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Abstract

Why a chapter on Perspectives and Integration in SOLAS Science in this book?

SOLAS science by its nature deals with interactions that occur: across a wide

spectrum of time and space scales, involve gases and particles, between the ocean

and the atmosphere, across many disciplines including chemistry, biology, optics,

physics, mathematics, computing, socio-economics and consequently interactions

between many different scientists and across scientific generations. This chapter

provides a guide through the remarkable diversity of cross-cutting approaches and

tools in the gigantic puzzle of the SOLAS realm.

Here we overview the existing prime components of atmospheric and oceanic

observing systems, with the acquisition of ocean–atmosphere observables either

from in situ or from satellites, the rich hierarchy of models to test our knowledge

of Earth System functioning, and the tremendous efforts accomplished over

the last decade within the COST Action 735 and SOLAS Integration project

frameworks to understand, as best we can, the current physical and biogeochemi-

cal state of the atmosphere and ocean commons. A few SOLAS integrative studies

illustrate the full meaning of interactions, paving the way for even tighter

connections between thematic fields. Ultimately, SOLAS research will also

develop with an enhanced consideration of societal demand while preserving

fundamental research coherency.
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The exchange of energy, gases and particles across the air-sea interface is

controlled by a variety of biological, chemical and physical processes that operate

across broad spatial and temporal scales. These processes influence the composi-

tion, biogeochemical and chemical properties of both the oceanic and atmospheric

boundary layers and ultimately shape the Earth system response to climate and

environmental change, as detailed in the previous four chapters. In this cross-

cutting chapter we present some of the SOLAS achievements over the last decade

in terms of integration, upscaling observational information from process-

oriented studies and expeditionary research with key tools such as remote sensing

and modelling.

Here we do not pretend to encompass the entire legacy of SOLAS efforts but

rather offer a selective view of some of the major integrative SOLAS studies that

combined available pieces of the immense jigsaw puzzle. These include, for

instance, COST efforts to build up global climatologies of SOLAS relevant

parameters such as dimethyl sulphide, interconnection between volcanic ash and

ecosystem response in the eastern subarctic North Pacific, optimal strategy to

derive basin-scale CO2 uptake with good precision, or significant reduction of the

uncertainties in sea-salt aerosol source functions. Predicting the future trajectory

of Earth’s climate and habitability is the main task ahead. Some possible routes

for the SOLAS scientific community to reach this overarching goal conclude the

chapter.

5.1 Perspectives: In Situ Observations,
Remote Sensing, Modelling and
Synthesis

The scope of SOLAS science depends on multidisci-

plinary and multi-scale approaches being applied to

the complex problems and challenges within the field.

Laboratory process studies and in situ lagrangian field

experiments make substantial contributions to our

understanding of the various biogeochemical pro-

cesses and their feedbacks. Models are almost the

only way to assess what are often complex problems

and they rely on input from such studies. To truly

represent the domain of SOLAS within Earth System

models requires global-scale datasets of accurate

measurements of relevant parameters. The most accu-

rate data-based estimates of air-sea exchange pro-

cesses require as much data as possible at large

spatial and temporal scales in order to be able to

validate and calibrate both model outputs and satellite

data. Maintaining and further expanding existing

global arrays of autonomous instrumented platforms,

as well as oceanic and atmospheric fixed obser-

vatories, is a modern-day challenge. Producing

integrated, quality and potential bias-controlled global

datasets from the collection of these measurements is

our ongoing responsibility. This section of Chap. 5

considers a variety of data collation and synthesis

projects relevant to SOLAS science presented in the

previous four chapters. The following subsections

briefly introduce each project.

