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Abstract  Genome replication is a crucial step in the life cycle of any virus. HCV 
is a positive strand RNA virus and requires a set of nonstructural proteins (NS3, 
4A, 4B, 5A, and 5B) as well as cis-acting replication elements at the genome 
termini for amplification of the viral RNA. All nonstructural proteins are tightly 
associated with membranes derived from the endoplasmic reticulum and induce 
vesicular membrane alterations designated the membranous web, harboring the 
viral replication sites. The viral RNA-dependent RNA polymerase NS5B is the 
key enzyme of RNA synthesis. Structural, biochemical, and reverse genetic studies 
have revealed important insights into the mode of action of NS5B and the mecha-
nism governing RNA replication. Although a comprehensive understanding of the 
regulation of RNA synthesis is still missing, a number of important viral and host 
determinants have been defined. This chapter summarizes our current knowledge 
on the role of viral and host cell proteins as well as cis-acting replication elements 
involved in the biogenesis of the membranous web and in viral RNA synthesis.
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1 � Introduction

Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus belonging to 
the genus Hepacivirus in the family Flaviviridae (van Regenmortel et al. 2000). 
The genome of HCV encompasses a single ~9,600 nts long RNA molecule con-
taining one large open reading frame (ORF) that is flanked by nontranslated 
regions (NTRs), important for viral RNA translation, and replication. The 5′NTR 
contains an internal ribosome entry site (IRES), enabling viral RNA translation in 
the absence of a cap structure. HCV proteins generated from the polyprotein pre-
cursor are cleaved by cellular and viral proteases into at least 10 different prod-
ucts (for further details see chapter “Hepatitis C Virus Proteins: From Structure 
to Function”, this volume): core, envelope glycoproteins E1 and E2, p7, and the 
nonstructural proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Core to 
NS2 is primarily involved in the formation of infectious virus (see chapter “Virion 
Assembly and Release”, this volume), whereas the nonstructural proteins NS3 to 
NS5B are primarily involved in viral RNA replication, forming the viral replica-
tion complex (Bartenschlager et al. 2010), which will be the focus of this chapter. 
NS3 is a multifunctional protein, consisting of an aminoterminal protease domain 
required for processing of the NS3 to NS5B region (Bartenschlager et al. 1993) 
and a carboxyterminal helicase/nucleoside triphosphatase domain (Suzich et al. 
1993; Kim et al. 1995). NS4A is a cofactor that activates the NS3 protease func-
tion by forming a heterodimer (Bartenschlager et al. 1995). The hydrophobic pro-
tein NS4B induces vesicular membrane alterations involved in RNA replication 
(reviewed in Gouttenoire et al. 2010a). NS5A is a phosphoprotein capable of RNA 
binding (Huang et al. 2005; Foster et al. 2010), which seems to play an important 
role in regulating viral replication and assembly (Appel et al. 2008; Tellinghuisen 
et al. 2008; Masaki et al. 2008). It exists in two phosphorylation variants (Tanji et 
al. 1995; Kaneko et al. 1994); a basally (hypo-)phosphorylated form (p56), which 
is supposed to be important for RNA replication (Appel et al. 2005b; Blight et 
al. 2000) and a hyperphosphorylated variant (p58), probably involved in assembly. 
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NS5B is the RNA-dependent RNA polymerase of HCV, the key enzyme of viral 
RNA synthesis (Behrens et al. 1996; Lohmann et al. 1997).

After RNA translation and polyprotein processing NS3 to NS5B induce dis-
tinct membrane alterations, harboring the sites of viral RNA replication (Gosert 
et al. 2003; Fig. 1a), which is a typical feature of all positive-strand RNA viruses 
[reviewed in (Miller and Krijnse-Locker 2008)]. The minimal genetic unit neces-
sary and sufficient for RNA replication has been defined by subgenomic replicons 
and encompasses the NTRs as well as the NS3 to 5B coding region (Lohmann  
et al. 1999a). The first step of RNA synthesis generates a negative-strand genome, 
which serves as template for progeny positive-strand RNA that is produced in  
5- to 10-fold excess. It is generally assumed that RNA synthesis of complemen-
tary strands initiates at the very 3′terminus of the template strand by de novo ini-
tiation of RNA synthesis and that RNA replication involves a double-stranded 
RNA intermediate, although clear experimental proof for both assumptions is 
missing. The newly synthesized positive-strand RNA is either re-entering a new 
translation/replication cycle or is packaged into virions. This chapter summarizes 
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Fig. 1   a Schematic representation of the HCV replication cycle. Different potential substructures 
harboring the replication sites based on biochemical evidence as shown in (b) and DMVs recently 
detected by EM (c) are indicated. b Model of the HCV replication complex based on biochemical 
evidence (Quinkert et al. 2005). Multiple copies of the nonstructural proteins serve as structural 
components of a vesicular structure, containing probably only one replication intermediate and 
several progeny positive strands. Only a minor subfraction of the nonstructural proteins is sup-
posed to have a function in RNA synthesis. A pore should allow the access of nucleotides and 
the exit of RNA. c Electron micrograph of DMVs in HCV-infected cells 16 h after infection (pro-
vided by Inès Romero-Brey unpublished). LD lipid droplet, DMV double membrane vesicle
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our current knowledge on HCV-induced membrane alterations, the role of the 
nonstructural proteins and cis-acting elements in distinct steps of RNA synthesis 
and provides a selective review of some important host factors involved in these 
processes.

2 � Ultrastructure of the HCV Replication Sites

2.1 � Model of the HCV Replication Complex

The establishment of robust cell culture models for HCV (see chapter “Cell 
Culture Systems for Hepatitis C Virus”, this volume) provided the first opportu-
nity to analyze structure and functions of the viral replication sites in detail. Early 
pioneering EM-studies of liver tissue from infected patients and chimpanzees indi-
cated that HCV, like other positive-strand RNA viruses, induced membrane altera-
tions in infected hepatocytes (Jackson et al. 1979; Shimizu et al. 1990; Shimizu 
1992). Later it was shown that the expression of viral nonstructural proteins, par-
ticularly NS4B, indeed resulted in the induction of vesicle accumulations, which 
were designated the membranous web (Egger et al. 2002). These data were con-
firmed using cell lines harboring persistent subgenomic replicons (Gosert et al. 
2003). Immunofluorescence analysis of the localization of viral nonstructural 
proteins revealed an ER-like distribution with distinct dot-like structures in these 
replicon cells also co-localizing with newly synthesized viral RNA (Gosert et al. 
2003). At the ultrastructural level, these dot-like structures correspond to accumu-
lations of vesicles, which stained positive for viral nonstructural proteins (Gosert 
et al. 2003). It seems likely that individual vesicles within the membranous web 
represent the sites of viral RNA replication. Based on analogy with related viruses, 
it is furthermore assumed that the vesicles are invaginations from the ER mem-
brane, which are connected with the cytoplasm by a small pore allowing the 
exchange of small membrane-impermeable molecules like nucleotides for RNA 
synthesis [Fig. 1b; (Welsch et al. 2009)].

