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1 Abstract

We summarize a recently introduced greedy algorithm for inverse problems in geomathematics.
The algorithm is able to combine heterogeneous systems of trial functions to construct a
stable approximation to the solution of the given ill-posed problem. The representation of this
approximation with respect to the trial functions of mixed types is sparse in the sense that
essentially less trial functions than available are used. Some new theoretical results about the
method are also proved here.

2 Introduction

Numerous systems of trial functions are available today for the resolution of problems on the
sphere or the ball. For the sphere itself, the spherical harmonics are available as a very popular
system of orthogonal polynomials (see, e.g., Müller 1966; Heiskanen and Moritz 1981; Freeden
et al. 1998; Michel 2013). Its features and algorithms for its applications are well-known. For
instance, a fast Fourier transform which is applicable also to non-equispaced data is available
in Keiner et al. (2009). Whereas spherical harmonics have particular advantages, they are also
connected to drawbacks which become evident, e.g., if spatial irregularities in the data (like
regionally varying noise levels or strongly scattered data grids) occur or if the data are only given
or shall only be analyzed regionally. For such applications, localized trial functions have been
developed in the last decades. Examples of methods of this kind are a spline method based on
reproducing kernels (see Freeden 1981a, b; Freeden et al. 1998) and numerous wavelet methods. A
small and incomplete selection for the latter kind can be found in Schröder and Sweldens (1995),
Freeden and Windheuser (1996), Holschneider (1996), Freeden and Schreiner (1998), Antoine
and Vandergheynst (1999), and Gerhards (2011). Moreover, the development of spherical Slepian
functions (see Wieczorek and Simons (2005), Simons and Dahlen (2006), Simons et al. (2006),
Wieczorek and Simons (2007), and Dahlen and Simons (2008) as well as FJ Simons’ article in
this handbook) yielded the possibility to construct trial functions which are tailored for a particular
spherical subregion of personal interest.

Also for applications on the ball, global orthogonal trial functions (based on Dufour 1977;
Ballani et al. 1993; Tscherning 1996) are available as well as localized trial functions, which can be
used for a spline interpolation and approximation (see Fengler et al. 2006; Amirbekyan and Michel
2008; Berkel 2009; Berkel and Michel 2010; Berkel et al. 2011) as well as a wavelet analysis (see
Michel 2002, 2005a, b). Note that, in particular, ill-posed inverse problems have also been handled
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with such tools. For a survey on these methods, see the textbook Michel (2013) and the author’s
other article in this handbook.

All these methods have their own advantages and disadvantages. There is, certainly, no such
thing as a “perfect” method. For instance, global basis functions are ideal to represent global trends
by low degree polynomials, but high-frequent structures or perturbations which are restricted to
subdomains can cause problems. Moreover, not all localized trial functions can be used for all kinds
of problems. Some trial functions are isotropic and are, therefore, a good choice to solve differential
or integral equations represented by isotropic operators. However, non-isotropic operators or non-
isotropic noise can be handled better with other approaches, which are, themselves not ideal for
isotropic problems. Moreover, localized trial functions usually provide us with the possibility to
vary their localization, i.e., the size of the “hat” of the hat function. However, not all numerical
algorithms associated to such localized functions allow the combination of different levels of
localization, although this would certainly bring some advantages, since not all local phenomena
are of the same spatial size. Furthermore, some numerical algorithms for the calculation of an
expansion of the unknown solution in a selected basis are based on the resolution of a system of
linear equations. Large data sizes yield, consequently, limits for the numerical realization since
the inversion of the system becomes too time-consuming or too unstable in such cases. For some
methods, sophisticated numerical algorithms which compensate for such problems are known (see,
e.g., the approach in Gutting (2012) for a spherical spline method), whereas such techniques are
unknown for some other methods at present. Moreover, there exist methods which can do without
the resolution of a system of linear equations, but require a numerical integration. Numerical
integration methods on the sphere are well-known for regular data grids. For irregular data grids on
the sphere, a promising method was developed in Gräf et al. (2009). However, at present, the largest
polynomial exactness which could be reached is given by degree 1,024, whereas some problems
in gravitational field modeling and analysis require higher exactness degrees. Furthermore, the
development of quadrature rules for subdomains of the sphere is still in its infancy (see Mhaskar
(2004a, b) and Beckmann et al. (2012) for first approaches).

In Mallat and Zhang (1993), a greedy algorithm which is called a Matching Pursuit (MP) is
developed for the interpolation of data and is applied to problems in a Euclidean setting. This
algorithm is further elaborated and extended to the use of kernel-based trial functions in Vincent
and Bengio (2002). In Fischer (2011) and Fischer and Michel (2012), we used the ideas of this
Matching Pursuit to develop an algorithm which has three additional features: first, it allows
the resolution of inverse problems (represented by a set of functionals), i.e., the data and the
solution need not be in the same space anymore and they are connected by equations. Second,
a Tikhonov regularization was included to stabilize ill-posed problems. Third, in the numerical
implementation, we used trial functions which are relevant for geoscientific problems (more
precisely, a three-dimensional ball was used as a domain of the unknown function as it occurs
for tomographic inverse problems; for the treatment of a sphere, i.e., the surface of a ball, as
the domain, see Michel and Telschow (2014) and Telschow (2014)). This new algorithm, which
contains the classical Matching Pursuit as a particular case, is, indeed, applicable to ill-posed
inverse problems in the geosciences as we demonstrated in the numerical experiments in Fischer
(2011) and Fischer and Michel (2012, 2013a, b). The particular advantages of this novel technique,
which is called the Regularized Functional Matching Pursuit (RFMP), are as follows:

• Trial functions of different types (e.g., global trial functions such as polynomials and localized
hat-like functions with different hat widths) can be combined to represent the solution.
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This allows the combination of the advantages that different kinds of basis functions provide.
The algorithm itself chooses a best basis (in a particular sense explained further below) out of a
large set of possible trial functions. This set is called a dictionary and typically is constructed as
a union of different basis systems, i.e., it is overcomplete.

