical chaperone, PBA, reduces ER stress and autophagy and increases collagen IV alpha5 expression in cultured fibroblasts from men with X-linked Alport syndrome and missense mutations. Kidney Int Rep. 2017;2(4):739–48.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Temme J, et al. Outcomes of male patients with Alport syndrome undergoing renal replacement therapy. Clin J Am Soc Nephrol. 2012;7(12):1969–76.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gillion V, et al. Genotype and outcome after kidney transplantation in Alport syndrome. Kidney Int Rep. 2018;3(3):652–60.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gross O, et al. Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrol Dial Transplant. 2009;24(5):1626–30.

    Article  PubMed  Google Scholar 

  139. Kashtan CE. Renal transplantation in patients with Alport syndrome. Pediatr Transplant. 2006;10(6):651–7.

    Article  PubMed  Google Scholar 

  140. Brainwood D, et al. Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int. 1998;53:762–6.

    Article  CAS  PubMed  Google Scholar 

  141. Dehan P, et al. Identification of post-transplant anti-a5(IV) collagen alloantibodies in X-linked Alport syndrome. Nephrol Dial Transplant. 1996;11:1983–8.

    Article  CAS  PubMed  Google Scholar 

  142. Kalluri R, et al. A COL4A3 gene mutation and post-transplant anti-a3(IV) collagen alloantibodies in Alport syndrome. Kidney Int. 1995;47:1199–204.

    Article  CAS  PubMed  Google Scholar 

  143. Wang XP, et al. Distinct epitopes for anti-glomerular basement membrane Alport alloantibodies and Goodpasture autoantibodies within the noncollagenous domain of {alpha}3(IV) collagen: a Janus-faced antigen. J Am Soc Nephrol. 2005;16:3563–71.

    Article  CAS  PubMed  Google Scholar 

  144. Pierson M, et al. An unusual congenital and familial congenital malformative combination involving the eye and kidney. J Genet Hum. 1963;12:184–213.

    CAS  PubMed  Google Scholar 

  145. Mohney BG, et al. A novel mutation of LAMB2 in a multigenerational mennonite family reveals a new phenotypic variant of Pierson syndrome. Ophthalmology. 2011;118(6):1137–44.

    Article  PubMed  Google Scholar 

  146. Matejas V, et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat. 2010;31(9):992–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jarad G, et al. Proteinuria precedes podocyte abnormalities in Lamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest. 2006;116(8):2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Minamikawa S, et al. Molecular mechanisms determining severity in patients with Pierson syndrome. J Hum Genet. 2020;65(4):355–62.

    Article  CAS  PubMed  Google Scholar 

  149. Hofstaetter C, et al. Prenatal diagnosis of diffuse mesangial glomerulosclerosis by ultrasonography: a longitudinal study of a case in an affected family. Fetal Diagn Ther. 1996;11(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  150. Glastre C, et al. Familial infantile nephrotic syndrome with ocular abnormalities. Pediatr Nephrol. 1990;4(4):340–2.

    Article  CAS  PubMed  Google Scholar 

  151. Swietlinski J, et al. A case of atypical congenital nephrotic syndrome. Pediatr Nephrol. 2004;19(3):349–52.

    Article  PubMed  Google Scholar 

  152. Lusco MA, et al. AJKD atlas of renal pathology: Pierson syndrome. Am J Kidney Dis. 2018;71(4):e3–4.

    Article  PubMed  Google Scholar 

  153. Furlano M, et al. MYH9 associated nephropathy. Nefrologia. 2019;39(2):133–40.

    Article  PubMed  Google Scholar 

  154. Arrondel C, et al. Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol. 2002;13(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  155. Kopp JB. Glomerular pathology in autosomal dominant MYH9 spectrum disorders: what are the clues telling us about disease mechanism? Kidney Int. 2010;78(2):130–3.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Verver EJ, et al. Nonmuscle myosin heavy chain IIA mutation predicts severity and progression of sensorineural hearing loss in patients with MYH9-related disease. Ear Hear. 2016;37(1):112–20.