This model was further supported by biochemical studies of membrane prepa-
rations from replicon cells, so-called crude replication complexes (CRCs) and by 
selective permeabilization of replicon cells (Ali et al. 2002; Hardy et al. 2003b; 
Aizaki et al. 2004; El Hage and Luo 2003; Lai et al. 2003; Shi et al. 2003; Miyanari 
et al. 2003). CRCs and permeabilized replicon cells are capable of RNA synthe-
sis in vitro and this process was shown to be resistant to treatment with proteases 
and nucleases (Quinkert et al. 2005; Miyanari et al. 2003; Targett-Adams et al. 
2008), as well as to Triton X-100 treatment at 4°C (Aizaki et al. 2004; Shi et al. 
2003). These results suggested that viral replication complexes were protected by 
detergent resistant membranes, most likely resembling those vesicular structures 
indicated by the EM analysis. To allow access of nucleotides to the sites of RNA 
synthesis, these vesicles should contain an opening allowing access for nucleo-
tides, but small enough to protect the replication sites from nucleases and proteases 

http://dx.doi.org/10.1007/978-3-642-27340-7_2
http://dx.doi.org/10.1007/978-3-642-27340-7_2


171Hepatitis C Virus RNA Replication

(Fig. 1b; Quinkert et al. 2005; Miyanari et al. 2003). Protease and nuclease digests 
of CRCs (Quinkert et al. 2005) and in permeabilized replicon cells (Miyanari et 
al. 2003) furthermore demonstrated that all of the negative-strand RNA, ~50 % of 
the positive-strand RNA, but less than 5 % of the nonstructural proteins were pro-
tected, indicating that the majority of NS-protein copies seem not to be involved 
in the formation of replication sites. Based on these data, it was assumed that an 
active replication site contained only one copy of negative-strand RNA, which 
might be part of a double-stranded replication intermediate (Targett-Adams et al. 
2008), several copies of positive-strand RNA and 500–2,000 copies of nonstruc-
tural proteins [Fig. 1b (Quinkert et al. 2005)].

2.2 � DMVs and MMVs

This simplistic model of the HCV replication complex has been challenged in sev-
eral ways by more recent studies. First, it was shown that the majority of mem-
brane alterations found in HCV-infected cells were not single membrane vesicles, 
but more complex structures, shelled by two or more membranes and termed dou-
ble-membrane vesicles (DMVs; Fig.  1c) and multi membrane vesicles (MMVs) 
(Ferraris et al. 2010; Reiss et al. 2011), similar to membrane alterations identi-
fied for coronaviruses (Knoops et al. 2008; Gosert et al. 2002) and picornaviruses 
(Belov et al. 2012). HCV double-stranded RNA and nonstructural proteins have 
been found inside DMVs and DMV abundance clearly correlates with viral RNA 
replication (Ferraris et al. 2010; Romero-Brey et al. 2012), arguing for a func-
tional role of these structures. However, connections of the vesicles to the cyto-
plasm were rarely observed; therefore, it is not clear how nucleotides get into and 
newly synthesized RNA out of the DMVs. The simple “ER-invagination model” 
(Fig. 1b) that was convincingly shown for the related Dengue virus (Welsch et al. 
2009) was furthermore challenged by three-dimensional reconstructions, dem-
onstrating that DMVs originate from protrusions rather than invaginations of the 
ER, with the outer membrane connected by a neck to the ER membrane (Romero-
Brey et al. 2012). How this topology of DMVs can be linked to previous models 
of HCV and flavivirus replication sites (Welsch et al. 2009) is an open question. 
In case of picornaviruses, RNA replication takes place preferentially at complex 
single membrane structures originating from the cis-Golgi, which are later trans-
formed into DMVs by membrane wrapping processes (Belov et al. 2012) with 
yet to be defined function. In case of SARS coronavirus, it has been suggested 
that active RNA replication occurs in circular single membrane structures known 
as convoluted membranes (Knoops et al. 2008). DMVs probably originate from 
these replication sites and represent a final storage compartment to hide replica-
tion intermediates from recognition by the innate immune response (Knoops et al. 
2008). Similar models might be true for HCV, since DMVs are the dominant spe-
cies of membrane alterations only at time points later than 16 h after transfection 
or infection (Paul et al. 2011; Romero-Brey et al. 2012).
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2.3 � Biogenesis of the Membranous Web

2.3.1 � Viral Determinants

The term membranous web was originally established to designate distinct tightly 
packed vesicle accumulations induced by expression of NS4B (Egger et al. 2002). 
However, meanwhile, this term is used to generally subsume distinct membrane alter-
ations induced by the HCV nonstructural proteins, containing the sites of viral RNA 
synthesis (Gosert et al. 2003). The membranous web most likely originates from the 
ER, as indicated by ultrastructural studies, biochemical evidence and cellular marker 
proteins, partially co-localizing with the viral replication sites (Gosert et al. 2003; 
Egger et al. 2002; Miyanari et al. 2003; El Hage and Luo 2003; Romero-Brey et al. 
2012). In addition, the early endosomal marker Rab5 has also been found to colo-
calize with viral NS proteins, suggesting that the formation of HCV replication sites 
engages several organelles (Stone et al. 2007). Interestingly, the morphology of the 
membranous web is not depending on RNA replication, but is solely driven by the 
nonstructural proteins NS3 to NS5B, presumably in concert with cellular factors, 
since no obvious differences have been found between ectopic protein expression 
models, cells harboring replicons or infected cells (Romero-Brey et al. 2012; Egger 
et al. 2002; Gosert et al. 2003; Reiss et al. 2011; Ferraris et al. 2010; Paul et al. 2011).

NS4B has been identified as the main driver of the biogenesis of the membranous 
web, because sole expression of NS4B induced structures most closely resembling 
expression of NS3 to 5B (Egger et al. 2002). NS4B is predicted to contain four cen-
tral transmembrane segments flanked by N- and C-terminal regions attached to the 
membrane by amphipathic α-helices (Lundin et al. 2003; Gouttenoire et al. 2009b; 
Gouttenoire et al. 2009a) (see also chapter “Hepatitis C Virus Proteins: From 
Structure to Function”, this volume). Recent studies have shown that NS4B can oli-
gomerize, thereby probably forming the scaffold of membranous vesicles (Yu et al. 
2006; Gouttenoire et al. 2010b; Paul et al. 2011). Oligomerization is mediated by 
homotypic and especially heterotypic interactions involving the N-terminal amphip-
athic helix 2 and the C-terminus of the protein (Paul et al. 2011; Gouttenoire et al. 
2010b). Mutations residing in the NS4B C-terminal region that are impaired in NS4B 
self-interaction and expressed in the context of the NS3 to NS5B polyprotein indeed 
generate aberrant DMV structures, supporting the notion that DMVs play an essential 
role in RNA replication (Paul et al. 2011; Aligo et al. 2009). However, NS4B is not 
the only determinant of membranous web morphogenesis and more recent data show 
that also the sole expression of NS3/4A, NS5A, and even NS5B gives rise to distinct 
vesicular membrane rearrangements (Romero-Brey et al. 2012), suggesting that the 
role of other nonstructural proteins in this process has been underrated. Interestingly, 
NS3/4A, NS4B, and NS5B induce single membrane vesicles, which are different 
from the DMVs and MMVs observed upon expression of the entire replicase mod-
ule NS3–5B (Romero-Brey et al. 2012). In contrast, only NS5A induced vesicles 
containing several lipid bilayers and occasionally vesicles containing a pair of mem-
branes morphologically identical to DMVs (Romero-Brey et al. 2012). Although we 
currently do not understand the role of these DMVs in HCV replication, these novel 
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data clearly indicate that morphogenesis of the membranous web is complex and 
engages a concerted action of several nonstructural proteins. NS4B might therefore 
serve as the major scaffold in this process, modulated mainly by NS5A with the help 
of NS3/4A and NS5B. A critical role of NS4B-NS5A interactions in web formation 
is also indicated by genetic studies (Paul et al. 2011) and by the physical interaction 
between NS3/4A and the C-terminal region of NS4B (Aligo et al. 2009).

