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Abstract. A point set P ⊆ R
2 is universal for a class G if every graph of

G has a planar straight-line embedding into P . We prove that there exists a
O(n( log n

log log n
)2) size universal point set for the class of simply-nested n-vertex

planar graphs. This is a step towards a full answer for the well-known open prob-
lem on the size of the smallest universal point sets for planar graphs [1,5,9].

1 Introduction

A planar straight-line embedding of a graph G into a point set P is a mapping of each
vertex of G to a distinct point of P and of each edge of G to the straight-line segment
between the corresponding endpoints so that no two edges cross. Let G be a class of
n-vertex planar graphs and P be a point set of size m, with m ≥ n. Point set P is
universal for the class G if for every G ∈ G, G has a planar straight-line embedding
into P .

Asymptotically, the smallest universal point set for general planar graphs is known to
have size at least 1.235n [6,12], while the best known upper bound is O(n2) [7,10,13].
Characterizing the asymptotic size of the smallest universal point set is a well-known
open problem also referred in [1,5,9].

A subclass of planar graphs for which a “small” universal point set is known is the
class of outerplanar graphs, that is, the graphs that admit a straight-line planar embed-
ding with all vertices incident to the outer face. Gritzmann et al. [11] and Bose [4]
proved that any point set of size n is universal for outerplanar graphs. In [11] it is no-
ticed that outerplanar graphs are the largest class of graphs for which any arbitrary point
set is universal.

A generalization of outerplanar graphs are k-outerplanar graphs, k ≥ 2. A planar
embedding of a graph is k-outerplanar if removing the vertices of the outer face yields
a (k − 1)-outerplanar embedding, where 1-outerplanar is an outerplanar embedding.
Vertices removed at the i-th step are at level i. A graph is k-outerplanar if it admits a
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k-outerplanar embedding. Note that no (arbitrarily large) convex point set is universal
for k-outerplanar graphs, k ≥ 2.

The decision question of whether a given planar graph admits a planar straight-line
embedding into a given point set of the same size was proved to be NP-hard, even for
2-outerplanar graphs and 3-level point sets [5].

A k-outerplanar graph is simply-nested [8] if levels 1 to k − 1 are chordless cy-
cles and level k is either a cycle or a tree. A planar graph is simply-nested if it is
k-outerplanar simply-nested for some k ≤ n. Simply-nested graphs turned out to be
useful to derive some properties of planar graphs. Cimikowski [8] proved hamiltonicity
of simply-nested planar triangulations. Baker [3] used these graphs to derive approx-
imation algorithms for various NP-complete problems on planar graphs. A variant of
nested triangulations was explored by Yannakakis in his celebrated result on book em-
beddings of planar graphs [14].

In this paper we show a O(n( log n
log log n )2)-size universal point set for simply-nested

n-vertex graphs (Sect. 3). Such result is based on the construction of a 8n + 8-size
universal point set for simply-nested n-vertex graphs for which the number of vertices
on each of level is known in advance (Sect. 2).

Our results find applications to another class of graphs, quite popular in Graph Draw-
ing. In [2] Bachmaier et al. defined a graph to be (proper) k-radial planar if given a
partition of its vertices into k concentric circles, its edges can be drawn as monotonic
curves between (consecutive) circles without crossings and showed that radial planarity
is decidable in linear time. Our results give a small universal point set for proper k-
radial planar graphs, since they can be easily proved to be a subclass of simply-nested
planar graphs.

2 A Universal Point Set for Simply-Nested Planar Graphs with ni

Vertices on Level i

In this section we describe a universal point set P of size 8(
∑k

i=1 ni + k) = O(n)
for simply-nested planar graphs in which the number ni of vertices at each level i is
known in advance. Note that, when this strong assumption is not possible, the same
construction yields a point set with a quadratic number of points, namely 8(

∑k
i=1 n +

k) = O(n2), as k = O(n). However, constructing the point set under this assumption
is the basis of a construction, described in Sect. 3, that leads to subquadratic size in the
general case.

We aim at placing the vertices of level i on a circle with a number of available points
proportional to ni. Then, we would like to place the vertices of level i + 1 greedily
on a circle internal to the previous one. This is difficult for the following reason. If a
vertex of level i + 1 is connected to many vertices of level i, the angle spanned by its
connections gets close to 2π, and an arbitrary number of points of the internal circle
become “unusable”. See Fig. 1(a). Hence, we use a technique that places the vertices of
each level on two concentric circles.
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Fig. 1. (a) Problems in using one circle per level. (b) Construction of circle Cm
1 . (c) Construction

of circle Cb
1 .