• The approximation is calculated iteratively, i.e., step by step the next element of the best basis is
selected by the RFMP. As a consequence, intermediate results can also be analyzed in the sense
of a multiresolution.

• It is neither necessary to solve a system of linear equations nor to use a quadrature rule.
Therefore, the method is more robust with respect to the use of large data grids (connected
to high expectations on the accuracy of the result) and with respect to the handling of strongly
irregular data grids. The latter is, in particular, also achieved by taking the least square error
as a basis for the search for the solution. Hence, data points which are very close to each other
simply cause similar summands in the calculation of the error functional but do not cause almost
identical rows in a matrix to be inverted.

The purpose of this article is to summarize the previous publications on the RFMP, to explain
the algorithm, to prove the theoretical results, and to show some examples of previous numerical
experiments. These objectives are represented in the outline of this paper. In Sect. 3, we describe
the general setting of those inverse problems which can be solved with the RFMP. In Sect. 4, we
derive the formulae of the RFMP and formulate the algorithm. In Sect. 5, we prove the theoretical
properties of the RFMP, where we are able to partially extend the previous knowledge about the
properties of our algorithm. In Sect. 6, we investigate the conditions of the convergence theorem
proved in Sect. 5 in the case of particular examples of trial functions and geomathematical inverse
problems. Furthermore, in Sect. 7, we recapitulate some examples of numerical results obtained
with the RFMP and report our further experiences from numerical experiments. Finally, in Sect. 8,
we conclude the paper with a summary and an outlook on forthcoming publications.

3 Constellation of the Problem

We consider inverse problems of the form

FkF D yk; k D 1; : : : ; l;

where y D .y1; : : : ; yl /
T 2 R

l is given, each Fk W L2.D/ ! R (k D 1; : : : ; l) is a linear
and continuous functional, F 2 L2.D/ is unknown, and D � R

d is a measurable domain
(in particular, D could be the unit sphere � � R

3 or the ball B � R
3 with radius ˇ > 0).

Furthermore, L2.D/ stands for the usual Hilbert space of (almost everywhere identical) square-
integrable functions on D. For some examples of (tomographic) inverse problems in the case
D D B, see the author’s other article in this handbook. We will summarize the l functionals Fk in
the form of a vector in the operator F W L2.D/ ! R

l .
For the approximation of F , we have a set of trial functions D � L2.D/ available, which we

call a dictionary. Without loss of generality, we assume that 0 … D. In the case D D �, D could,
for example, contain spherical harmonics, spline basis functions, wavelets, and Slepian functions.
In the case D D B, D could, for instance, contain the corresponding counterparts of the global
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(i.e., polynomial) and localized trial functions known on the sphere. For further details on trial
functions on the sphere and the ball, see the textbook Michel (2013) and the references therein.

4 The Algorithm

The basic idea of the algorithm is to iteratively construct a sequence of approximations .Fn/n

to the unknown function F by consecutively adding further summands to the approximation. In
other words, we start with F0 WD 0 (or some initial approximation) and continue with FnC1 WD
Fn C ˛nC1dnC1 for all n 2 N0. The new summand ˛nC1dnC1 is chosen such that

ky � F .Fn C ˛nC1dnC1/k2
Rl C � kFn C ˛nC1dnC1k2

L2.D/

is minimized, where � 2 R
C
0 is a regularization parameter. We first introduce some basic notations.

Definition 1. For a sequence of approximations .Fn/n � spanD � L2.D/, we define the
sequence of residuals .Rn/n � R

l by Rn WD y � FFn. Moreover, the family of mappings
J� W Rl � L2.D/ � D � R ! R, � 2 R

C
0 , is defined by

J�.y; F; d; ˛/ WD ky � F.F C ˛d/k2
Rl C �kF C ˛dk2

L2.D/ :

For the mapping J�, we, obviously, get (note that F is linear)

J�.y; F; d; ˛/ D ky � FF k2
Rl � 2˛hy � FF;Fd iRl C ˛2kFdk2

Rl

C �kF k2
L2.D/ C 2�˛hF; d iL2.D/ C �˛2kdk2

L2.D/ :

Hence, if we already know the first n C 1 approximations F0; : : : ; Fn, then

J�.y; Fn; d; ˛/ D kRnk2
Rl � 2˛ hRn;Fd i

Rl C ˛2kFdk2
Rl

C � kFnk2
L2.D/ C 2�˛ hFn; d iL2.D/ C �˛2kdk2

L2.D/ ; (1)

which has to be minimized to find ˛nC1 2 R and dnC1 2 D. As a consequence, we get

0 D
�

@

@˛
J� .y; Fn; dnC1; ˛/

�ˇ̌̌
ˇ
˛D˛nC1

D �2 hRn;FdnC1iRl C 2˛nC1 kFdnC1k2
Rl

C 2� hFn; dnC1iL2.D/ C 2�˛nC1 kdnC1k2
L2.D/

such that

˛nC1 D hRn;FdnC1iRl � � hFn; dnC1iL2.D/

kFdnC1k2
Rl C � kdnC1k2

L2.D/

:

We insert this result in (1) and obtain
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��RnC1
��2

Rl C � kFnC1k2
L2.D/ D J� .y; Fn; dnC1; ˛nC1/

D kRnk2
Rl C � kFnk2

L2.D/ � 2

�hRn;FdnC1iRl � � hFn; dnC1iL2.D/

�2
kFdnC1k2

Rl C � kdnC1k2
L2.D/

C
 hRn;FdnC1iRl � � hFn; dnC1iL2.D/

kFdnC1k2
Rl C � kdnC1k2

L2.D/

!2 �kFdnC1k2
Rl C � kdnC1k2

L2.D/

�

D kRnk2
Rl C � kFnk2

L2.D/ �
�hRn;FdnC1iRl � � hFn; dnC1iL2.D/

�2
kFdnC1k2

Rl C � kdnC1k2
L2.D/

: (2)

This motivates the following algorithm.