2.3.2 � Host Factors

In addition to viral proteins also several host factors have been shown to contrib-
ute to membranous web formation. Recently, the lipid kinase phosphatidylinosi-
tol 4-kinase III alpha (PI4KIIIα, PIK4CA, PI4KA) has been identified by several 
siRNA screens as a cellular protein essential for HCV RNA replication (Vaillancourt 
et al. 2009; Borawski et al. 2009; Li et al. 2009; Tai et al. 2009; Berger et al. 2009; 
Reiss et al. 2011). NS5A and NS5B interact with PI4KIIIα and activate its lipid 
kinase activity, giving rise to elevated intracellular phosphatidylinositol 4-phosphate 
(PI4P) levels (Reiss et al. 2011; Berger et al. 2011). Silencing of PI4KIIIα results 
in reduced DMV size and absence of MMV formation, suggesting that this enzyme 
is critically involved in web morphology (Reiss et al. 2011), probably mediated by 
PI4P. More recent data, furthermore, suggest that PI4KIIIα modulates NS5A phos-
phorylation, by promoting p56 synthesis, which might regulate the structure of the 
HCV replication sites as well (Reiss and Lohmann unpublished data).

The HCV replication cycle is, furthermore, tightly linked to host cell lipids 
in various other ways, which are mostly not well understood (reviewed in Alvisi  
et al. 2011). HCV alters expression of genes involved in cellular lipid metabolism, 
resulting in accumulation of intracellular lipids (Diamond et al. 2010; Blackham 
et al. 2010; Su et al. 2002), which is critical for viral RNA replication (Kapadia 
and Chisari 2005). On the one hand, increased lipid levels might be required to 
generate the membrane proliferations necessary to form the HCV replication sites, 
on the other hand, they might be necessary for protein modifications. FBL2, for 
example, is a geranylgeranylated protein interacting with NS5A and geranylgera-
nylation was shown to be critical for HCV RNA replication (Wang et al. 2005). 
NS4B is supposed to be palmitoylated at two cysteine residues at the C-terminus 
and this modification seems to facilitate oligomerization (Yu et al. 2006).

Lipid droplets (LDs) are also often found in ultrastructural studies of the mem-
branous web (LDs, Fig. 1a, c). LDs are cellular storage organelles for neutral lipids 
surrounded by a phospholipid monolayer (Martin and Parton 2006). HCV core 
(Barba et al. 1997; Moradpour et al. 1996; McLauchlan et al. 2002) and NS5A (Shi 
et al. 2002; Brass et al. 2002) are associated to LDs, because membrane attach-
ment of both proteins is mediated by an amphipathic helix, capable of association 
with membrane mono- and bilayers. LDs are currently believed to play a central 
role in the coordination of viral RNA synthesis and virion morphogenesis by physi-
cally associating replication and assembly sites (Miyanari et al. 2007; reviewed in 
Bartenschlager et al. 2011; see also chapter “Virion Assembly and Release”, this 
volume). An interaction of core and NS5A domain III, which is probably regulated 
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by phosphorylation, has been shown to be critical for assembly of infectious virus, 
by recruiting both proteins to the same LDs (Appel et al. 2008; Tellinghuisen et al. 
2008; Masaki et al. 2008). Although core seems to be the main driver in recruiting 
the viral replication sites to LDs (Miyanari et al. 2007), viral double-stranded RNA 
has been found surrounding LDs also in the absence of core, suggesting an addi-
tional role of these organelles in RNA replication (Targett-Adams et al. 2008).

Autophagy has also been suggested to contribute to the biogenesis of the mem-
branous web and a very recent study even proposed that HCV RNA replication 
mainly takes place on autophagosomal membranes (Sir et al. 2012). Indeed, DMVs 
induced by HCV share morphological similarities with autophagosomes and colo-
calize with autophagosomal markers in some studies (Ferraris et al. 2010; Guevin 
et al. 2010). However, the functional role of autophagy in the HCV life cycle is 
still controversially discussed (reviewed in Dreux and Chisari 2011). Silencing of 
autophagy components indeed impaired HCV replication, but only very early in 
infection and not in persistent replication (Dreux et al. 2009; Guevin et al. 2010), 
suggesting an important role in translation of the viral RNA (Dreux et al. 2009), 
rather than in membranous web biogenesis. Autophagy has, furthermore, been dis-
cussed to be involved in subversion of innate immune responses against HCV (Ke 
and Chen 2011) and in production of infectious virus (Tanida et al. 2009).

In summary, the biogenesis of the membranous web is a complex process 
involving not only NS4B but all HCV nonstructural proteins and several host 
factors. In the light of the complexity of these membrane alterations, including 
DMVs, MMVs, LDs, and autophagosomes, we are far from understanding their 
precise functions in viral RNA replication.

3 � RNA Synthesis

3.1 � Limitations of Current Model Systems

Most of our knowledge on the distinct contribution of viral proteins to viral RNA 
synthesis is based on biochemical studies and structural analyses of individually 
expressed and purified proteins, particularly NS5B. This has been complemented by 
reverse genetics using replicons or infectious virus, particularly to dissect the func-
tion of cis-acting elements (see also chapter “Hepatitis C Virus RNA Translation”, 
this volume). However, requirements of RNA replication in cell culture are com-
plex, involving polyprotein processing, membranous web induction, interaction 
of cis-acting RNA elements (CREs) with proteins, RNA synthesis, and so on. This 
entire process seems to involve several cis-functions mediated by proteins synthe-
sized on their original template, indicated by the limited possibility to rescue lethal 
mutants by transcomplementation, which is currently only possible for distinct muta-
tions in NS5A and NS4B (Appel et al. 2005a; Jones et al. 2009; Fridell et al. 2011). 
Therefore, most mutations interfering with any step in the process of RNA synthe-
sis will finally result in an abrogation of RNA synthesis, without providing further 
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mechanistic insight. Some limited information into the complex interactions between 
nonstructural proteins has been gained by studies using intergenotypic chimeras 
(e.g. Binder et al. 2007) and by the selection of pseudoreversions, rescuing replica-
tion deficient mutants and thereby providing genetic evidence for functional interac-
tions (e.g. Lindenbach et al. 2007; Paredes and Blight 2008). Still, there are some 
major discrepancies between biochemistry and cell culture such as the promiscuity 
of viral proteins regarding template choice in vitro compared to the strict requirement 
for almost invariant cis-acting elements to allow RNA replication in cell culture. 
Biochemical studies on CRCs purified from replicon cells failed to close this gap. 
CRCs predominantly synthesize a single, full-length RNA product of predominantly 
positive polarity (Hardy et al. 2003a) and probably also some negative-strand RNA 
(Ali et al. 2002). RNA synthesis in this system requires at least helicase and poly-
merase activity as shown by specific inhibitors (Hardy et al. 2003a), involves de novo 
initiation of RNA synthesis (Hardy et al. 2003a) and gives rise to single- and dou-
ble-stranded RNA products (Lai et al. 2003). However, inhibition of NS5B is mainly 
achieved by chain terminating nucleotides in this system (Migliaccio et al. 2003; Lai 
et al. 2003), whereas several classes of allosteric nonnucleosidic inhibitors of NS5B 
and heparin failed to inhibit RNA synthesis (Ma et al. 2005), suggesting that CRCs 
contain stable complexes of the replicase bound to its RNA template. Therefore, it 
has not been possible to feed exogenous templates into CRCs, which strongly limits 
their use in mechanistic studies. Furthermore, this system is not accessible to reverse 
genetics, since active replication in cell culture is a prerequisite of CRC production, 
thereby precluding the study of mutations affecting defined steps of RNA replication. 
We are therefore currently lacking adequate in vitro models to address more specific 
interactions between HCV nonstructural proteins and their specific template, particu-
larly regarding the complex initiation of positive- and negative-strand RNA synthesis.