5.1.1 In Situ Observations

5.1.1.1 ARGO (T, S, O2)
In November 2007, the international Argo programme

reached its initial target of 3,000 profiling floats

(http://www.argo.ucsd.edu/). Every 10 days these floats

measure temperature and salinity throughout the global

ocean, diving down to 2,000 m and delivering data both

in real time for operational users and, after careful

scientific quality control, for climate change research

and monitoring. Argo results from an outstanding

international cooperation. More than 30 countries are

involved in the development and maintenance of the

array. Argo is the major systematic source of data

about the interior of the ocean. Argo aims to maintain

a global array of in situ measurements integrated with
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other elements of the climate observing system (in par-

ticular satellite observations) to:

• Detect climate variability from seasonal to decadal

scales and provide long-term observations of cli-

mate change in the oceans. This includes regional

and global changes in temperature and ocean heat

content, salinity and freshwater content, steric

height and large-scale ocean circulation.

• Provide data to constrain global and regional ocean

analysis and forecasting models, to initialise sea-

sonal and decadal forecasting ocean/atmosphere

coupled models and to validate climate models.

• Provide information necessary for the calibration

and validation of satellite data.

An overview of the achievements of the first decade

of Argo is given in Freeland et al. (2010). Argo data

(Fig. 5.1) have been used to dramatically improve

estimation of heat stored by the ocean, to better under-

stand global sea level rise, to analyse large-scale ocean

circulation variations and deep convection areas. Argo

has also brought remarkable advances in ocean analy-

sis and forecasting capability. Argo data can be

accessed at http://www.nodc.noaa.gov/argo/.

The last OceanObs09 conference discussed the

main priorities of the international community for

Argo (Roemmich et al. 2009; Freeland et al. 2010;

Claustre et al. 2010). Based on the assessment that

climate change research requires long-term, sustained,

high quality and global observations, the leading pri-

ority and challenge for Argo must be to complete and

sustain the global array. This requires deploying

between 800 and 900 new floats every year. Several

developments of the Argo core mission have also been

proposed. Minor changes include the extension of the

array into seasonal ice zones and marginal seas. Major

expansions of Argo will include monitoring the deep

ocean below 2,000 m and marine ecosystems. Deeper

measurements are needed to constrain the deep ocean

property fields for climate monitoring and long-term

prediction. Recent technological advances in biogeo-

chemical sensors will permit the acquisition of new

observations of the ocean interior (e.g. Claustre et al.

2010; Adornato et al. 2010). The main parameters that

are considered for initial implementation are oxygen,

nitrate, chlorophyll a and particulate carbon. Pilot

experiments have already begun, in particular for

dissolved oxygen (almost 200 Argo floats are today

equipped with an oxygen sensor). Potential systematic

errors due to different measurement techniques or

sensors need to be analysed and further corrected to
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Fig. 5.1 Position of active Argo floats (Figure courtesy of JCOMMOPS, Argo Information Centre, http://argo.jcommops.org)
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ensure delivery of quality-flagged controlled data sets.

These evolutions will require new resources and care-

ful progressive implementation so that the core of

Argo is not diminished. If they are managed carefully,

however, Argo’s second decade will be even more

transformative than the first.

5.1.1.2 Ocean Observatories
Ocean observatories provide a view of how the oceans

are changing with time and in relation to depth. The

spectrum of ocean observations includes data collec-

tion from moorings, AUV surveys (e.g. gliders,

submersibles), ARGO floats (see Sect. 5.1.1.1) and

repeat observations at select time-series sites in the

global ocean. The growing network of OceanSites

moorings (http://www.whoi.edu/virtual/oceansites/)

consists of about 30 surface and 30 subsurface arrays

primarily collecting physical data as part of the Global

Ocean Observing System. Ocean time-series sites are

fewer in number but they allow collection of critically

needed data that illustrates temporal variability on

ocean–atmosphere exchange and water-column pro-

cesses over seasonal to multi-decadal timescales.

Four of the longest ocean time-series stations include:

(1) Hydrostation S, (32�500N, 64�100W; 1954-present)

located near Bermuda in the NW Atlantic Ocean

(Steinberg et al. 2001); (2) BATS (Bermuda Atlantic

Time-series Study), located near Bermuda (32�100N,
64�300W; 1988 – present) in the NW Atlantic Ocean

(Steinberg et al. 2001; Bates 2007); (3) ALOHA (A

Long-term Oligotrophic Habitat Assessment) or HOT

site, located near Hawaii (22�450N, 158�W; 1988 –

present) in the North Pacific Ocean (Dore et al.