Algorithm 1 (Regularized Functional Matching Pursuit, RFMP). Let y 2 R
l , a linear and

continuous operator F W L2.D/ ! R
l , and an initial approximation F0 2 L2.D/ be given.

1. Set n WD 0 and R0 WD y � FF0, choose a stopping criterion (e.g., require kRnC1k < " for a
given " > 0 or require n C 1 � N for a given N 2 N), and choose a regularization parameter
� 2 R

C
0 (e.g., with the L-curve method).

2. Determine

dnC1 WD arg max
d2D

�hRn;Fd i
Rl � � hFn; d iL2.D/

�2

kFdk2
Rl C � kdk2

L2.D/

; (3)

˛nC1 WD hRn;FdnC1iRl � � hFn; dnC1iL2.D/

kFdnC1k2
Rl C � kdnC1k2

L2.D/

(4)

and set FnC1 WD Fn C ˛nC1dnC1 and RnC1 WD Rn � ˛nC1FdnC1.
3. If the stopping criterion is fulfilled, then FnC1 is the output. Otherwise, increase n by 1 and go

to step 2.

Note that the choice of the optimal dictionary element dnC1 is the most expensive part of the
algorithm since every iteration step n C 1 requires the calculation of the fraction in (3) for each
dictionary element d 2 D. For an efficient implementation, one should compute Fd , kFdkRl ,
and kdkL2.D/ for all d 2 D in the preprocessing and store the corresponding scalars and vectors,
respectively. Moreover, the formulae

˝
RnC1;Fd

˛
Rl D hRn;Fd i

Rl � ˛nC1 hFdnC1;Fd i
Rl ;

hFnC1; d iL2.D/ D hFn; d iL2.D/ C ˛nC1 hdnC1; d iL2.D/

allow a fast update of the required inner products. Provided that enough memory is available, one
can further reduce the computational expenses by calculating the inner products hFd;F QdiRl and
hd; Qd iL2.D/ for all pairs .d; Qd/ 2 D2 of dictionary elements in the preprocessing and by using them
in these updates.
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5 Properties of the Algorithm

In the following, we derive some theorems for the algorithm. We start with theorems which are
valid in the regularized case (� > 0) as well as the unregularized case (� D 0).

Theorem 1. The sequence .kRnk2
Rl C �kFnk2

L2.D/
/n produced by the algorithm is monotonically

decreasing and convergent.

Proof. The monotonicity is a direct consequence of (2). Moreover, since the monotonically
decreasing sequence is bounded from below, it is convergent. �
Theorem 1 in combination with (2) and (3), also shows that the strategy of the algorithm is to
reduce the value kRnk2

Rl C �kFnk2
L2.D/

as much as possible in each iteration step. This means that,
in this respect, an optimal progress in the Tikhonov regularized data misfit is achieved.

We can certainly not expect that the algorithm produces a sequence .Fn/n which converges to
an exact solution F of FF D y, if � > 0. This is also something that we do not desire, if we try
to solve an inverse problem which is ill-posed due to an unstable solution since F discontinuously
depends on y, i.e., F is unstable with respect to small perturbations of the data vector y. Moreover,
we certainly also cannot expect that the sequence .kRnk2

Rl C �kFnk2
L2.D/

/n converges to 0 since
this would imply that .Fn/n converges to 0 and y D 0.

We now prove a new theorem, which extends a result which we have previously published for
the unregularized case only (see Theorem 4.5 in Fischer and Michel 2012).

Theorem 2 (Convergence Theorem). Let the dictionary D satisfy the following properties:

1. “Semi-frame condition”: There exists a constant c > 0 such that, for all expansions
H D P1

kD1 ˇkdk with ˇk 2 R and dk 2 D, where the dk are not necessarily pairwise distinct
but fj 2 N j dj D dkg is a finite set for each k 2 N, the following inequality is valid:

ckHk2
L2.D/ �

1X
kD1

ˇ2
k :

2. C1 WD infd2D.kFdk2
Rl C �kdk2

L2.D/
/ > 0.

If the sequence .Fn/n is produced by the RFMP and no dictionary element is chosen infinitely
often, then .Fn/n converges in L2.D/ to F1 WD P1

nD1 ˛ndn 2 L2.D/. Moreover, the following
holds true:

(a) If spanDk�kL2.D/ D L2.D/, C2 WD supd2D kdkL2.D/ < C1, and � 2 R
C
0 is an arbitrary

parameter, then F1 solves

.F�F C �I/F1 D F�y ;

where F� is the adjoint operator corresponding to F and I is the identity operator on L2.D/.
In other words,
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ky � FF1k2
Rl C � kF1k2

L2.D/ D min
F 2L2.D/

�ky � FF k2
Rl C � kF k2

L2.D/

�
;

where the minimizer is unique, if � > 0.
(b) If span fFd j d 2 Dg D R

l and � D 0, then F1 solves FF1 D y.

Proof. According to (4) and (2), we have

˛2
n D �kFdnk2

Rl C � kdnk2
L2.D/

��1

�˝
Rn�1;Fdn

˛
Rl � � hFn�1; dniL2.D/

�2
kFdnk2

Rl C � kdnk2
L2.D/

D �kFdnk2
Rl C � kdnk2

L2.D/

��1

�
h��Rn�1

��2

Rl C � kFn�1k2
L2.D/ � �kRnk2

Rl C � kFnk2
L2.D/

�i
: (5)

Hence, condition 2 of the theorem to be proved as well as Theorem 1 yield

1X
nDN

˛2
n � 1

C1

1X
nDN

h��Rn�1
��2

Rl C � kFn�1k2
L2.D/ � �kRnk2

Rl C � kFnk2
L2.D/

�i

D 1

C1

h��RN �1
��2

Rl C � kFN �1k2
L2.D/ � lim

n!1
�kRnk2

Rl C � kFnk2
L2.D/

�i
: (6)