3.2 � Cis-Acting RNA Elements

CREs are mainly, but not exclusively, found in NTRs at the termini of the viral 
positive- and negative-strand RNA (Fig. 2). The RNA secondary structures and the 
functional roles of most cis-acting elements in the HCV genome have been mapped 
extensively in vitro and in cell culture, but the distinct mechanistic functions of 
individual stem loops are not known due to the lack of appropriate in vitro models.

3.2.1 � The 3′end of the Positive-Strand RNA

The 3′NTR is essential for viral RNA replication (Friebe and Bartenschlager 2002), 
presumably for the initiation and regulation of negative-strand synthesis (Binder et 
al. 2007). It is composed of a variable region, a polyU/UC tract of variable length 
and a highly conserved 98-bases element designated X-tail or 3′X, encompassing 
the 3′end of the viral genome (Fig. 2b; Tanaka et al. 1995; Kolykhalov et al. 1996). 
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The variable region is predicted to form two stem-loop structures, which partly 
overlap with the very 3′-terminal region of the NS5B coding sequence. Deletion of 
the variable region results in replicons with significantly reduced replication effi-
ciency, suggesting that this part of the 3′NTR is not essential, but contributes to 
efficient RNA replication (Friebe and Bartenschlager 2002; Yi and Lemon 2003a). 
The length of the polyU/UC tract varies between 30 and 90 nts among HCV iso-
lates (Kolykhalov et al. 1996). It is composed of homopolymeric uridine stretches 
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Fig.  2   Schematic representation of cis-acting replication elements. a 5′ end of the viral posi-
tive strand (Honda et al. 1996). Two copies of miR-122 binding to the 5′NTR are shown in grey.  
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interspersed by single cytosines. Uridine cannot be replaced by other homopoly-
meric nucleotides; however, a minimal length of 26–33 consecutive uridines is 
essential and sufficient for efficient RNA replication in cell culture (Friebe and 
Bartenschlager 2002; You and Rice 2008). Interruption of this minimal U homopol-
ymer by C residues is deleterious for replication, but the position of homopolymeric 
U within the polyU/UC tract is flexible (You and Rice 2008; Yi and Lemon 2003a). 
This polyU stretch might provide a binding platform for viral and cellular proteins 
(Friebe and Bartenschlager 2002; You and Rice 2008), since NS3 helicase, NS5A, 
and NS5B have been shown to preferentially bind to polyU (Gwack et al. 1996; 
Huang et al. 2005; Lohmann et al. 1997). However, the distinct functional role of 
the polyU/UC region in viral RNA synthesis has not been clarified yet.

The 98-nt X-tail is almost invariant among HCV isolates and is supposed 
to contain the main regulatory elements required for negative-strand synthesis 
(Kolykhalov et al. 1996; Tanaka et al. 1995). It comprises three experimentally val-
idated stem-loop structures (Blight and Rice 1997), which are all essential for viral 
replication (Friebe and Bartenschlager 2002; Yi and Lemon 2003b; Yi and Lemon 
2003a) and barely tolerate mutations (Yi and Lemon 2003b; Yi and Lemon 2003a), 
indicating that not only the structures, but also the sequences are critical for RNA 
replication. The very 3′end of the HCV genome is a uridine residue in all HCV iso-
lates analyzed so far and base paired in the very stable 3′-terminal SL1 (Fig. 2b). 
The terminal U can be replaced by C, in line with the requirements of the RdRp 
to initiate RNA synthesis with a purine base (G or A) (Cai et al. 2004). However, 
mutant replicons recovered from cell culture revealed reversions to U or even con-
tained additions of U residues in all cases, suggesting a strong selective pressure 
for a terminal U (Cai et al. 2004; Yi and Lemon 2003b).

Another CRE, designated SL3.2 or SL9266, has been identified within the NS5B 
coding region. Stem-loop 3.2 is part of a larger predicted cruciform like secondary 
structure (Fig. 2b; You et al. 2004) and engaged in a kissing-loop interaction with SL2 
in the X-tail. This interaction encompasses 7–8 complementary nts in the loop regions 
and is essential for RNA replication (Friebe et al. 2005). The position of SL3.2 can 
be moved into the 3′NTR and complementarity between the loop sequences of 
SL3.2 and SL2 was shown to be more important than the precise sequence (Friebe 
et al. 2005), arguing for a functional role of a pseudoknot structure at the 3′end of the 
genome. More recent studies suggest that the bulge region of SL3.2 can form an inde-
pendent alternative pseudoknot structure with upstream sequences around nucleotide 
9,110 (Diviney et al. 2008; Tuplin et al. 2012). Since both interactions of SL3.2 seem 
mutually exclusive, they might support a functional switch in the HCV replication 
cycle, e.g. from translation to replication (Tuplin et al. 2012).

3.2.2 � The 5′NTR and the 3′end of the Negative-Strand RNA

The 5′NTR encompasses 341–342 nts and has a dual function in the HCV replication 
cycle; first in the positive strand by functioning as an IRES driving RNA translation, 
and thus polyprotein synthesis (see chapter “Hepatitis C Virus RNA Translation”, this 

http://dx.doi.org/10.1007/978-3-642-27340-7_6
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volume) and second in the negative strand, providing CREs proposed to direct prog-
eny positive-strand synthesis. Interestingly, the 5′NTR and the complementary 3′end 
of the negative-strand RNA have been shown to adopt very different secondary struc-
tures, in line with their different functions in RNA translation and replication, respec-
tively (Fig. 2a and c, respectively) (Honda et al. 1996 compared to Smith et al. 2002; 
Schuster et al. 2002). Genetic analyses mapped the minimal region required for RNA 
synthesis to the 3′-terminal 125 nts, comprising SL-I’ and SL-IIz’ (Fig.  2c; Friebe 
and Bartenschlager 2009; Friebe et al. 2001). SL-IIy’ is important for efficient RNA 
replication, whereas the remaining stem loops only seem to have auxiliary functions 
(Friebe and Bartenschlager 2009). The distinct mechanistic roles of the stem-loop 
structures at 3′end of the negative strand are still ill defined. In case of SL-IIz’, the 
structure of the stem rather than the discrete sequence seems to be the major deter-
minant. Still it is interesting to note that two miR-122 seed sequences are located 
in the complementary region of SL-IIz’ in the 5′NTR (Fig. 2a; Jopling et al. 2005), 
suggesting a role of miR-122 in the proper formation of RNA secondary structures. 
In case of SL-I’ only the stem structure is essential for replication of genotype 1b, 
whereas genotype 2a is also sensitive to sequence alterations not affecting the stem 
structure (Friebe and Bartenschlager 2009; Luo et al. 2003). The 3′end of the HCV 
negative-strand genome encompasses a short single stranded region adjacent to SL-I’ 
terminating mostly with C and sometimes with U in clinical isolates, again reflecting 
the need of the RdRp to initiate RNA synthesis with a purine base (Cai et al. 2004). 
However, after multiple rounds of replication in cell culture a terminal C was found 
to be replaced by U (Cai et al. 2004), suggesting that A is the preferred initiating 
nucleotide for positive- and negative-strand synthesis in cell culture.

Additional conserved stem-loop structures have been found in the core coding 
sequence. These sequences are not contained in subgenomic replicons, and there-
fore seem not to be essential for RNA synthesis (Lohmann et al. 1999a). However, 
disruption of SLVI/SL87 in full-length viral genomes caused severe replication 
defects in vivo and in cell culture, suggesting that this stem loop has important 
functions in the regulation of viral RNA synthesis (Fig. 2a; Vassilaki et al. 2008; 
McMullan et al. 2007).

