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Abstract. A topological graph is k-quasi-planar if it does not contain k pairwise
crossing edges. A topological graph is simple if every pair of its edges intersect
at most once (either at a vertex or at their intersection). In 1996, Pach, Shahrokhi,
and Szegedy [16] showed that every n-vertex simple k-quasi-planar graph con-
tains at most O (n(log n)%*‘l) edges. This upper bound was recently improved
(for large k) by Fox and Pach [§] to n(log n)o(log *) In this note, we show that
all such graphs contain at most (n log? n)2% " (") edges, where a(n) denotes the
inverse Ackermann function and cy, is a constant that depends only on k.

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented
by points and its edges are represented by non-self-intersecting arcs connecting the cor-
responding points. The arcs are allowed to intersect, but they may not pass through
vertices except for their endpoints. Furthermore, the edges are not allowed to have tan-
gencies, i.e., if two edges share an interior point, then they must properly cross at that
point in common. We only consider graphs without parallel edges or loops. A topo-
logical graph is simple if every pair of its edges intersect at most once. If the edges are
drawn as straight-line segments, then the graph is geometric. Two edges of a topological
graph cross if their interiors share a point.

Finding the maximum number of edges in a topological graph with a forbidden
crossing pattern has been a classic problem in extremal topological graph theory (see
(2430416811041 SUT9U21]). It follows from Euler’s Polyhedral Formula that every topolog-
ical graph on n vertices and no crossing edges has at most 3n — 6 edges. A topological
graph is k-quasi-planar, if it does not contain k pairwise crossing edges. Hence 2-quasi-
planar graphs are planar. An old conjecture (see Problem 1 in section 9.6 of [5]) states
that for any fixed £k > 0, every k-quasi-planar graph on n vertices has at most c;n
edges, where c;; is a constant that depends only on k. Agarwal et al. [4] were the first
to prove this conjecture for simple 3-quasi-planar graphs. Later, Pach, Radoici¢, and
To6th [14] generalized the result for all (not simple) 3-quasi-planar graphs. Ackerman
[L] proved the conjecture for k = 4.

For k > 5, Pach, Shahrokhi, and Szegedy [16] showed that every simple k-quasi-
planar graph on n vertices has at most c;n(logn)?*~* edges. This bound can be
improved to cxn(log n)%_S by using a result of Ackerman [1f]. Valtr [20] proved
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that every n-vertex k-quasi-planar geometric graph contains at most O(nlogn) edges.
Later, he extended this result to simple topological graphs with edges drawn as x-
monotone curves [21]]. Pach, Radoi¢i¢, and Téth showed that every n-vertex (not sim-
ple) k-quasi-planar graph has at most c;n(logn)**~12 edges, which can also be im-
proved to
cxn(logn)tk—16

by a result of Ackerman [[1]].

Recently, Fox and Pach [8] improved (for large k) the exponent in the polylogarith-
mic factor for simple topological graphs. They showed that every simple k-quasi-planar
graph on n vertices has at most

n(clogn/ log k)°'°&*

edges, where c is an absolute constant. Our main result is the following.
Theorem 1. Let G = (V, E) be an n-vertex simple k-quasi-planar graph. Then
|E(G)] < (nlog® n)2™ "),

where «(n) denotes the inverse Ackermann function and cy, is a constant that depends
only on k.

In the proof of Theorem [I we apply results on generalized Davenport-Schinzel se-
quences. This method was used by Valtr [21]], who showed that every n-vertex simple
k-quasi-planar graph with edges drawn as z-monotone curves has at most 22% logn
edges, where c is an absolute constant. Our next theorem extends his result to (not sim-
ple) topological graphs with edges drawn with x-monotone curves, and moreover we
obtain a slightly better upper bound.

Theorem 2. Let G = (V, E) be an n-vertex (not simple) k-quasi-planar graph with

3
edges drawn as x-monotone curves. Then |E(G)| < 2K nlogn, where c is an absolute
constant.