2.1 Construction of the Point Set

The points of P are on 2k concentric circles Cm
1 , Cb

1, . . . , C
m
k , Cb

k. For each level
i = 1, . . . , k, circles Cm

i and Cb
i are the main circle and the back-up circle of level

i, respectively. Both have 4ni + 4 points. In the following we describe how to choose
the radius and the distribution of the points for each circle.

Let l and l′ be two orthogonal lines crossing at a point c, that is the center of circles
Cm

i and Cb
i (i = 1, . . . , k). The parts of the plane delimited by l and l′ are the quadrants.

For each circle C, denote by pN (C) and pS(C) the intersections between C and l,
and by pW (C) and pE(C) the intersections between C and l′. Points pN(C), pS(C),
pE(C), and pW (C) are the cardinal points of C.

Let Cm
1 be a circle centered at c with any radius rm

1 . Place a point of P on each of
pN (Cm

1 ), pS(Cm
1 ), pW (Cm

1 ), and pE(Cm
1 ). Then, place n1 points of P in each arc of

Cm
1 determined by lines l and l′, in such a way that for any two consecutive points pa

and pb that are internal to a quadrant there exists a point pc in the opposite quadrant,
that is, its unique non-adjacent quadrant, such that triangle (pa, pb, pc) contains c. Such
a placement of points is always realizable. Namely, consider two opposite quadrants Q
and Q′. Place a point pa on Cm

1 in Q and a point p′a on Cm
1 in Q′ such that the center

c is to the left of the oriented segment
−−−→
pap′a . Then place a point pb on Cm

1 in Q such

that c is to the left of the oriented segment
−−→
p′apb. Keeping on placing points in this way

yields a point set with the desired property. See Fig. 1(b).
Let Cb

1 be a circle centered at c with a radius rb
1 < rm

1 such that, for every triangle
(pa, pb, pc) composed of three points of Cm

1 , if (pa, pb, pc) contains c, then it also con-
tains Cb

1. Then, place 4n1 + 4 points on Cb
1 in such a way that, for each point p ∈ Cm

1

there exists a point p′ on the intersection between Cb
1 and the radius of Cm

1 to p. Note
that, this implies that for any two consecutive points p′a and p′b of Cb

1 that are internal
to a quadrant there exists a point p′c of Cb

1 in its opposite quadrant such that (p′a, p′b, p
′
c)

contains c. See Fig. 1(c).
Then, for each level i, with i = 2, . . . , k, construct the main circle Cm

i and the
back-up circle Cb

i as follows.
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Circle Cm
i is centered at c, has radius rm

i < rb
i−1, and for any triangle composed

of two consecutive points p′a and p′b of Cb
i−1 and a point p′c in the opposite quadrant of

Cb
i−1, if (p′a, p′b, p

′
c) contains c, then it also contains Cm

i .
Place a point of P on each cardinal point of Cm

i . Then, place ni points in each arc of
Cm

i determined by l and l′ in such a way that: (a) for any two consecutive points pa and
pb of Cm

i that are internal to a quadrant there exists a point pc of Cm
i in the opposite

quadrant such that (pa, pb, pc) contains c; (b) for any two points p1, p2 of Cm
i−1 that

are in opposite quadrants, consider the quadrant Q that is completely contained in the
wedge delimited by the half-lines from c to p1 and from c to p2 whose angle is smaller
than π. Then, there exists a point p3 of Cm

i in Q such that triangle (p1, p2, p3) contains
no point of Cm

i (see Fig. 2(a)); (c) the quadrilateral composed of points pN(Cm
i−1),

pS(Cm
i−1), pW (Cm

i ), and pE(Cm
i ) contains all the points of Cm

i (see Fig. 2(b)); (d) the
quadrilateral composed of points pE(Cm

i−1), pW (Cm
i−1), pN (Cm

i ), and pS(Cm
i ) con-

tains all the points of Cm
i (see Fig. 2(b)). Note that a point set with these properties can

always be constructed. Namely, a point set satisfying property (a) can be constructed
analogously as for Cm

1 (see Fig. 1(b)), while properties (b)–(d) can be easily satisfied
by making the radius of Cm

i small enough.
Circle Cb

i is centered at c, has radius rb
i < rm

i , and is such that for every triangle
(pa, pb, pc) composed of three points placed on Cm

i , if (pa, pb, pc) contains c, then it
also contains Cb

i . Then, place 4ni + 4 points of P on Cb
i in such a way that, for each

point p ∈ Cm
i there exists a point p′ on the intersection between Cb

i and the radius of
Cm

i to p. Note that, this implies that for any two consecutive points p′a and p′b of Cb
i that

are internal to a quadrant there exists a point p′c of Cb
i in its opposite quadrant such that

triangle (p′a, p′b, p
′
c) contains c.