3.3 � The Viral RNA Polymerase NS5B

The viral RdRp NS5B is the driving force of RNA synthesis. The active enzyme can 
be expressed heterologously with recombinant baculovirus (Behrens et al. 1996) or 
in E. coli (Al et al. 1998) and a huge number of studies have shed light on the struc-
ture and biochemical properties of NS5B in vitro. The enzyme consists of a catalytic 
domain, followed by a linker sequence and a C-terminal membrane insertion sequence, 
which is essential for RNA replication in cell culture (Fig. 3a; Ivashkina et al. 2002; 
Moradpour et al. 2004), but seems not to significantly contribute to RNA synthesis in 
vitro (Lohmann et al. 1997; Yamashita et al. 1998). Removal of the membrane inser-
tion sequence, comprising the C-terminal 21 amino acid residues, increases solubility 
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and facilitates purification of NS5B; therefore, most biochemical and all structural 
studies so far used the so-called NS5BΔC21 enzyme (Ferrari et al. 1999) or even 
C-terminal deletions encompassing up to 60 amino acid residues (Leveque et al. 2003).

Structural analysis of the catalytic domain revealed a so-called right hand 
shape, common to many single-subunit polymerases, with fingers, thumb, and 
palm subdomains [Fig.  3a (Ago et al. 1999; Lesburg et al. 1999; Bressanelli  
et al. 1999)]. All regular structures published until very recently reveal a closed 
conformation, encircled on one side by the “fingertips”, which is a hallmark of 
viral RdRps, and on the other side by the linker and the so-called beta flap (or 
β-hairpin). The latter is specific to Flaviviridae RdRps [reviewed in (Lescar 
and Canard 2009)], but the linker or a variation thereof is common to de novo 

Fig. 3   Structure of the HCV polymerase in front views (left panels) and top views (right panels) 
(Bressanelli et al. 1999). a Ribbon model of HCV NS5B indicating the fingers (red), thumb (blue), 
palm (yellow) and linker (wheat) subdomains. Note the contact of fingertips and thumb, resulting 
in a closed structure. The beta flap in the thumb domain is indicated by green color. b Space fill-
ing model of the same structures as in (a) with template RNA (light gray) modeled. This structure 
represents the closed conformation, capable of binding the single-stranded template RNA and the 
two initiating nucleotides. Structural movements of the thumb and linker domains required for the 
transition to elongation are indicated by a blue and wheat colored arrow, respectively. c Crystal 
structure of the elongation mode of NS5B in a complex with a double-stranded replication inter-
mediate consisting of the template RNA (light gray) and newly synthesized RNA (dark gray)

(a)

(b)

(c)
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initiating RdRps (Butcher et al. 2001). In HCV NS5B, its functional role has not 
been fully clarified yet. Deletion of the entire linker (so-called ΔC47 or ΔC60 
constructs) strongly enhances polymerase activity in vitro and stimulates de novo 
initiation, suggesting a negative regulatory function (Leveque et al. 2003), whereas 
a recent study suggests that the linker plays an active role in the very first step of 
de novo initiation (Harrus et al. 2010). Anyhow, the closed conformation is sup-
posed to represent the initiation state of the polymerase, since the catalytic core 
only provides space for a single-stranded RNA template and nucleotides for de 
novo initiation of RNA synthesis, but not for a double-stranded RNA (Fig.  3b; 
Simister et al. 2009). The closed conformation, therefore, seems to be actively 
inhibit primer-dependent RNA synthesis by forming a “locked” structure pre-
venting access of primer-template complexes (Chinnaswamy et al. 2008; Ranjith-
Kumar et al. 2003).

3.3.1 � Template Requirements and Initiation Modes

Purified NS5B can initiate RNA synthesis by a primer-dependent mechanism or 
de novo (Behrens et al. 1996; Lohmann et al. 1997; Luo et al. 2000; Zhong et al. 
2000; Sun et al. 2000). De novo initiation at the 3′end of the viral positive- and 
negative-strand RNA is likely to be the physiological mode of initiation of RNA 
synthesis in infected cells, although this has not been experimentally validated yet. 
De novo initiation in vitro requires a terminal purine, but is most efficient with a 
G (Zhong et al. 2000). It can take place even on homopolymeric polypyrimidine 
templates at high nucleotide concentrations (>50 μM; Luo et al. 2000), suggest-
ing that no specific cis-acting elements are required. However, a stable second-
ary structure and a single-stranded sequence of at least three nucleotides has been 
shown to be optimal for de novo initiation on nonhomopolymeric templates (Kao 
et al. 2000), although a secondary structure is not absolutely required (Shim et al. 
2002). The 3′end of the HCV negative-strand genome consists of a stem loop with 
a single-stranded overhang, thereby corroborating the ideal structure for de novo 
initiation (Fig.  2b). Interestingly, the 3′end of the HCV positive-strand genome 
is buried within a stable stem structure, which cannot bind to the closed initia-
tion conformation of NS5B (Fig.  2a). In contrast, the positive-strand genome of 
the related pestiviruses terminates with 3–5 C residues adjacent to a stem loop, 
representing in theory an ideal template for de novo initiation by the polymerase 
(Yu et al. 1999). Indeed, it has been shown that the 3′end of the HCV negative 
strand is an excellent template for de novo initiation, whereas the 3′end of the pos-
itive-strand hardly gives rise to terminal de novo initiation (Reigadas et al. 2001; 
Binder et al. 2007), suggesting that auxiliary factors might be required to initiate 
negative-strand synthesis by NS5B, thereby probably allowing a tight regulation of 
this process.

However, de novo initiation by NS5B in vitro is not limited to the 3′end of the 
template, but can also take place internally (Binder et al. 2007; Shim et al. 2002) 
and on circular templates (Ranjith-Kumar and Kao 2006). This suggests that NS5B 
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in solution is in an equilibrium between the closed conformation observed with all 
crystal structures and an open conformation capable of binding to internal or circular 
initiation sites (Ranjith-Kumar and Kao 2006) and to primer templates (Lohmann et 
al. 1997; Behrens et al. 1996). Mn2+ ions seem to stabilize the closed conformation, 
thereby favoring terminal de novo initiation (Ranjith-Kumar et al. 2002).

3.3.2 � Steps of RNA Synthesis

RNA synthesis by NS5B in vitro can be separated into distinct steps, namely 
RNA binding, initiation, elongation, and termination. NS5B binds to a pleth-
ora of heteropolymeric RNA templates with no clear specificity for virus-
derived sequences, while the binding to homopolymers follows a distinct pattern 
(polyU > polyG > polyA > polyC) (Lohmann et al. 1997). RNA binding seems to 
be a very slow and inefficient process and accounts primarily for the low apparent 
specific activity of the enzyme in vitro (Liu et al. 2006). The enzymatic core of 
NS5B protects 8–10 nts from RNase digest (Kim et al. 2000) and binds to single-
stranded RNAs of >7 nts with high affinity (Kim et al. 2005).

De novo initiation of RNA synthesis involves several steps, which have been 
characterized by biochemical studies, supported by structural evidence (Fig.  3b; 
Harrus et al. 2010). After binding of a single-stranded template and the first two 
nts matching to the 3′end, a dinucleotide primer is synthesized, requiring high con-
centrations of the priming nts (Ferrari et al. 2008). These dinucleotide primers are 
produced in great abundance and accumulate in vitro, suggesting that they dissoci-
ate rapidly from the NS5B-template complex, whereas progression to processive 
elongation seems to be inefficient and rate limiting (Harrus et al. 2010; Shim et al. 
2002). This initial primer synthesis seems to be facilitated by a very closed confor-
mation, since a very high de novo initiation efficiency observed for NS5B from iso-
late JFH-1 correlated with a particularly closed structure (Simister et al. 2009). It, 
furthermore, requires a “platform” to support the first nucleotide, which has to move 
out of the active center upon addition of the third base. This platform has not been 
clearly identified in the structure of the polymerase, but it might be provided by the 
C-terminal linker sequence (Harrus et al. 2010) or by the beta flap in coordination 
with a GTP bound close to the active site, as suggested for pestiviruses (Lescar and 
Canard 2009; Choi et al. 2004; D’Abramo et al. 2006). Such a role of coordinating 
GTP in stabilizing the initiation complex might also explain the strong stimulating 
effect of high GTP concentration on de novo initiation of NS5B in vitro (Lohmann 
et al. 1999b; Harrus et al. 2010; Ranjith-Kumar et al. 2003).