    Article  PubMed  Google Scholar 

  157. Clare NM, et al. Alport’s syndrome associated with macrothrombopathic thrombocytopenia. Am J Clin Pathol. 1979;72(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  158. Naito I, et al. Normal distribution of collagen IV in renal basement membranes in Epstein’s syndrome. J Clin Pathol. 1997;50(11):919–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pecci A, et al. Renin-angiotensin system blockade is effective in reducing proteinuria of patients with progressive nephropathy caused by MYH9 mutations (Fechtner-Epstein syndrome). Nephrol Dial Transplant. 2008;23(8):2690–2.

    Article  PubMed  Google Scholar 

  160. Tanaka M, et al. Renin-angiotensin system blockade therapy for early renal involvement in MYH9-related disease with an E1841K mutation. Intern Med. 2019;58(20):2983–8.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Mino RA, Mino VH, Livingstone RG. Osseous dysplasia and dystrophy of the nails; review of the literature and report of a case. Am J Roentgenol Radium Ther. 1948;60(5):633–41.

    CAS  PubMed  Google Scholar 

  162. Hawkins CF, Smith OE. Renal dysplasia in a family with multiple hereditary abnormalities including iliac horns. Lancet. 1950;1(6609):803–8.

    Article  CAS  PubMed  Google Scholar 

  163. Sweeney E, et al. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet. 2003;40(3):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bongers EM, et al. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet. 2005;13(8):935–46.

    Article  CAS  PubMed  Google Scholar 

  165. Dreyer SD, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  166. Vollrath D, et al. Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. Hum Mol Genet. 1998;7(7):1091–8.

    Article  CAS  PubMed  Google Scholar 

  167. Chen H, et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 1998;19(1):51–5.

    Article  PubMed  Google Scholar 

  168. Morello R, et al. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet. 2001;27(2):205–8.

    Article  CAS  PubMed  Google Scholar 

  169. Miner JH, et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest. 2002;109(8):1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rohr C, et al. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest. 2002;109(8):1073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Heidet L, et al. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am J Pathol. 2003;163(1):145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Burghardt T, et al. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J Am Soc Nephrol. 2013;24(11):1830–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Boyer O, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol. 2013;24(8):1216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sweeney E, et al. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet. 2003;40:153–62.

    Google Scholar 

  175. Harita Y, et al. Clinical and genetic characterization of nephropathy in patients with nail-patella syndrome. Eur J Hum Genet. 2020;28(10):1414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bongers EM, Gubler MC, Knoers NV. Nail-patella syndrome. Overview on clinical and molecular findings. Pediatr Nephrol. 2002;17(9):703–12.

    Article  PubMed  Google Scholar 

  177. Najafian B, et al. AJKD atlas of renal pathology: nail-Patella syndrome-associated nephropathy. Am J Kidney Dis. 2017;70(4):e19–20.

    Article  PubMed  Google Scholar 

  178. Ben-Bassat M, Cohen L, Rosenfeld J. The glomerular basement membrane in the nail-patella syndrome. Arch Pathol. 1971;92(5):350–5.

    CAS  PubMed  Google Scholar 

  179. Hoyer JR, Michael AF, Vernier RL. Renal disease in nail-patella syndrome: clinical and morphologic studies. Kidney Int. 1972;2(4):231–8.

    Article  CAS  PubMed  Google Scholar 

  180. Hamlington JD, Jones C, McIntosh I. Twenty-two novel LMX1B mutations identified in nail patella syndrome (NPS) patients. Hum Mutat. 2001;18(5):458.

    Article  CAS  PubMed  Google Scholar 

  181. Knoers NV, et al. Nail-patella syndrome: identification of mutations in the LMX1B gene in Dutch families. J Am Soc Nephrol. 2000;11(9):1762–6.

    Article  CAS  PubMed  Google Scholar 

  182. Harita Y, et al. Spectrum of LMX1B mutations: from nail-patella syndrome to isolated nephropathy. Pediatr Nephrol. 2017;32(10):1845–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle N. Rheault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lennon, R., Ding, J., Rheault, M.N. (2021). Inherited Diseases of the Glomerular Basement Membrane. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_79-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_79-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Inherited Diseases of the Glomerular Basement Membrane
    Published:
    12 March 2022

    DOI: https://doi.org/10.1007/978-3-642-27843-3_79-2

  2. Original

    Inherited Glomerular Diseases
    Published:
    24 November 2014

    DOI: https://doi.org/10.1007/978-3-642-27843-3_79-1