2 Generalized Davenport-Schinzel Sequences

The sequence u = a1, as, ..., a,, is called [-regular if any [ consecutive terms are pair-
wise different. For integers [, ¢ > 2, the sequence

S = 81,82, ..., Sit

of length [ - ¢ is said to be of type up(l, t) if the first [ terms are pairwise different and
fori =1,2,...,1

Si = SiJrl = S’L+2l = .. = Si+(t—1)l'
For example,

a, bv ¢, a, ba ¢ a, bv ¢, a, ba ¢,

would be an up(3,4) sequence. By applying a theorem of Klazar on generalized
Davenport-Schinzel sequences, we have the following.
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Theorem 3 ([11]]). For ! > 2 and t > 3, the length of any l-regular sequence over an
n-element alphabet that does not contain a subsequence of type up(l,t) has length at
most

n- l2(lt73) . (101)1011”(77,).

For [ > 2, the sequence

S = 51552y -5 8312

of length 3] — 2 is said to be of type up-down-up(l), if the first [ terms are pairwise
different, and fori = 1,2, ..., [,

Si = 821—i = S(21—2)+i-

For example,

a, bv G, da &) ba a, ba &) dv

would be an up-down-up(4) sequence. Valtr and Klazar [12] showed that any [-regular
sequence over an n-element alphabet containing no subsequence of type up-down-up({)
has length at most 2! n for some constant c. Recently, Pettie made the following im-
provement.

Lemma 1 ([18]). For | > 2, the length of any l-regular sequence over an n—elengent
alphabet containing no subsequence of type up-down-up(l) has length at most 20,

For more results on generalized Davenport-Schinzel sequences, see [13118I17]].

3 Simple Topological Graphs

In this section, we will prove Theorem[Il For any partition of V(G) into two disjoint
parts, V4 and V3, let E(V7, V3) denote the set of edges with one endpoint in V; and the
other endpoint in V5. The bisection width of a graph GG, denoted by b(G), is the smallest
nonnegative integer such that there is a partition of the vertex set V = V; U V5 with
3 VI <|Vil € 2+ |V|fori=1,2,and |E(V4, V)| = b(G). We will use the following
result by Pach et al.

Lemma 2 ([16]). If G is a graph with n vertices of degrees dy, ..., d,,, then

b(G) < Ter(@G)2+2,| > d2,
1=1

where cr(G) denotes the crossing number of G.

Since Y7 | d? < 2n|E(G)| holds for every graph, we have

i=1"

b(G) < Ter(G)Y? + 3V/|E(G)|n. (1)
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Proof of Theorem[Il Let & > 5 and fi(n) denote the maximum number of edges in a
simple k-quasi-planar graph on n vertices. We will prove that

fe(n) <(n log2 n)QO‘Ck (n)

where ¢, = 107 - 2k*+2k For sake of clarity, we do not make any attempts to optimize
the value of c;. We proceed by induction on n. The base case n < 7 is trivial. For the
inductive step n > 7, let G = (V, E) be a simple k-quasi-planar graph with n vertices
and m = fi(n) edges, such that the vertices of G are labeled 1 to n. The proof splits
into two cases.

Case 1. Suppose that cr(G) < m?/(10*log® n). By (1), there is a partition V(G) =
V1 UV, with V1], |Va| < 2n/3 and the number of edges with one vertex in V; and one
vertex in V5 is at most

< 1/2 <7 ™ .
b(G) < Ter(G)'2 + 3y/mn < 710()10gn +3v/mn
Let ny = |V4| and ng = |Vz|. Now if 7m/(100logn) < 3/mn, then we have

m < 43n log2 n
and we are done since «(n) > 2 and k > 5. Therefore, we can assume 7m /(100 logn) >
3+/mn, which implies
m
< .
~ Tlogn
By the induction hypothesis and equation (2), we have

b(G) 2

m < fr(n1) + fr(n2) +b(G)
< (m 10g2(2n/3)) 29 (M) 4 (ny 10g2(2n/3)) 20 (M) 4 b(@)
< (nlog?(2n/3)) 22 4 ™

ogn

< (nlog?n)22™* (M) — 2029 (") Jog nlog(3/2) + n2%" (™ log?(3/2) + Tlogn

which implies
1 c 21 2)  log*(3/2
m (1 ) < (nlog2 n)2° k (n) (1 _ 0g(3/2) 4 og”(3/ )) .