The switch from primer synthesis to processive elongation requires high concen-
trations of the third base to be incorporated (Ferrari et al. 2008), and is furthermore 
facilitated by high GTP concentrations (Harrus et al. 2010). This switch requires a 
major conformational change in the polymerase structure, resulting in a move of the 
“priming platform” and an opening of the entire enzymatic core. The C-terminal 
linker is removed to accommodate a double-stranded RNA, allowing egress of the 
template-primer duplex, and the fingertips shift and adjust their contacts with the 
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thumb (Fig. 3c). The existence of such an “open” conformation is supported by data 
from a genotype 2a NS5B (Biswal et al. 2005) and by a recent structure of NS5B in 
complex with a primer template, which was obtained after deletion of the beta flap 
(Mosley et al. 2012). In this structure, the C-terminal linker is disordered and no 
longer occludes the exit from the catalytic site and the thumb domain is moved rela-
tive to palm and fingers by 20°, generating a large cavity capable of binding double-
stranded RNA (Mosley et al. 2012). Position 405 in the thumb domain seems to be 
a central switch in the transition from initiation to elongation, stabilizing a closed 
conformation for dinucleotide synthesis, on the one hand, and facilitating the tran-
sition to the open conformation, on the other hand, (Scrima et al. 2012) and this 
position is also critical for efficient RNA replication in cell culture (Schmitt et al. 
2011). It should be noted that the C-terminal linker, supposed to take part in the 
major conformational switch to elongation, is directly connected to the transmem-
brane segment of NS5B (Ivashkina et al. 2002) and thereby will probably cause a 
repositioning of the entire enzyme relative to the membrane.

Once RNA synthesis is initiated, NS5B elongates the nascent RNA by about 
100–400 nts per minute and is capable to processively copy an entire RNA 
genome in vitro (Oh et al. 1999; Lohmann et al. 1998; Simister et al. 2009), sug-
gesting that no helicase is required to resolve secondary structures. In this stage, 
the polymerase is tightly bound to its template and elongation complexes can even 
be stalled and purified (Jin et al. 2012). Elongation requires only low nucleotide 
concentrations compared to the initiation reaction (Jin et al. 2012). Little is known 
about termination of RNA synthesis; however, the polymerase might just fall off 
after approaching the end of the template.

RNA synthesis by NS5B is error prone and provides the molecular basis of the 
high genetic variability of HCV isolates. A recent study revealed a high error rate 
of ca. 10−3 per site with a strong bias toward G:U/U:G mismatches for NS5B in 
vitro, which was corroborated by an observed 75-fold difference in transitions 
over transversions in vivo (Powdrill et al. 2011).

Although the polymerase is capable of de novo initiation and copying an entire 
genome in vitro without the help of other factors, there are still some open ques-
tions and discrepancies between the properties of NS5B in vitro and replication in 
cell culture. The overall slow and inefficient initiation reaction, requiring very high 
nucleotide concentrations in vitro, suggests that this process might be facilitated by 
auxiliary factors in vivo (Harrus et al. 2010). It is, furthermore, puzzling that the 
3′end of the positive-strand RNA is not a bona fide template for de novo initiation, 
suggesting that initiation of negative-strand synthesis might be a tightly regulated 
process, requiring additional co-factors. The absence of a clear specificity for viral 
templates in vitro is in striking contrast to the importance of the CREs for replication 
in cell culture. Finally, NS5B shows a strong preference for G as initiating nucleotide 
in vitro, but constitutively initiates negative-strand synthesis with A in vivo and even 
tends to convert initiation of positive-strand synthesis from G to A in cell culture 
(Cai et al. 2004). Taken together, analysis of purified NS5B in vitro as well as struc-
tural studies provided a number of important insights into the mechanisms of HCV 
RNA synthesis, but did not reveal the complex regulation of this process in vivo.
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3.4 � Contribution of Other Viral Proteins to RNA Synthesis

Although it is clear from reverse genetics studies that NS3/4A and NS5A have 
essential functions in RNA replication, their distinct contribution to RNA synthesis 
is still unresolved. A study using intergenotypic replicon chimeras found that NS3 
helicase, NS5A, and NS5B are required to recognize genotype-specific signals for 
positive-strand synthesis, suggesting that a complex of these proteins is engaged 
in initiation of RNA synthesis (Binder et al. 2007). However, deeper mechanistic 
insights are currently limited due to the lack of appropriate model systems. Since 
the individual functions of each nonstructural protein have been described in detail 
in the chapter “Hepatitis C Virus Proteins: From Structure to Function”, this volume, 
the present chapter will focus on the knowledge about their interactions.

The role of the NS3 NTPase/helicase (NS3h) in RNA synthesis is particularly 
enigmatic. The helicase activity might be involved in initiation of RNA synthesis, 
e.g. by resolving strong stem-loop structures at the 3′end, thereby generating a 
template accessible to de novo initiation by NS5B. In addition, NS3h could sup-
port NS5B in the elongation phase by unwinding double-stranded replication inter-
mediates. Finally, a ssRNA translocase activity might help to strip proteins off the 
RNA or deliver RNA for packaging into virions (Gu and Rice 2010). However, 
none of these functions could yet be validated in cell-based assays. Still, a number 
of cross-talks between NS3h and other nonstructural proteins have been demon-
strated in vitro, which might point to important regulatory functions in vivo. On 
the one hand, the helicase activity of NS3 is regulated by the NS3 protease domain 
and by NS5B (Jennings et al. 2008; Zhang et al. 2005), on the other hand, NS3h 
stimulates the RdRp in vitro (Piccininni et al. 2002), suggesting that NS3 and 
NS5B indeed might function together.

An important regulatory role for the replicase has recently been assigned to 
NS4A, the cofactor of NS3 protease. Genetic evidence points to the C-terminal 
region functioning as an electrostatic switch, regulating NS3 protease function and 
NS5A phosphorylation (Lindenbach et al. 2007).

NS4B, besides its previously discussed role in organizing the membranous web, 
might also have more distinct roles in RNA synthesis. NS4B has been shown to inhibit 
NS5B in vitro (Piccininni et al. 2002). NS4B is furthermore capable of binding RNA 
(Einav et al. 2008; Einav et al. 2004) and has an NTPase activity; however, the role of 
the latter two functions has not been clarified yet. In addition, genetic evidence for an 
interaction of NS4B with NS3 has been reported (Paredes and Blight 2008), which 
might regulate RNA replication beyond the morphogenesis of the replication sites.