2.2 Embedding a Simply-Nested Planar Graph on Point Set P

Let G be any simply-nested planar graph. We assume that G has only triangular faces;
if it is not the case, we add dummy edges.
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Fig. 2. Construction of circle Cm
i : (a) Triangle (p1, p2, p3) contains no point

of Cm
i ; (b) quadrilaterals (P N (Cm

i−1), P
E(Cm

i ), P S(Cm
i−1), P

W (Cm
i )) and

(P N(Cm
i ), P E(Cm

i−1), P
S(Cm

i ), P W (Cm
i−1)) contain all the points of Cm

i .
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The drawing of G on P is constructed iteratively, starting by placing the vertices
of level 1 on any n1 points of circle Cm

1 in such a way that the polygon representing
the cycle composed of such vertices contains the center c. Note that, as any triangle
composed of three points of Cm

1 and containing c also contains Cb
1 , the constructed

polygon contains Cb
1 , as well.

In order to describe how to embed the vertices of level i = 2, . . . , k, we first give
a further definition. We say that the drawing of the vertices of level i is 2-radial if it
satisfies the following properties: (a) all the vertices of level i are on circle Cm

i , except
for at most two vertices v′∗ and v′′∗ , that are possibly drawn on two points of circle Cb

i−1.
(b) Given the two lines tangent to Cb

i through v′∗ (through v′′∗ ), the triangle composed
of their tangent points to Cb

i and v′∗ (v′′∗ ) does not contain any vertex of level i placed
on a point of Cm

i .
Then, for each level i = 2, . . . , k, we assume that a 2-radial drawing of level i− 1 is

given, and we greedily construct a 2-radial drawing of level i, as follows.
Consider the vertices v1, . . . , vh of level i that have more than one neighbor in level

i − 1. Observe that, the set of vertices that is the union of the neighbors of v1, . . . , vh

coincides with the set of vertices of level i − 1. As the vertices of level i − 1 are
already drawn, it is possible to determine, for each vertex vj (j = 1, . . . , h) of level i,
the angle αj of the smallest wedge Wj centered at c and containing all the neighbors

u1
j , . . . , u

m(j)
j of vj . The wedge Wj of a vertex vj is depicted as a shaded region in

Fig. 3(a). Note that,
∑

j αj = 2π, and hence at most one angle αj , with 1 ≤ j ≤ h, can
be greater than or equal to π.

First, we study the case (Case 1) when there exists one angle αj ≥ π. Note that, there
exists at least one quadrant Q such that Q is not completely contained into Wj , while
the opposite quadrant of Q is. Refer to Fig. 3(a). Then, by construction, there exist two
consecutive points p′a and p′b of Cb

i−1 in Q that are not in Wj (they might be on the
two delimiting half-lines of Wj) and a point p′c of Cb

i−1 in the opposite quadrant of Q
such that triangle (p′a, p′b, p

′
c) contains circle Cm

i . This implies that triangle (pa, pb, p
′
c)

contains Cm
i , as well, where pa and pb are the points of Cm

i−1 on the same radius as p′a
and p′b, respectively.
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Fig. 3. (a) Case 1. Placement of a vertex vj such that αj ≥ π. (b) Case 1.1.1. There exists one
angle αj ≥ π, vj−1 = vj+1, and v′ = vj−1.
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Place vertex vj on point p′c and draw the edges between vj and its neighbors u1
j , . . . ,

u
m(j)
j . As (pa, pb, p

′
c) contains Cm

i , none of such edges crosses Cm
i .

Note that, vertex u1
j (vertex u

m(j)
j ) has at least one neighbor v′ (one neighbor v′′) of

level i different from vj , possibly v′ = vj−1 (possibly v′′ = vj+1).
First (Case 1.1), suppose that vj−1 = vj+1. We distinguish three cases, based on

whether v′ = vj−1 (Case 1.1.1), v′′ = vj+1 (Case 1.1.2), or none of the two cases
holds (Case 1.1.3). Cases 1.1.1 and 1.1.2 are mutually exclusive.