7 logn logn log2 n

Hence

210g(3/2) log™ " n + log®(3/2)log > n

ak(n L=
m < (nlog?n)2*™" ™ 1—1/(7logn)

< (nlog?n)2°™* ™),
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Case 2. Now suppose that cr(G) > m?/(10*log? n). By a simple averaging argument,
there exists an edge e = ww such that at least 2/ /(10*log? n) other edges cross e. Fix
such an edge e = uw, and let E’ denote the set of edges that cross e.

We order the edges in £' = {ey, €2, ..., €|g/|}, in the order that they cross e from u
to v. Now we create two sequences S1 = p1, pa, -~ DB and Sy = q1, g9, ..., 45| as
follows. For each e; € E’, as we move along edge e from u to v and arrive at edge e;,
we turn left and move along edge e; until we reach its endpoint u;. Then we set p; = u;.
Likewise, as we move along edge e from u to v and arrive at edge e;, we turn right and
move along edge e; until we reach its other endpoint v;. Then set ¢; = v;. Thus S; and
Sy are sequences of length |E’| over the alphabet {1, 2, ..., n}. See Figure[Il for a small
example.

V3

=

Vi

Fig. 1. In this example, S1 = v1, vs, v4,v3, v2 and So = v2, V2, V1, Us, Us

Now we need the following two lemmas. The first one is due to Valtr.

Lemma 3 ([21]]). Forl > 1, at least one of the sequences S1, S2 defined above contains
an l-regular subsequence of length at least |E’|/(41).

Since each edge in E’ crosses e exactly one, the proof of Lemma[3]can be copied almost
verbatim from the proof of Lemma 4 in [21]].

Lemma 4. Neither of the sequences Sy and Ss contains a subsequence of type
up(2k2+k 2k)
,2%).

Proof. By symmetry, it suffices to show that S; does not contain a subsequence of type
up(2¥°+*_2k). The argument is by contradiction. We will prove by induction on k, that
such a sequence will produce k pairwise crossing edges in G. The base cases k = 1,2
are trivial. Now assume the statement holds up to & — 1. Let

S = 81,82, 45 Sor242k
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be our up(2F° % 2F) sequence of length 2¥°+2% such that the first 25" % terms are
pairwise different, and fori = 1,2, ..., ok*+k

8i = Siyok24+k = Sip0.0k2 4k T Siyg0k24k T 00T Siy ok 1)0k24k-

Foreachi = 1,2, ..., 2’“2+k, let v; € Vi denote the label (vertex) of s;. Moreover, let

a;,; be the arc emanating from vertex v; to the edge e corresponding to s, o2, for

it+j
j=0,1,2,...,2F — 1. We will think of Siyjok?+k 482 point on a; ; very close but not on
edge e. For simplicity, we will let sy,2,5, , = s forallt € Nand a; j = a;j moaq 2+
for all j € Z. Hence there are 25"+ distinct vertices v1, ..., VUgi2 41, €ach vertex of
which has 2* arcs emanating from it to the edge e.

Consider the drawing of the 2¥ arcs emanating from v; and the edge e. Since G is
simple, this drawing partitions the plane into 2* regions. By the Pigeonhole principle,
there is a subset V' C {v1, ..., Uyu24 } Of size

2k2+k -1
2k ’
such that all of the vertices of V' lie in the same region. Let jo € {0,1,2,...,2% — 1}

be an integer such that V' lies in the region bounded by a1 j,, a1 j,+1, €. See Figure[2l
In the case jo = 2k — 1, V' lies in the unbounded region.

Spa(jgr1) 26k

u

Fig. 2. Vertices of V" lie in the region enclosed by a1 j,, @1,jo+1, €-

Let v; € V' and a; j,+;, be an arc emanating out of v; for j; > 1. Notice that
@i jo+j cannot cross both a1 j, and a; j,+1 since G is simple. Suppose that a;_j, 4,
crosses a1 _j,+1. Then the set of arcs (emanating out of v;)

A= {ai,jOJrlv Qg jo+25 ++os ai,joJrjlfl}

must also cross a1 j,+1. Indeed, let v be the simple closed curve created by the arrange-
ment

Qi jo+4; U a1 jo+1 Ue.
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Since a; j,+5, > @1,j,+1, € Pairwise intersect at precisely one point, v is well defined. We
define points © = a; j 45, N a1,jo+1 and y = a1_j,+1 N €, and orient vy in the direction
from z to y along .