Essential functions of NS5A in viral RNA synthesis, particularly of the hypophos-
phorylated variant, are clearly suggested from genetic studies. Many cell culture 
adaptive mutations increasing RNA replication efficiency of genotype 1 isolates 
and reducing the level of hyperphosphorylated NS5A are found in NS5A (for fur-
ther details see chapters “Cell Culture Systems for Hepatitis C Virus” and “Hepatitis 
C Virus Proteins: From Structure to Function”, this volume). The analysis of the 
mechanistic role of NS5A is particularly hampered by the existence of these different 
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phospho-isoforms. The determinants involved in regulation of phosphorylation are ill 
defined as is the case for most of the phosphorylation sites and their role in viral 
RNA synthesis. However, the synthesis of p58 requires at least an NS3-5A polypro-
tein (Koch and Bartenschlager 1999); therefore, different purified phospho-isoforms 
have not been accessible for in vitro assays yet and it can be assumed that heterolo-
gously expressed NS5A might not be properly phosphorylated. Still, in vitro studies 
suggest that low doses of NS5A stimulate NS5B, whereas high doses are inhibitory 
to the polymerase (Shirota et al. 2002; Quezada and Kane 2009). An inhibitory func-
tion of NS5A was also found in a cell-based assay (Ranjith-Kumar et al. 2011), sug-
gesting a regulatory role of NS5A for RNA synthesis. The most distinct biochemical 
property of NS5A that could be envisaged in RNA synthesis is its RNA-binding 
activity, which resides in domain 1 (Huang et al. 2005) and is modulated by domains 
2 and 3 (Foster et al. 2010). One of the available crystal structures of NS5A domain 
1, indeed, suggests that NS5A dimers form a basic cleft capable of accommodating 
RNA (Tellinghuisen et al. 2005), which might play a role in RNA transport, e.g. from 
replication to assembly sites (see also chapters “Hepatitis C Virus Proteins: From 
Structure to Function” and “Virion Assembly and Release”, this volume). In addi-
tion, NS5A interacts with and recruits a plethora of host cell proteins, which might 
be directly or indirectly involved in RNA synthesis (see below).

3.5 � Host Factors Involved in RNA synthesis

Several high content screening approaches, including recent siRNA screenings 
brought up a huge number of cellular proteins which are supposed to be involved 
in HCV RNA replication (e.g. Li et al. 2009; Tai et al. 2009). Host factors involved 
in the morphogenesis of the membranous web, like PI4KIIIα, have been described 
above; therefore, this part will focus on some of those which might be directly 
involved in RNA synthesis.

The human VAMP-associated protein A (hVAP-A) and its isoform hVAP-B were 
identified in yeast two-hybrid screens using NS5A as a bait and were shown to inter-
act with NS5A and NS5B (Gao et al. 2004; Hamamoto et al. 2005). Because of their 
role in cellular vesicle transport hVAPs are discussed to be involved in the forma-
tion of viral membrane rearrangements (reviewed in Moriishi and Matsuura 2007). 
Interestingly, hVAP-A was found to bind only to hypophosphorylated, but not to 
hyperphosphorylated NS5A (Evans et al. 2004) and is still the only known host pro-
tein differentially interacting with the phospho-isoforms of NS5A. Therefore, hVAP-A 
was suggested to have a more direct role in RNA synthesis, e.g. regulation of viral 
replicase activity in a NS5A phosphorylation-dependent manner (Evans et al. 2004).

Cyclophilins are peptidyl-prolyl cis/trans isomerases and their essential role in 
HCV replication was identified by the inhibition of HCV replication upon cyclo-
sporin A treatment of replicons (Watashi et al. 2003). Initially, cyclophilin B 
was found to interact with NS5B, regulating template binding of the polymerase 
(Watashi et al. 2005). More recent results rather suggest that cyclophilin A (CyPA) 
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is critical for viral RNA replication (Kaul et al. 2009; Liu et al. 2009) and resist-
ance to cyclophilin inhibitors point to NS5A as the main target site of CyPA (Yang 
et al. 2010; Kaul et al. 2009). CyPA has, furthermore, been shown to directly con-
vert proline residues in NS5A domains 2 and 3 (Coelmont et al. 2010; Verdegem 
et al. 2011), probably inducing conformational changes critically involved in the 
function of NS5A. Dependence on CypA can be overcome in part by reducing the 
cleavage kinetics at the NS5A/NS5B junction, arguing that a kinetically controlled 
folding step of NS5A plays an important role for viral replicase activity (Kaul et 
al. 2009).

The liver specific microRNA miR-122 is one of the most remarkable host fac-
tors of HCV, regulating RNA abundance in cell culture (Jopling et al. 2005) and in 
vivo (Lanford et al. 2010). MiR-122 is a critical factor restricting viral replication 
in cultured cells (Narbus et al. 2011) and might substantially contribute to the liver 
tropism of HCV. MiR-122 binds to two seed sequences in the 5′NTR, forming an 
unconventional micro-RNA/target complex, encompassing the 5′end of the viral 
genome, thereby probably preventing degradation by RNases and/or induction of 
innate immune responses (Fig. 2a; Machlin et al. 2011). Indeed, miR-122 has been 
found to stabilize the viral genome in an Ago2-dependent manner (Shimakami et 
al. 2012). In contrast to conventional microRNA functions on mRNA, miR-122 
also stimulates translation of the viral RNA (see chapter “Hepatitis C Virus RNA 
Translation”, this volume).

Cellular RNA-binding proteins are also supposed to serve important functions 
at different steps of HCV replication. However, 26 cellular proteins specifically 
binding to the IRES (Lu et al. 2004) and more than 70 interacting with the 3′NTR 
(Harris et al. 2006) have been identified in proteomic studies; therefore a detailed 
description of all of them is beyond the scope of this chapter, but several of them 
are discussed in the chapter “Hepatitis C Virus RNA Translation”, this volume, 
with respect to their role in translation. Little is known about the role of cellular 
RNA-binding proteins in RNA replication, however, the NF/NFAR proteins have 
been shown to mediate interactions between the 5′ and 3′NTR of the viral posi-
tive-strand RNA and might be involved in the regulation of translation and replica-
tion of HCV and the related pestiviruses (Isken et al. 2007; Isken et al. 2003).

4 � Intracellular Dynamics of RNA Synthesis

Little is known about the dynamics of HCV RNA replication in vivo and the 
HCV RNA copy number in infected hepatocytes. This is particularly due to the 
difficulties in detecting viral antigens and RNA in the liver, arguing for overall 
relatively low viral RNA and protein levels. However, mathematic modeling of 
viral decline after therapy revealed that about 1012 virions are produced per day 
in infected individuals (Neumann et al. 1998), suggesting also a relatively high 
dynamics of RNA replication in the infected liver. Previous studies in chimpan-
zees determined 103  –  3  ×  105 genomes per μg of total liver RNA (equivalent 
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to ~104–105 cells), depending on the sample. Therefore, it was assumed that 0.1–
30 % of hepatocytes are infected, assuming that an infected cell should contain at 
least 10 positive-strand RNA genomes to maintain persistent replication (Bigger  
et al. 2004). Recent studies using highly sensitive two-photon microscopy found 
that up to 20 % of human hepatocytes are infected, most of the antigen positive 
cells containing clearly detectable amounts of double-stranded RNA, arguing 
for much higher HCV RNA copy numbers than 10 per infected cell (Liang et al. 
2009).