If v′ = vj−1 (Case 1.1.1), place vj−1 on p′a. By construction, triangle (p′a, p′b, p
′
c)

contains Cm
i , which implies that edges (vj , vj−1), (um(j)

j , vj−1), and (u1
j , vj−1) do not

cross Cm
i . Also, all the vertices of level i that remain to be drawn are adjacent to u

m(j)
j .

As such vertex, which lies in a quadrant Q on circle either Cm
i−1 or Cb

i−1, has complete
visibility to all the ni points of circle Cm

i in the same quadrant Q, it is possible to
draw all its neighbors on such points so that the polygon composed of vertices of level
i contains Cm

i . See Fig. 3(b).
If v′′ = vj+1 (Case 1.1.2), then place vj+1 on p′b and place the other vertices analo-

gously to the previous case.
If none of the two cases holds (Case 1.1.3), we further distinguish three cases, based

on whether u1
j and u

m(j)
j lie in opposite quadrants, in adjacent quadrants, or in the same

quadrant. In the first case (see Fig. 4(a)), place vj+1 on either p′a or p′b and apply the
same drawing algorithm as in the previous cases. If they lie in adjacent quadrants Q
and Q′ (see Fig. 4(b)), place vj−1 on the cardinal point, say pE(Cm

i ), that is between Q
and Q′. Note that, the wedge W centered at pE(Cm

i ), delimited by the half-lines from

pE(Cm
i ) to u1

j and from pE(Cm
i ) to u

m(j)
j , and whose angle is smaller than π is external

to quadrilateral (pN (Cm
i−1),p

E(Cm
i ), pS(Cm

i−1), pW (Cm
i )). As, by construction, such

a quadrilateral contains all the points of Cm
i , W does not contain any of these points.

Hence, both u1
j and u

m(j)
j have complete visibility to all the ni points of quadrants Q

and Q′ of circle Cm
i , respectively, and it is possible to draw all their neighbors on such

points. Finally, if u1
j and u

m(j)
j lie in the same quadrant (see Fig. 4(c)), they both have
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Fig. 4. Case 1.1.3. There exists one angle αj ≥ π, vj−1 = vj+1, v′ �= vj−1, and v′′ �= vj+1.
Illustrations of the cases in which u1

j and u
m(j)
j lie (a) in opposite quadrants, (b) in adjacent

quadrants, and (c) in the same quadrant.
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visibility to all the points of Cm
i in such quadrant, and all their neighbors, including

vj+1, can be drawn on such points.
In each of the cases, all the vertices of level i are on the main circle Cm

i of level i,
except for vertex vj and, in one case, for vertex vj−1, which are on the back-up circle
Cb

i−1 of level i − 1. Also, no vertex is drawn on Cm
i in the same quadrant as the vertex

(vj or vj−1) that is on Cb
i−1. Hence, given the two lines through vj (through vj−1)

tangent to Cb
i , the triangle composed of vj (of vj−1) and of the two tangent points does

not contain any vertex of level i placed on a point of Cm
i . It follows that the constructed

drawings are 2-radial drawings.
Suppose (Case 1.2) that vj−1 �= vj+1. Let u1

j−1, . . . , u
m(j−1)
j−1 be the neighbors of

vj−1 of level i − 1. Note that u
m(j−1)
j−1 = u1

j . If u1
j−1 is in the same quadrant as u1

j

(Fig. 5(a)), place the first neighbor v1
j of u1

j on the first cardinal point of Cm
i en-

countered when rotating clockwise the radius to u1
j . If it is in the adjacent quadrant

(Fig. 5(b)), place vj−1 on the cardinal point of Cm
i between such two quadrants. Fi-

nally, if it is in the opposite quadrant (Fig. 5(c)), place vj−1 on a point p∗ of Cm
i in its

adjacent quadrant such that triangle (u1
j , u

1
j−1, p

∗) does not contain any point of Cm
i ,

which exists by construction. Then, place the first neighbor v1
j−1 of u1

j−1 different from
vj−1 on the first cardinal point encountered when rotating clockwise the radius to u1

j−1.
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Fig. 5. Case 1.2. There exists an angle αj ≥ π, vj−1 �= vj+1 and v′ �= vj−1. Illustrations of
the cases in which u1

j and u1
j−1 lie (a) in the same quadrant, (b) in adjacent quadrants, and (c)