Since a;, j, 45, intersects ay j,+1, v; must lie to the right of y. Moreover since the arc
from x to y along ay j,+1 is a subset of vy, the points corresponding to the subsequence

S'={s, €8 | 2+ (jo+ )2 F <t < (i — 1) + (jo + j1)2" TF}

lie to the left of +. Hence ~y separates vertex v; and the points of S’. Therefore each
arc from A must cross a j,+1 since G is simple (these arcs cannot cross a; j,+;, ). See
Figure[3

i j iy i j iy Y

\% Vi

as, j, a1, jy
e 1) 2K Spa(ir]) 2KHk
2 (gt 1) 2 +(gt1)
814, 2Kk 84,26
u’ u’
(a) The case when jo+j1 mod 2% < 2%—1. (b)  defined from Figure[3(a)}
i @i,

S14j 2% STa(igh1) 24+
0
u
(c) The case when jo + j1 mod 2* < jo. Re- (d) ~y defined from Figure3(c)}

call a;,jo+5, = Qi jo+j1 mod 2k -

Fig. 3. Defining y and its orientation

By the same argument, if the arc a; j,—;, crosses a1 j, for j; > 1, then the arcs
(emanating out of v;)

Qi,jo—15 Qi jo—25 -5 Qi,jo—j1+1

must also cross ay j,. Since a; j, 4ok /2 = @ o+ /2, we have the following observation.

4,50 —
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Observation 4. For half of the vertices v; € V', the arcs emanating out of v; satisfy

L @i jot1s Qi jo+2y o5 Qi jo g2k 2 all cross ay jo41, or
2. Q4 jo—1, Qi jo—2s e Aj jo—2k /2 all cross ay j,.

Since

|V/| 2k2+k -1
>
2 = 2.2k
by Observation @ we have a (2(-=D°+(:=1) 2k=1)y, sequence, whose corresponding
arcs all cross either a1 j, or a; j,+1. By the induction hypothesis, we have k pairwise
crossing edges.

> 9(k=1)*+(k—1)

|
Now we are ready to complete the proof of Theorem[Il By Lemma[3 we know that, say,
Sy contains a 2 T*_regular subsequence of length | E'|/(4 - 2% %), By Theorem[3and
Lemmald] this subsequence has length at most

k2
2k2+k22k2+2k_3 (10 2k2+k)1 a2* +2k(n)
n .
Therefore
2
, ) 1 azk +2k ()
104 - 4 221:2n+k1 2, =y |2b;2|+k SEAE (10'2k2+k)
. . Og n .
which implies
ok 42k
m < 4108 . 22K kg2 3, (10 : 2’“2+’€) e e

Since ¢ = 105 - 22k o (n) > 2 and k > 5, we have

m < (nlog®n)2%™ (™),

4 x-Monotone

In this section we will prove Theorem 2

Proof of Theorem 2l For k > 2, let gi(n) be the maximum number of edges in a (not
simple) k-quasi-planar graph whose edges are drawn as z-monotone curves. We will
prove by induction on n that

gr(n) < ZCanlogn

where c is a sufficiently large absolute constant. The base case is trivial. For the induc-
tive step, let G = (V, E) be a k-quasi-planar topological graph whose edges are drawn
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as z-monotone curves, and let the vertices be labeled 1, 2, ..., n. Then let L be the ver-
tical line that partitions the vertices into two parts, V4 and V5, such that [V = [n/2]
vertices lie to the left of L, and V2| = [n/2] vertices lie to the right of L. Furthermore,
let E; denote the set of edges induced by V1, E be the set of edges induced by V3, and
E’ be the set of edges that intersect L. Clearly, we have

|E1| < gr([n/2]) and |Ea| < gr(In/2]).

Hence it suffices that show that

|El| S QCkG/Qn’ (3)

since this would imply

ge(n) < gr(|In/2]) + gx([n/2]) + 9ck®/2), < 2Ck6nlogn.