2009); and; (4) ESTOC; European Station for Time-

series in the Ocean Canary Islands (29�100N, 15�,300W
1994-present) (González-Dávila et al. 2010).

The monthly BATS and biweekly Hydrostation ‘S’

programmes play a pivotal role in better unders-

tanding of the seasonality and long-term changes in

ocean–atmosphere exchange of gases and particles.

Both sites serve as important frameworks for larger-

scale field and modelling studies in the subtropical

gyre of the North Atlantic Ocean (or Sargasso Sea).

Over the last 50 years, the surface ocean has warmed

by ~ 0.3–0.5 �C while salinity has increased by ~ 0.15.

The BATS site exhibits strong seasonality in the

ocean–atmosphere exchange of gases such as oxygen

(e.g. Ono et al. 2001) and carbon dioxide (CO2 e.g.

Bates et al. 1996, 1998; Bates 2001) with the subtropical

gyre of the North Atlantic a sink for atmospheric CO2.

The BATS record shows that ocean CO2 content has

kept pace with atmospheric CO2 changes and

demonstrates the change in ocean pH due to ocean

acidification (Bates 2007). In the Sargasso Sea, seasonal

measurements of oceanic dimethyl sulphide (DMS) and

DMSP (dimethylsulphoniopropionate) have provided

one of the only long-term time series for DMS in the

open ocean (e.g. Dacey et al. 1998; Toole et al. 2008).

The observed decoupling of DMS concentration from

its precursors (i.e. DMSP) in the Sargasso Sea is the

basis for the ‘DMS summer paradox’ hypothesis (Simó

and Pedrós-Alió 1999).

The challenges that have faced ocean time-series

programmes have been both practical and scientific.

Sustaining ocean time-series requires the provision of

suitable platforms for observation (i.e. research ships,

moorings) and creates logistical demands if the conti-

nuity of funding and frequency of occupation are to be

maintained. Scientific questions include reconciling

time-variations within the context of the four dimen-

sional state (space and time) of the ocean, which

includes substantial mesoscale and sub-mesoscale

variability (e.g. McGillicuddy et al. 1999, 2007). In

the future, ocean time-series programmes will be

integrated with the Global Ocean Observing System

(http://www.ioc-goos.org/), with these sites acting as

important nodes for new observing technologies such

as gliders and AUV platforms (Dickey et al. 2009).

Understanding ocean and climate relevant processes

that influence the ocean–atmosphere exchange of

gases and particles requires an improved synergy

between (sustained) observation and hypothesis test-

ing over a variety of scales, both spatial and temporal.

5.1.1.3 Atmospheric Observatories
The relative homogeneity of marine vs terrestrial air

provides an exceptional opportunity to test aspects of

surface atmospheric photochemistry. There is a paucity

of long-term measurements of reactive trace gases

and aerosols in clean marine environments, but the

reported studies have revealed important insights into

ocean–atmosphere interactions and their consequences

for atmospheric composition and climate. Seasonal

observations of sulphur-containing gases and aerosols

at Cape Grim atmospheric observatory, Tasmania

(40.7�S, 144.7�E) showed summer maxima and winter

minima in dimethyl sulphide (DMS), methanesulphonic
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acid (MSA, a unique product of DMS oxidation), non-

sea-salt(nss) sulphate aerosol, and the concentration of

cloud condensation nuclei (CCN) (Ayers and Gras 1991;

Ayers et al. 1997), supporting proposed mechanisms for

DMS oxidation to particulate sulphate. DMS emissions

are believed to contribute to a significant fraction of

remote marine CCN concentrations, up to 46 % in

summer over the Southern Ocean between 30�S and

45�S (Korhonen et al. 2008). Measurements of sea-salt

aerosol composition at Cape Grim confirmed that bro-

mine deficits (a decrease of the bromine to sodium ratio

of sea- salt aerosol compared to sea water) were linked to

the availability of sulphate acidity in the aerosol (Ayers

et al. 1992), as proposed by modelling studies which

suggest the importance of acid catalysis in the dehalo-

genation process (Sander and Crutzen 1996; Vogt et al.