in opposite quadrants. In (a), the placement of vj−1 is depicted, but it is not decided at this step.
(d) Placement of vertices vz such that u1

z and u
m(z)
z are in opposite quadrants. Note that the first

neighbor v1
z of u1

z coincides with vj−1, while v
m(z)
z does not coincide with vj+1.
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Then, consider each vertex vz such that u1
z and u

m(z)
z are in different quadrants. If

such two quadrants are adjacent, place vz on the cardinal point of Cm
i between them. If

such two quadrants are opposite, then place vz on a point p∗ of Cm
i in the quadrant Q

between them such that triangle (u1
z, u

m(z)
z , p∗) does not contain any point of Cm

i , and

place the first neighbor v1
z of u1

z and the first neighbor v
m(z)
z of u

m(z)
z on the extremal

points of Q, if such two vertices do not coincide with vj−1 and vj+1, respectively. Note
that, if they coincide with either vj−1 or vj+1, the point where they had been placed in
the previous step of the algorithm still allows for a planar drawing (see Fig. 5(d)).

Observe that, in each of the described cases all the vertices of level i − 1 whose
neighbors of level i still remain to be placed have complete visibility to all the ni points
of a quadrant of circle Cm

i , and hence it is possible to draw all their neighbors on such
points. Further, no vertex is drawn on Cm

i in the same quadrant as vj . Hence, given
the two lines through vj (through vj−1) tangent to Cb

i , the triangle composed of vj (of
vj−1) and of the two tangent points does not contain any vertex of level i placed on a
point of Cm

i . It follows that the constructed drawings are 2-radial drawings.
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Fig. 6. Case 2. There exists no angle αj ≥ π. Illustration for the cases when (a) v1
z′′ �= vz′ and

v
m(z′′)
z′′ �= vz , and (b) v1

z′′ = vz′ and v
m(z′′)
z′′ = vz .

Suppose (Case 2) that there exists no angle αj ≥ π. For each vertex vz such that u1
z

and u
m(z)
z are in adjacent quadrants, place vz on the cardinal point between them (see

Fig. 6(a)). Then, for each vertex vj such that u1
j and u

m(j)
j are in opposite quadrants,

place vj on a point p∗ of the quadrant Q between them such that triangle (u1
j , u

m(j)
j , p∗)

does not contain any point of Cm
i , and place the first neighbors of u1

j and of u
m(j)
j on

the extremal points of Q, if such two vertices have not been already placed. Again, if
this is the case, the point where they had been placed still allows for a planar drawing
(see Fig. 6(a) and (b)).

Observe that, in each of the described cases all the vertices of level i − 1 whose
neighbors of level i still remain to be placed have complete visibility to all the ni points
of a quadrant of circle Cm

i , and hence it is possible to draw all their neighbors on such
points. The above discussion leads to the following.
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Theorem 1. Let G be the class of simply-nested planar graphs with k levels and such
that each level i has ni vertices. There exists a universal point set for G of size
8(

∑k
i=1 ni + k).

3 A Universal Point Set for Simply-Nested Planar Graphs

Let G be a simply-nested n-vertex planar graph. In Sect. 2 we described a universal
point set of linear size provided that the number of levels of G and the number of
vertices in each level is known. In this section we show how to limit the size even if
such information is not known in advance.

3.1 A Simple Point Set of Size O(n3/2)

We group the levels of the graph into dense levels and sparse levels, depending on
whether the level contains at least

√
n vertices or not. Clearly, G contains at most

√
n

dense levels and at most n sparse levels.
Point set P is composed of

√
n dense levels, each containing 8n + 8 points, and n

sparse levels, each containing 8
√

n + 8 points. As in the point set of Sect. 2, levels of
P are composed of a main and a backup circle. We start placing

√
n outermost sparse

levels. Then we place inside them a single dense level. Then again
√

n sparse levels,
followed by a dense level, and so on, until the total number of sparse levels reaches n
and the number of dense levels reaches

√
n. This gives a point set of n+

√
n levels and

a total size of O(n3/2) points.
Levels of G are assigned to levels of P as follows. Consider the levels of G starting

from level 1 and the levels of P starting from the outermost one, proceeding inwards.
Let i be the current level of G. If i is sparse, then assign it to the next available sparse
level of P . Otherwise (i is dense), assign it to the next available dense level of P .
Clearly, a dense level is skipped only if all the

√
n sparse levels before it were already

used. Hence, these previous sparse levels can account for the missing dense level. Sum-
marizing, after scanning all n sparse and

√
n dense levels of the graph, all its levels

are assigned to the levels of the point set according to their size. We conclude with the
following:

Lemma 1. There is a universal point set of size O(n3/2) for the class of simply-nested
n-vertex planar graphs.