Obviously, for N ! 1, the right-hand side converges to 0 and, consequently, also the left-hand
side. Thus, condition 1 of the theorem to be proved yields that F1 WD P1

nD1 ˛ndn is a convergent
series in L2.D/:

lim
N !1 kF1 � FN �1k2

L2.D/ D lim
N !1

�����
1X

nDN

˛ndn

�����
2

L2.D/

� 1

c
lim

N !1

1X
nDN

˛2
n D 0 :

As a consequence, the sequence of summands must converge to 0, i.e., with (4), we get

˛2
nC1 D

 hRn;FdnC1iRl � � hFn; dnC1iL2.D/

kFdnC1k2
Rl C � kdnC1k2

L2.D/

!2

�! 0 as n ! 1 :

Moreover, with the continuity of F , the boundedness of the dictionary in the case (a), and (3),
we obtain, for all d 2 D, the inequality

 hRn;FdnC1iRl � � hFn; dnC1iL2.D/

kFdnC1k2
Rl C � kdnC1k2

L2.D/

!2

� 1

.kFk2
L C �/ kdnC1k2

L2.D/

�hRn;FdnC1iRl � � hFn; dnC1iL2.D/

�2
kFdnC1k2

Rl C � kdnC1k2
L2.D/
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� 1

.kFk2
L C �/C 2

2

�hRn;Fd i
Rl � � hFn; d iL2.D/

�2
kFdk2

Rl C � kdk2
L2.D/

;

where kFkL is the usual operator norm given by

kFkL WD sup
F 2L2.D/

F ¤0

kFF kRl

kF kL2.D/

for continuous operators. Hence,

hRn;Fd i
Rl � � hFn; d iL2.D/ D hF�Rn � �Fn; d iL2.D/ �! 0 as n ! 1

for all d 2 D and, due to the first requirement on D in the case (a), also for all d 2 L2.D/. Thus,
.F�Rn/n weakly converges to �F1. However, since F�Rn D F�y �F�FFn, the continuity of F
and F� implies that .F�Rn/n strongly converges to F�y � F�FF1. Consequently,

F�y � F�FF1 D �F1 :

Hence,

F�y D .F�F C �I/ F1 : (7)

Let now F1 be a fixed solution of (7). It is well-known (see, e.g., Louis 1989, p. 89) that (note that
F�F C �I is self-adjoint)

ky � FF k2
Rl C �kF k2

L2.D/

D kyk2
Rl � 2hy;FF iRl C hFF;FF iRl C �hF; F iL2.D/

D kyk2
Rl � 2 hF�y; F iL2.D/ C h.F�F C �I/ F; F iL2.D/

D kyk2
Rl � 2 hF�y; F iL2.D/ C h.F�F C �I/ .F � F1/ ; F � F1iL2.D/

C 2 h.F�F C �I/ F1; F iL2.D/ � h.F�F C �I/ F1; F1iL2.D/

D kyk2
Rl C h.F�F C �I/ .F � F1/ ; F � F1iL2.D/ � hF�y; F1iL2.D/ (8)

is minimal if F D F1, since F�F C �I is positive semi-definite:

h.F�F C �I/ F; F iL2.D/ D kFF k2
Rl C �kF k2

L2.D/ � 0 for all F 2 L2.D/ :

Moreover, in the case � > 0, (8) is minimal if and only if F D F1, since F�F C �I is positive
definite. Note that this also implies that

F1 D .F�F C �I/�1F�y

is uniquely determined, if � > 0.
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In the unregularized case (case (b), i.e., � D 0), Theorem 1 yields that .kRnkRl /n converges.
Hence, there exists a convergent subsequence .Rnj /j with limit R1 2 R

l . Moreover, (3), (5), and
the convergence of the series in (6) yield that, for all d 2 D,

0 � hR1;Fd i2
Rl

kFdk2
Rl

D lim
j !1

hRnj ;Fd i2
Rl

kFdk2
Rl

� lim
j !1

˝
Rnj ;Fdnj C1

˛2
Rl

kFdnj C1k2
Rl

D 0 :

Due to the requirement that span fFd j d 2 Dg D R
l , we get R1 D 0. Since .kRnkRl /n

is monotonically decreasing and every convergent subsequence converges to 0, the sequence
.kRnkRl / converges to 0 and, thus, .Rn/n converges to 0 2 R

l . Finally, we use the continuity
of F and conclude that

FF1 D lim
n!1FFn D lim

n!1 .y � Rn/ D y :

�
Note that the requirements of (b) are easier to achieve than the requirements of (a) due to the finite
dimensions of Rl and the infinite dimensions of L2.D/.

The results of Theorem 2 show that the algorithm, indeed, converges to the desired result. In
the absence of a regularization, the limit F1 of the algorithm is an exact solution, whereas the
regularized case yields a solution of the Tikhonov regularized normal equation, i.e., we, indeed,
obtain the minimal (regularized) data misfit, as we desired.

Since the RFMP contains the MP from Mallat and Zhang (1993) and Vincent and Bengio (2002)
as a particular case, the convergence rate of the MP, which was proved in Mallat and Zhang (1993),
can analogously also be proved for the RFMP in the case � D 0, as we observed in Fischer (2011)
and Fischer and Michel (2012). We state this result here. Note that the RFMP was called the FMP
(Functional Matching Pursuit) in the case � D 0 in Fischer (2011) and Fischer and Michel
(2012).

Definition 2. Let a dictionary D be given. The corresponding correlation ratio is given, for
each v 2 R

l n f0g, by

�.v/ WD sup
d2D
Fd¤0

jhv;Fd iRl j
kvkRl kFdkRl

:

Furthermore, we define the worst case correlation ratio by

I.�/ WD inf
v2Rlnf0g

�.v/ :

The following properties of the correlation ratio are obvious:

• The correlation ratio �.v/ and, consequently, also I.�/ are bounded from below by 0 and, due
to the Cauchy-Schwarz inequality, bounded from above by 1.