In cell culture, the dynamics of RNA synthesis is highly variable in transient 
replication models, depending on the viral isolate, the permissiveness of the host 
cells, host cell growth, and so on. (see chapter “Cell Culture Systems for Hepatitis 
C Virus”, this volume). Detailed replication kinetics are only available for the most 
efficient system, replication of the genotype 2a isolate JFH-1 in Huh-7 cells, either 
upon transfection with subgenomic replicons (Binder et al. 2007) or after virus 
infection (Keum et al. 2012), revealing very similar results. First viral negative-
strand RNAs are detectable 4  or 6  h after transfection or infection, respectively. 
After this time point, negative-strand RNA levels increase exponentially, reaching 
a plateau at 24–48 h and slightly declining later on. Most (>90 %) of the incom-
ing positive-strand RNA is degraded within the first hours in both model systems 
reaching a minimum at the onset of negative-strand synthesis (Binder et al. 2007; 
Keum et al. 2012). At this time point, positive- to negative-strand ratios are ~1:1, 
then exponential positive-strand synthesis starts and parallels negative-strand syn-
thesis, again reaching a plateau 24–48 h after transfection/infection, with a positive- 
or negative-strand ratio of ~10:1. This ratio stays constant in case of the replicon 
(Binder et al. 2007), but interestingly increases up to 100:1 in case of the infection 
model (Keum et al. 2012). These data overall suggest that only a minority of incom-
ing positive strands are entering into a productive replication cycle, starting with a 
1:1 conversion into probably double-stranded replication intermediates (Targett-
Adams et al. 2008). The initial lag-phase of 4–6 h might represent the time required 
for polyprotein translation, generation of the membranous replication compartment 
and RNA synthesis (100–400 nts/min. in vitro) (Lohmann et al. 1998; Simister et al. 
2009). Asymmetric RNA synthesis is established within a few hours later, rapidly 
reaching the 10:1 excess of positive-strand RNA typical for all positive-strand RNA 
viruses. The plateau of RNA synthesis reached within 24–48 h for JFH1 probably 
reflects restrictions by the host cell, e.g. due to limiting host factors involved in RNA 
synthesis (Lohmann et al. 2003). Less efficient genotype 1 replicons exhibit a much 
slower replication kinetics with no clear exponential phase and reach steady-state 
replication levels at much later time points (Binder et al. 2007; Krieger et al. 2001). 
The strong increase of positive-to-negtive-strand ratios observed late in infection, 
but not for replicons, is counterintuitive, since positive-strand genomes should rather 
be depleted due to the secretion of virions (Keum et al. 2012). However, negative-
strand synthesis, in contrast to positive-strand synthesis, probably depends on the 
continuous generation of new replication sites by positive-strands entering into new 
translation/RNA replication cycles, which might be limited during the full viral life 
cycle because of the competition with virion production.

http://dx.doi.org/10.1007/978-3-642-27340-7_2
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In steady-state cultures of HCV replicon cells, viral RNA and protein amounts 
have been thoroughly quantified and seem quite similar for different cell clones 
and viral isolates, arguing for a balance between cell growth and viral replica-
tion which is dictated by the selective pressure (see chapter “Cell Culture Systems 
for Hepatitis C Virus”, this volume). Viral negative strands are the most limiting 
component in replicon cells with less than 100 copies per cell on average, which 
also represents by definition the maximal number of active replication sites per 
cell (Quinkert et al. 2005). In contrast, more than 1,000,000 copies of nonstruc-
tural proteins are found, indicating that not all vesicular structures seen in EM 
or antigen positive dots in IF studies can represent active replication complexes 
(Quinkert et al. 2005). Based on their resistance to proteases, only a subfraction of 
less than 5 % of these protein copies seem to be engaged in the formation of viral 
replication sites (Miyanari et al. 2003; Quinkert et al. 2005). Interestingly, roughly 
1,000–5,000 positive-strand RNA molecules per cell were reported for transient 
and steady-state cell cultures and this number might represent a limit of Huh-7-
based cell cultures (Quinkert et al. 2005; Keum et al. 2012; Blight et al. 2002).

Mathematic modeling revealed that the sequestration of viral RNA into mem-
branous replication compartments might be an important factor in restraining viral 
RNA synthesis and defining these steady-state levels (Dahari et al. 2007). Since 
the half lives of viral NS-proteins and viral positive-strand RNA in replicon cells 
have been shown to be 11–16 h (Pietschmann et al. 2001; Pause et al. 2003), it can 
be estimated that only about 1,000 positive-strand RNA molecules are synthesized 
per day per cell by ca. 100 replicase complexes (Quinkert et al. 2005). In conse-
quence, each newly synthesized positive strand has to be excessively translated to 
yield the ascertained surplus of proteins, whereas RNA synthesis is a rather rare 
event, which most likely is achieved only by a few nonstructural protein copies 
(Fig. 1b). However, it is currently unclear, which mechanisms render a few repli-
case copies active and the majority inactive.

5 � Conclusions and Future Perspectives

Based on our still patchy understanding described above, it is tempting to sum-
marize our current knowledge on viral RNA replication in a tentative succession 
of events. After release of the viral genome into the cytoplasm of the host cell, the 
positive-strand RNA is translated giving rise to numerous polyprotein copies at the 
ER-membrane, which are co- and post-translationally processed into structural and 
nonstructural proteins. A fraction of NS3/4A, NS4B, NS5A, and NS5B drives the 
formation of membrane alterations, mainly DMVs, supported by several host fac-
tors, e.g. PI4KIIIα. It seems likely that active replication sites are connected to the 
cytoplasm to allow access of nucleotides and release of newly synthesized RNA 
(Fig. 1a, b). Negative-strand synthesis is most likely initiated within such vesicular 
structures, resulting in a probably (partially?) double-stranded replication interme-
diate. Since most nonstructural proteins cannot be complemented in trans, it can 
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be assumed that RNA synthesis is initiated from a protein complex translated from 
the same RNA molecule. This protein complex might assemble at the polyU tract 
of the genome and probably contains the entire set of NS3 to 5B and some host 
factors. Initiation of negative-strand synthesis involves cis-acting elements within 
NS5B and the 3′NTR and might be the most tightly regulated step in the entire 
process of RNA replication. Since the 3′end of the positive strand is buried in a 
strong stem, it is not a template for de novo initiation of RNA synthesis by the 
polymerase; therefore, it seems likely that additional factors like the viral helicase 
might be essential at this step. NS5B initiates RNA replication by production of 
a dinucleotide primer, then undergoes a huge conformational change and proces-
sively copies the entire genome. Currently it is not clear, whether primer synthesis 
really takes place at the 3′end or at a different site of the genome, as in case of 
poliovirus (Paul et al. 2000), with a subsequent transfer of the polymerase/primer 
complex to the 3′end. Due to the low and limiting number of negative-strand 
RNA, it is furthermore tempting to speculate that negative-strand synthesis can be 
initiated only once from a positive strand by a cis-acting protein complex trans-
lated on the same RNA. In this scenario, initiation of negative-strand RNA would 
essentially require a preceding translation of the positive-strand RNA, resulting in 
the formation of a new replication vesicle and each replication site would indeed 
contain only one negative-strand RNA/replication intermediate (Fig. 1b). At least 
in vitro, synthesis of progeny positive strands can directly be initiated by the pol-
ymerase due to a favorable 3′ terminal structure of the negative strand, thereby 
probably allowing multiple initiation cycles, resulting in an overall surplus of pos-
itive-strand RNA. The progeny positive-strand RNA is released into the cytoplasm 
by a yet to be defined mechanism, which could involve NS5A and the translocase 
function of the NS3 helicase. Mechanisms terminating the lifespan of an active 
replication site are not known so far. However, the connection to the cytoplasm 
might simply be constricted after a certain time, sequestering the replication inter-
mediates inside DMVs to prevent recognition by innate immunity, as suggested 
for arteriviruses (Knoops et al. 2011).

Many of the mechanisms in this model are hypothetical and require experimental 
validation. Particularly, enigmatic are the transition from translation to replication, 
the role of the NS3 helicase, the function of NS5A and the distinct roles of its phos-
pho-isoforms, the interplay of CREs with viral and host proteins, the initiation and 
regulation of RNA synthesis, and the morphology of active replication sites, just 
to name a few. The complex linkage between translation/replication and cis-/trans-
acting functions in the replication cycle of positive-strand RNA viruses severely 
impedes the analysis of individual steps of RNA synthesis in cell culture models. 
Therefore, further mechanistic insights will require more sophisticated in vitro mod-
els allowing further dissecting the complexities governing HCV RNA synthesis.
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