3.2 Further Refinement

We refine now the classes of dense and sparse levels both of G and of P into m different
classes Ki, 1 ≤ i ≤ m. We say that level j of G, with nj vertices, belongs to class Ki,
with 1 ≤ i ≤ m, if n(i−1)/m ≤ nj < ni/m. Hence the number of levels in class Ki

is at most n(m−i+1)/m, as G has n vertices. As discussed in Sect. 2, if the j-th level of
the graph belongs to class Ki, we can accommodate it in a level of P of size 8ni/m +8.
Hence, in what follows, a level of P containing 8ni/m +8 points is called a level of the
class Ki.
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Km Km Km
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︷ ︸︸ ︷︷ ︸︸ ︷

. . . . . .. . . . . .

Fig. 7. Constructing the order of the levels

Now we discuss the number of levels and the size of P . The levels of P are first
ordered and then placed on the plane one into the other according to the computed
order. In order to construct such an order, we first place contiguously the n1/m levels
of class Km (each having 8n + 8 points). Then, to the right of each level of class Km,
we insert n1/m levels of class Km−1 (each having 8nm−1/m + 8 points), in total n2/m

levels. We iterate this construction with increasing i ≤ m − 1: to the right of each of
the n(i+1)/m levels of class Km−i, we insert n1/m levels of class Km−i−1 (each having
8nm−i−1/m + 8 points), which gives in total n(i+1)/m levels. See Fig. 7. Finally, we
scan the constructed order from right to left and construct the circles as in Sect. 2.

Summarizing, the total number of points for class Ki is Θ(n(m+1)/m). Thus, the
overall number of points in P is Θ(mn(m+1)/m) = Θ(nmn1/m). Choosing m such
that mn1/m is minimal, we get m = Θ( log n

log log n ). Thus the total size of the constructed

point set is O(n( log n
log log n )2).

Next we assign the levels of G of class Ki to the levels of P of class Ki, i =
1, . . . , m, by proceeding from the outside to the center. Intuitively we assign the next
graph level of class Ki to the next unused point set level of class Ki. To show the
correctness we give a more formal description.

Let Rm be the minimal sequence of consecutive levels of G, starting from the outer
level, that contains in total at least n(m−1)/m and at most n vertices. Note that sequence
Rm ends latest at the outermost level of class Km. For the point set P , we similarly
define a block of levels Bm to be the sequence of outer levels of P ending and including
the outermost level of the class Km. We will describe below how to map the graph levels
of Rm to the point set levels of Bm. Then, we shrink G by G \ Rm and P by P \ Bm

and iterate. Note that by the structure of the graph and the point set we do this at most
n1/m times.

If Rm contains a level of class Km, we map it to the single level of Bm of class
Km, which is also the last level of Bm, by construction. The other levels of Rm have
at most nm−1/m vertices. We repeat the above procedure: we identify a minimal initial
sequence Rm−1 of Rm that contains at least n(m−2)/m and at most n(m−1)/m vertices
in total. Note that if Rm = Rm \ Rm−1 then this can be done at most n1/m times,
as otherwise Rm would not be minimal. Concerning the point set, we set Bm−1 to be
the minimal sequence of outer levels of Bm that contains a single level of the class
Km−1. Putting Bm = Bm \ Bm−1 this procedure can be applied exactly n1/m times,
because of the structure of the point set. Finally, the graph levels Bm−1 are mapped to
the point-set levels Rm−1 recursively. Summarizing the above we have the following
theorem.
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Theorem 2. There is a universal point set of size O(n( log n
log log n )2) for the class of

simply-nested n-vertex planar graphs.

4 Concluding Remarks

In this paper we described a O(n( log n
log log n )2)-size universal point set for simply-nested

n-vertex planar graphs, doing a step towards answering the well-known open problem
on the size of the smallest universal point set for planar graphs.

Several problems remain open in this field: (a) We use points with real coordinates. Is
it possible to find a small point set for simply-nested planar graphs with points at integer
coordinates and with an overall polynomial area? (b) Simply-nested planar graphs do
not have chords between vertices of the same level. Is it possible to find a small point
set if such chords are allowed? (c) Is there a small point set for k-outerplanar graphs if
k is equal to 2 or 3?
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