• The correlation ratio �.v/ is independent of kvk, i.e., �.rv/ D �.v/ for all r 2 R n f0g and all
v 2 R

l n f0g.
• In the case v D Rn and � D 0, the correlation ratio �.Rn/ is obtained for d D dnC1 (see (3)).
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Theorem 3 (Convergence Rate of the FMP). Let a function F 2 L2.D/, the corresponding data
vector y WD FF 2 R

l , and a dictionary D with span fFd j d 2 Dg D R
l be given and let the

sequence .Rn/n be produced by the RFMP with � D 0 (i.e., the FMP). Then the residual converges
exponentially to 0. More precisely,

kRnk
Rl � kykRl

�
1 � I.�/2

�n=2

for all n 2 N, where I.�/ > 0.

Moreover, the choice of a Tikhonov regularization term for the penalty term in J� automatically
inherits the well-known nice properties of the Tikhonov regularization (see, e.g., Rieder (2003)
and the reference therein). These are the stability (i.e., the continuous dependence of the solution
with respect to the data vector) and the convergence with respect to the regularization parameter.
We start with the following theorem, which (slightly) extends our previous result on the stability
of the solution (see Fischer 2011, Theorem 4.7; Fischer and Michel 2012, Theorem 5.4).

Theorem 4 (Stability of the Solution). Let the dictionary satisfy conditions 1, 2, and (a) of
Theorem 2 and let � > 0. Moreover, let .yk/k � R

l be a convergent sequence with limit y 2 R
l

and let, for each k 2 N0, F1;k 2 L2.D/ be the corresponding limit produced by the RFMP for
the data vector yk . Then .F1;k/k converges to the limit F1 produced by the RFMP for the data
vector y.

Proof. Due to Theorem 2, each F1;k is the unique minimizer of

L2.D/ 3 F 7! ��yk � FF
��2

Rl C �kF k2
L2.D/ : (9)

From the well-known theory of Tikhonov regularization (see, e.g., Engl et al. 1989, Theorem 2.1;
Rieder 2003, p. 241; Seidman and Vogel 1989, Theorem 2), we know that the minimizer of (9)
converges to the minimizer of

L2.D/ 3 F 7! ky � FF k2
Rl C �kF k2

L2.D/ (10)

as k ! 1. Moreover, the minimization of (10) is equivalent to the equation

.F�F C �I/ F D F�y ;

which is uniquely solved by the limit F1 of the RFMP in the case of the data vector y, as we
showed in the proof of Theorem 2. This completes the proof of Theorem 4. �
The second theorem regarding the regularization addresses the convergence of the solution with
respect to the regularization parameter.

Theorem 5 (Convergence of the Regularization). Let y 2 F.L2.D// be a given (exact) data
vector and .y"/">0 � R

l be a family of given perturbed data vectors with ky�y"kRl � ". Moreover,
let F C be the minimum-norm solution of FF D y, i.e.,
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��F C��
L2.D/

D min
˚kF kL2.D/

ˇ̌
F 2 L2.D/ and FF D y

	
;

which is obtained by the Moore-Penrose pseudoinverse FC as F C D FCy. Furthermore, let the
regularization parameter � W RC ! R

C be chosen in dependence on the noise level " in the sense
that

lim
"!0C �."/ D 0 D lim

"!0C
"2

�."/
:

If .F1;"/">0 denotes the family of limits produced by the RFMP in the case of the data vector y"

and the regularization parameter �."/ for each " > 0, provided that again conditions 1, 2, and (a)
of Theorem 2 are satisfied, then

lim
"!0C

��F1;" � F C��
L2.D/

D 0 :

Proof. According to Theorem 2, the limit F1;" uniquely minimizes

L2.D/ 3 F 7! ky" � FF k2
Rl C �."/kF k2

L2.D/ : (11)

From, e.g., Engl et al. (1996, Theorem 5.2), we know that the limit " ! 0C and the conditions
stated above yield that the family of minimizers of (11) has the required convergence property. �

6 Discussion of Some Dictionaries

We discuss here some examples of inverse problems and dictionaries that are relevant for
geomathematical problems. The list of examples is certainly not complete and not all theoretical
problems that occur here have been solved so far. For reasons of simplicity, we assume here,
without loss of generality, that all dictionary elements have been normalized, i.e., kdkL2.D/ D 1

for all d 2 L2.D/. This has also been used in the majority of our numerical experiments since
this assumption simplifies the calculation of the denominators of (3) and (4) in Algorithm 1.
The primary objective of this section is the investigation of the conditions stated in Theorem 2.
The assumption on a normalized dictionary has the consequence that the requirement on C1

becomes trivial in the regularized case (� > 0), whereas it (always) reduces to the requirement
that infd2D kFdkRl > 0 in the unregularized case (� D 0). Moreover, we, obviously, have C2 D 1

in the case of this assumption.
We focus here on two particular domains: the unit sphere � � R

3 and the ball B � R
3 with

radius ˇ > 0. For both domains, a series of trial functions is available, which we will only briefly
summarize here. For further details, see, e.g., the textbook Michel (2013) and the author’s other
article in this handbook. We can, roughly, subdivide the trial functions into two types: global and
localized trial functions.

Examples of global trial functions are orthogonal polynomials such as the so-called spherical
harmonics fYn;j gn2N0I j D1;:::;2nC1 (see the first column of Fig. 1) on the unit sphere � as well as
the systems fGI

m;n;j gm;n2N0I j D1;:::;2nC1 and fGII
m;n;j gm;n2N0I j D1;:::;2nC1 on the ball B, where it should

be mentioned that the latter functions on B are not polynomials in Cartesian coordinates. All three
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Fig. 1 Examples of functions which can be used as elements of a dictionary on the sphere are spherical harmonics
(see the first column for examples of degree n D 5) as global trial functions and Abel-Poisson kernels (see the second
column, where h D 0:5 (top), h D 0:7 (middle), and h D 0:9 (bottom) and, in each case, � D .0; 1; 0/T were used),
which are localized trial functions and are often used as spline or wavelet basis functions on the sphere

systems are orthonormal basis systems in L2.�/ and L2.B/, respectively, and, therefore, trivially
satisfy the semi-frame condition (condition 1 of Theorem 2) as well as condition (a) of Theorem 2.