For the rest of the proof, we will only consider the edges from E’. Now for each vertex
v; € Vi, consider the graph G; whose vertices are the edges with v; as a left endpoint,
and two vertices in G; are adjacent if the corresponding edges cross at some point to
the left of L. Since G; is an incomparability graph (see [7]], [9]) and does not contain
a clique of size k, G; contains an independent set of size |E(G;)|/(k — 1). We keep
all edges that correspond to the elements of this independent set, and discard all other
edges incident to v;. After repeating this process on all vertices in V7, we are left with
atleast |E'|/(k — 1) edges.

Now we continue this process on the other side. For each vertex v; € Vs, consider
the graph G; whose vertices are the edges with v; as a right endpoint, and two vertices
in G; are adjacent if the corresponding edges cross at some point to the right of L. Since
G is an incomparability graph and does not contain a clique of size k, GG; contains an
independent set of size |E(G;)|/(k — 1). We keep all edges that corresponds to this
independent set, and discard all other edges incident to v;. After repeating this process
on all vertices in Va, we are left with at least | E’|/(k — 1)? edges.

We order the remaining edges eq, eo, ..., €,, in the order in which they intersect L
from bottom to top. We define two sequences S1 = p1,p2, .-, Pm and So = q1, G2, -, m
such that p; denotes the left endpoint of edge e; and g; denotes the right endpoint of e;.
Now we need the following lemma.

Lemma 5. Neither of the sequences S, and Sy contains a subsequence of type up-
down-up(k3 + 2).

Proof. By symmetry, it suffices to show that S; does not contain a subsequence of type
up-down-up(k® + 2). For the sake of contradiction, suppose S did contain a subse-
quence of type up-down-up (k> + 2). Then there is a sequence

S = 51,82, -+, 83(k342)—2
such that the integers 1, ..., 3o are pairwise different and fori = 1,2, ..., k3 + 2 we

have

8¢ = S2(k342)—i = S2(k342)—24i-
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For each i = 1,2,...,k3 + 2, let v; € V; denote the label (vertex) of s; and let
x; denote the x-coordinate of vertex v;. Moreover, let a; be the arc emanating from
vertex v; to the point on L that corresponds to sp(ys42)—;. Note that the set of arcs
A = {ag,as, ...,ays 1} are ordered downwards as they intersect L, and corresponds
to the “middle" part of the up-down-up sequence. We define two partial orders on A as
follows.

a; <1 a; if i < j, x; < x; and the arcs a;, a; do not intersect,

a; <2 a; if i < j, x; > x; and the arcs a;, a; do not intersect.

Clearly, <; and <3 are partial orders. If two arcs are not comparable by either <; or <2,
then they must cross. Since G does not contain k pairwise crossing edges, by Dilworth’s
Theorem, there exist k arcs {a;,, a;,, ..., a;, } such that they are pairwise comparable
by either <1 or <2. Now the proof falls into two cases.

Case 1. Suppose that a;, <1 a;, <1 --- <1 a;,. Then the arcs emanating from
Viy, Vigs ---, Vi, to the points corresponding to
S2(k342)—2+i1 9 S2(k3+42)—24ias -++1 S2(k342)—24i)

are pairwise crossing. See Figure[d]

S2(1+2)=2+ix
S2(10+2)-2+i3

Sk +2)-2+i

S2K+2)-2+i;
ai]
Vi]

a;

12 2 V”
V; i
lj 3

Vik

a,»k

Fig. 4. Case 1

Case 2. Suppose that a;, <2 a;, <2 --- <2 a;,. Then the arcs emanating from

Vi, Viy, -, Vi, to the points corresponding to s;,, i, , ..., S, are pairwise crossing. See
Figure[3
O

We are now ready to complete the proof of Theorem 2l By Lemma[3l we know that,
say, S contains a (k3 + 2)-regular subsequence of length

|E'|
A(K3 + 2)(k — 1)2°
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V,'l
-\a}\
N \/\a’é Vi
Vik
(/li]<
Fig. 5. Case 2

By lemmal[iland[3 this subsequence has length at most 2¢'k® n, where ¢’ is an absolute
constant. Hence

128

< C/k}G
M+ (h—1)2 2"

implies

IEII < 4k520'k6n < 2ck6/2n

for a sufficiently large absolute constant c.
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