Some localized trial functions are based on reproducing kernels Kh.�; �/ in the sense that
Kh.x; �/ is a hat function, where x is the center of the hat and the parameter h controls the
localization, i.e., the “hat width”. They can be used for spline interpolation/approximation as well
as for a wavelet analysis. A celebrated example of a localized trial function on the sphere � is
generated by the Abel-Poisson kernel in the sense that

Kh.�� / W � 3 � 7! Kh.� � �/ WD 1 � h2

4� .1 C h2 � 2h � � �/
3=2

;

see the second column of Fig. 1. Further examples on the sphere and the ball are known.
For many inverse problems in geomathematics, singular value decompositions are known. This

can, e.g., occur in the sense that the operator F satisfies

FYn;j D �
�nYn;j

�
�k
��

kD1;:::;l
;

where .�n/n converges to 0 and f�kgkD1;:::;l is a grid of pairwise distinct points on �. An example
is the downward continuation problem, where F maps a harmonic potential (such as the
gravitational potential) from the surface of the Earth to a higher altitude (e.g., a satellite altitude).
The inverse problem consists of the recovery of the potential at the surface from given data at the
point grid f�kgkD1;:::;l at the high altitude. In this example (see also the results in Telschow (2014)
for the application of an enhanced version of the RFMP to the downward continuation problem),
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we have

�n D c �n for constants c > 0 and 0 < � < 1: (12)

If we include all spherical harmonics basis functions fYn;j gn2N0I j D1;:::;2nC1 in the dictionary D,

then the well-known maximum-norm estimate for spherical harmonics max	2� jYn;j .	/j �
q

2nC1
4�

(see, e.g., Freeden et al. 1998, Lemma 3.1.5 or Müller 1966, Lemma 8) yields

��FYn;j

��2

Rl D
lX

kD1

�2
n

�
Yn;j

�
�k
��2

�
lX

kD1

�2
n

2n C 1

4�

D l �2
n

2n C 1

4�
�!
n!1 0 :

Hence, infd2D kFdkRl D 0 in this case. This violation of condition 2 of Theorem 2 (in the
unregularized case) cannot be compensated by renormalizing the dictionary elements for the
following reason: let us replace the normalized basis fYn;j gn2N0I j D1;:::;2nC1 � D by a system
fˇnYn;j gn2N0I j D1;:::;2nC1 � D. We have to take into account the (possible) arbitrariness of the

point grid f�kgkD1;:::;l such that an assumption like maxkD1;:::;l jYn;j .�k/j � 

q

2nC1
4�

for all n 2 N0

and all j D 1; : : : ; 2n C 1, where 
 is a fixed constant with 0 < 
 < 1, appears to be reasonable
(note the maximum-norm estimate mentioned above). In this case, condition 2 of Theorem 2 is
only satisfied (in the unregularized case), if

inf
n2N0

j D1;:::;2nC1

kF.ˇnYn;j /k2
Rl D inf

n2N0
j D1;:::;2nC1

lX
kD1

�2
n

�
ˇn Yn;j

�
�k
��2

� 
2 inf
n2N0

�
�2

nˇ2
n

2n C 1

4�

�

> 0 :

As a consequence, we have to choose .ˇn/n as an exponentially diverging sequence due to (12).
This, however, violates both condition (a) of Theorem 2 since

C2 D sup
d2D

kdkL2.�/ � sup
n2N0

j D1;:::;2nC1

kˇnYn;j kL2.�/ D sup
n2N0

ˇn D C1

and the semi-frame condition (condition 1 of Theorem 2) since

������
1X

nD0

2nC1X
j D1

1

ˇn

�
ˇnYn;j

�
������

2

L2.�/

D
1X

nD0

2nC1X
j D1

1 D C1 ;
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but

1X
nD0

2nC1X
j D1

1

ˇ2
n

< C1 :

As a consequence, the convergence to a solution in the unregularized case cannot be guaranteed
in the case of spherical harmonics. This might have the consequence that numerical instabilities
occur, if relatively low regularization parameters � are used in the combination with a dictionary
with high degree spherical harmonics.

Let us discuss the following alternative: we insert Abel-Poisson kernels (with a grid of pairwise
distinct points f�i gi2N0

which is dense in �)

Kh

�
�i � � D 1 � h2

4� .1 C h2 � 2h �i � /3=2

D
1X

nD0

2n C 1

4�
hnPn

�
�i � �

D
1X

nD0

hn

2nC1X
j D1

Yn;j

�
�i
�

Yn;j

in the dictionary, where we used the addition theorem for spherical harmonics (see, e.g., Freeden
et al. 1998, Theorem 3.1.3 or Müller 1966, Theorem 2) in this representation and Pn is a Legendre
polynomial of degree n. We now verify the existence of C1 and C2. Since F is linear and
continuous, we get

��FKh

�
�i � ���2

Rl D
������
0
@ 1X

nD0

2nC1X
j D1

hn Yn;j

�
�i
�

�n Yn;j

�
�k
�
1
A

kD1;:::;l

������
2

Rl

D c2

������
 1X

nD0

hn �n 2n C 1

4�
Pn

�
�i � �k

�!

kD1;:::;l

������
2

Rl

D c2

lX
kD1

 1X
nD0

hn �n 2n C 1

4�
Pn

�
�i � �k

�!2

D c2

lX
kD1

Kh�

�
�i � �k

�2

� c2 l Kh�.�1/2

> 0

for all i such that infi2N0
kFKh.�i � /kRl > 0. Moreover, the fact that Pn.1/ D 1 for all n 2 N0

implies
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��Kh

�
�i � ���2

L2.�/
D ˝

Kh

�
�i � � ; Kh

�
�i � �˛

L2.�/

D
1X

nD0

2nC1X
j D1

h2n
�
Yn;j

�
�i
��2

D
1X

nD0

2n C 1

4�
h2n Pn

�
�i � �i

�

D Kh2.1/

such that supi2N0
kKh.�i � /k2

L2.�/
D Kh2.1/ < C1. Hence, the Abel-Poisson kernel guarantees

the existence of C1 and C2 in the unregularized and the regularized case. It remains, however,
an open problem to verify the semi-frame condition for this particular dictionary (note that, in
Freeden and Schreiner (1995), it is shown that the Abel-Poisson kernel constitutes a frame on the
sphere; however, we use the word “frame” here in a different context). At least, it is well-known
that the choice of a dense point grid f�i gi2N0

in � yields a basis in L2.�/ (see Freeden et al. 1998,
Corollary 6.4.3), i.e.,

span fKh .�i � /gi2N0

k�kL2.�/ D L2.�/;

which is required by condition (a) of Theorem 2.
Similar considerations are possible for the case where the ball B is the domain of the unknown

function. For example, the inverse gravimetric problem consists of the inversion of the gravitational
potential for the mass density distribution inside the Earth and at its surface (see the survey article
(Michel and Fokas 2008) for further details). In this case, we obtain a linear and continuous
operator F W L2.B/ ! R

l which satisfies

FGI
m;n;j D

�
ım0 Q�nYn;j

�
xk

jxkj
��

kD1;:::;l

;

where fxkgkD1;:::;l is a grid of pairwise distinct points at the Earth’s surface or outside the Earth
where the gravitational potential is given and ım0 is the Kronecker delta. In the case of data given
at the surface, . Q�n/n converges to 0 at the order O.n�3=2/. If the data are given outside the Earth,
then . Q�n/n exponentially converges to 0, since the downward continuation problem is involved.

7 Numerical Results

We demonstrate here some numerical results which we obtained for the inverse gravimetric
problem and which were previously published. The purpose of this section is to show the
applicability of the RFMP and its particular features which are visible in the discussion of the
numerical results. For each example, we refer to the corresponding papers for further details on the
implementation. We also refer to (Telschow 2014) where the downward continuation problem and
the treatment of extremely irregular data grids are discussed.
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Fig. 2 The RFMP was used to invert EGM2008 data for mass anomalies in South America (left). The algorithm
prefers localized trial functions which are concentrated to areas with a high detail density as the plot of the chosen
centers of the hat functions (right) shows; from Fischer and Michel (2012)

In all cases, the unknown function (mass density anomalies) is a function on the ball B. For this
purpose, we used dictionaries with combined global trial functions (the orthogonal polynomials
GI

m;n;j ) for low degrees and localized trial functions of different types (i.e., hat functions with
different hat widths). It is a particular feature of the RFMP that such a heterogeneous mixture of
trial functions can be used for the calculation of the solution. The algorithm selects those trial
functions which are (in some sense) the best choice to represent the result (see Algorithm 1).
The obtained solution is sparse in the sense that essentially less trial functions than available are
eventually used. We do not use any a-priori information on the solution. In particular, the grid of
centers of the hat functions in the dictionary is uniformly distributed over the investigated region.

In the first two examples, we consider the (static) gravitational potential model EGM2008
(Earth Gravitational Model 2008, see Pavlis et al. 2008). In both cases, the model is evaluated
(starting from polynomial degree 3) on a regular regional point grid, slightly above the surface.
The mass density anomaly is computed with the RFMP and plotted at the surface of the Earth in
the corresponding region. In the first case (from Fischer and Michel 2012), data at 25,440 points
over South America are considered, the dictionary contains approximately 120,000 trial functions,
and the RFMP is stopped after 20,000 iterations. The obtained result F20;000 is shown on the left-
hand side of Fig. 2, where typical mass anomalies like the Andes, the Caribbean, or traces of
some tectonic structures can be identified. The right-hand side of the figure shows the centers of
those localized trial functions which were chosen by the RFMP. Clearly, the algorithm prefers
hat functions which are concentrated to those areas where the solution has a complicated detail
structure. This is a reasonable choice and corresponds to the intended sparsity effect since many
hat functions are rejected in areas where the solution has a low detail density.

The second example (see Fischer and Michel 2013a) has a very similar constellation. This time,
we use the same amount of data but over the Himalayas and India and a slightly larger dictionary
(degrees 3; : : : ; 50 for the polynomials instead of 3; : : : ; 8) and stop the RFMP again after 20,000
iterations. However, in this example we compare the result with the result obtained for data with
artificial noise. Figure 3 shows the result, where the first line corresponds to the noise-free case with
� D 500 and the second line corresponds to the case where we added 5 % uniformly distributed
random noise (relative to the data, i.e. the perturbed data are Oyi D yi C 0:05�iyi for some random
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Fig. 3 A test similar to Fig. 2 was applied to the Himalayas and India. The second row shows the result obtained
when 5 % uniformly distributed noise relative to the data was added to the data used for the first row. Obviously, the
RFMP is, indeed, a regularization, i.e., the result of a data inversion is stable, also if the underlying inverse problem is
ill-posed; from Fischer and Michel (2013a)

values �i 2 Œ�1; 1�) and used the regularization parameter � D 600. Again, the left column
shows the approximate solution F20;000 and the right column shows the centers of the localized
trial functions chosen by the RFMP. These results show the same quality of the algorithm that
the application to the data over South America revealed. The solution allows the identification of
typical mass anomalies in the corresponding region, and the trial functions are chosen primarily in
those areas where the solution has a high detail density. Moreover, the result of this second example
shows that the method is, indeed, a regularization, i.e., the solution shows only a low sensitivity
with respect to noise (see also Fig. 4, where the absolute difference of the two solutions is shown),
though the original problem is ill-posed. Note also that the choice of the centers of the localized
trial functions is stable as well, if noise is added.

In the third example (see Fischer and Michel 2012), we show the applicability of the RFMP to
the identification of mass transports in data of the GRACE mission (Gravity Recovery and Climate
Experiment, see WWW: CSR). The GRACE mission has provided us with monthly models of
the Earth’s gravitational field since its launch in 2002. We computed the mean of all monthly
potentials from July 2004 to June 2009 provided in Release 04, Level 2 of the Jet Propulsion
Laboratory (WWW: JPL). This mean potential was subtracted from each monthly potential of
the year 2008. Such differences of GRACE models are usually contaminated with noise, which
becomes apparent in North-South oriented stripes in the results. We used the Freeden wavelets
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Fig. 4 The absolute difference of the results obtained in the left column of Fig. 3 for the inversion of noise-free and
noisy data confirms the stability of the regularization algorithm RFMP; from Fischer and Michel (2013a)

of cp-type (see Schreiner 1996; Freeden et al. 1998, pp. 295–296) to denoise the obtained model
differences. The Freeden wavelets are general isotropic bandpass filters for spherical signals and
are sufficient for our purposes. Note that the result could be further improved by using a more
sophisticated filtering technique which has been particularly tailored for the GRACE stripes such
as the method introduced in Kusche (2007).

The denoised monthly differences were inverted with the RFMP for mass anomalies. The used
dictionary again was a combination of low degree orthogonal polynomials and localized trial
functions with different hat widths, in analogy to the previous two examples. The data were given
on a regular grid above South America with 11,990 points, the same regularization parameter
� D 8:7128 was used for all months, and the RFMP was stopped after 10,000 iterations. The
results are shown in Figs. 5 and 6. We can clearly identify the mass transports in the Amazon area
which are caused by the different rain seasons in the northern and the southern part.

We recommend the cited references Fischer and Michel (2012) and Fischer and Michel (2013a)
for further reading, since the numerical results are analyzed in more detail there, and additional
results are shown. In particular, the influence of the localized trial functions is visualized, where
it becomes clear that local perturbations of the data only have a local influence on the model.
Moreover, another example of an identification of mass transports by means of the RFMP is shown
in Fischer and Michel (2013b), where some droughts and a flood in South America are recovered
from GRACE data.

8 Conclusions

The RFMP was presented as a best basis algorithm which was able to combine trial functions
of different kinds (like spherical harmonics and spline/wavelet basis functions) to construct an
approximate solution to an (geoscientific) ill-posed inverse problem. This is done by iteratively
selecting an additional trial function from a large toolbox of available trial functions (called the
dictionary) and adding the chosen trial function to the approximation obtained in the previous
iteration step. The criterion for the selection of this next summand in the expansion of the
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Fig. 5 A long-term mean was subtracted from each monthly model of the gravitational field provided by the GRACE
mission for the year 2008. These differences were inverted for mass anomalies with the RFMP. The results are shown
for January 2008 (top left) via March 2008 (top right) until June 2008 (bottom right). Typical mass transports due
to different rain seasons in the northern part and the southern part of the Amazon are visible in the results. Note, in
particular, the mass surplus north of the equator in April 2008 (bottom left); from Fischer and Michel (2012)

approximate solution is the minimization of the data misfit plus a Tikhonov regularization term.
In this sense, the selected system of trial functions is a “best basis” (note that we call it “best”
here, although further enhancements of the RFMP are possible such as in Telschow (2014),
where the number of trial functions to be chosen for a given accuracy level is additionally
reduced). Numerical experiments show that the algorithm is able to construct a stable and good
approximation to the unknown function. Several application scenarios were used for the practical
verification of the method. Further numerical experiments performed in our group also showed
that often the algorithm starts by predominantly choosing orthogonal polynomials (i.e., global
trial functions) in the first iteration steps. Later in the iteration, it chooses localized trial functions
more and more often. In other words: At the beginning, a coarse “image” of the main features of
the solution is constructed by using global trial functions. Later, the remaining data misfit can be
better reduced by locally correcting the solution, which can be achieved best, by taking localized
trial functions. Furthermore, in some experiments, we could also show that, with an increasing
number of iterations, functions which are more and more localized (i.e., smaller and smaller hats)
are selected from the available set of localized trial functions. Thus, the algorithm, indeed, uses
the provided possibility to use spline/wavelet basis functions with different levels of localizations.
Moreover, some figures in this paper also illustrate the choice of the centers of the hat functions.
It is obvious that the algorithm selects much more hat functions with centers in areas where
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Fig. 6 Here, the remaining months corresponding to Fig. 5 are shown from July 2008 (top left) via September 2008
(top right) until December 2008 (bottom right). Note, in particular, the mass surplus south of the equator in September
and October 2008; from Fischer and Michel (2012)

the solution has a high detail density. This appears to be reasonable, since locally complicated
structures have higher degrees of freedom and, consequently, require more basis functions for
their representation. Furthermore, we also demonstrated that the algorithm is well appropriate for
the handling of ill-posed problems, also in the presence of noise.

We consider the RFMP to be a promising approach. It is worth investigating its properties further
in the future and to look for additional applications. Several improvements of the algorithm are
also possible. For example, different norms than the L2-norm could be tested for the regularizing
penalty term, where Sobolev norms are one possible alternative. Note that the choice of the L1-
norm or anything similar is probably not reasonable, as first investigations in our group suggest,
though such a norm is commonly used for sparsity methods. The reason why this is probably not
appropriate is the fact that the purpose of the penalty term in our approach is not to obtain sparsity
in the solution but to regularize an ill-posed problem.

Another aspect that could be improved refers to the algorithm itself. At present, we keep all
chosen dictionary elements and their corresponding coefficients fixed when we go to the next
iteration step. The minimization could, however, be improved by reconsidering these previous
choices in the next step. The ideal case would be the calculation of a best n-term approximation (see
Temlyakov 2003) in the sense that we have to find, in iteration step n, coefficients ˛1; : : : ; ˛n 2 R

and dictionary elements d1; : : : ; dn 2 D such that
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This is, however, very time-consuming such that appropriate trade-offs between the required CPU
time on the one hand and the obtained sparsity and accuracy of the solution on the other hand
have to be found. In Vincent and Bengio (2002), improvements of the MP in this regard are
investigated. However, such techniques have currently not been published for a regularized version
which handles ill-posed inverse problems.

These mentioned challenges for future research have partially already been tackled in our group
and will be addressed in forthcoming publications.
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