1996). This provided experimental evidence for the net

transfer of bromine from sea salt aerosol to the gas

phase, where it catalyses photochemical ozone destruc-

tion and modifies the concentrations of many important

tropospheric gases (Sander and Crutzen 1996; Vogt et al.

1996; von Glasow et al. 2004).

Aspects of O3 photochemistry have also been con-

firmed by long-term marine observations; at Cape

Grim, diurnal cycling of hydrogen peroxide, one of

the major products of HOx radical (OH and HO2)

recombination reactions, is in opposite phase to that of

O3 (Ayers and Gras 1991), as expected in clean

low-NOx air. The observed relationships between free

radical levels and the O3 photolysis rate (jO1D) change
according to NOx levels, indicating the critical NO

concentration required to switch from O3 destruction

to O3 production (Carpenter et al. 1997). In the northern

hemisphere, a longer than 20-year record in baseline O3

at the coastal Irish station at Mace Head (53.28�N,
9.02�W) showed that mixing ratios rose steadily during

the 1980s and 1990s, probably due to increased tropo-

spheric ozone production from methane oxidation in

the presence of nitrogen oxides (NOx), and stabilised

during the 2000s (Derwent et al. 2007) with sporadic

increases over the period due to boreal biomass burning

events. Background O3 can be an important contributor

to the levels experienced in urban regions, which are

not declining in developed regions including Europe

despite decreasing precursor emissions.

The northern tropical Atlantic ocean is subject to

sporadic but significant dust deposition originating in

the African Sahara and Sahel regions. Dust emission

has immediate impacts on humans, plus widespread

influence on the radiative balance and on marine

biological production and biogeochemical cycles,

and is believed to have increased due to changes in

land use practices (Jickells et al. 2005). A wealth of

information comes from the long-term record (since

1965) of airborne desert dust measured in Barbados

(13.17�N, 59.43�W). At this site, mineral dust

concentrations are correlated with rainfall deficits in

the sub-Saharan region (Prospero and Nees 1986;

Prospero and Lamb 2003), and the net light scattering

of dust exceeds that of nss-sulphate aerosol by about a

factor of 4 (Li et al. 1996). There are still, however,

considerable uncertainties associated with the global

radiative forcing of mineral dust, given the high

variability of dust loadings and limited knowledge of

dust optical properties (Andreae et al. 2002). In the

tropical North Atlantic, Saharan dust has been shown

to stimulate nitrogen fixation, which is co-limited by

iron and phosphorus (Mills et al. 2004 and references

therein; Moore et al. 2009; Rijkenberg et al. 2011), and

microbial species diversity (Hill et al. 2010, 2012).

Recently, Okin et al. (2011) show that atmospheric

deposition of iron can potentially contribute consider-

ably to rates of marine productivity in high-nutrient-

low-chlorophyll (HNLC) regions, and that iron is

likely to be much more important than nitrogen in

supporting net primary productivity globally.

5.1.1.4 Monitoring Reactive Trace Species in
the Marine Atmosphere: Highlights
from the Cape Verde Observatory

The tropics are particularly under-populated with

marine reactive gas measurements, and this was a

major motivation for setting up the Cape Verde Atmo-

spheric Observatory (CVAO) in 2005. The location of

the site (Fig. 5.2) about 800 km off the northwest coast

of Africa in the tropical east Atlantic allows the study

of clean marine air from diverse origins including

North America, the Atlantic, Arctic, Europe and

Africa. The station, now part of the global WMO-

GAW long-term observing network, has been devel-

oped jointly by UK and German scientists at the

Universities of York (UK), MPI-Jena (Germany) and

IfT-Leipzig (Germany), in collaboration with the

Cape Verdean meteorological service (INMG). Atmo-

spheric measurements focus on reactive trace gases,

greenhouse gases and aerosols (Fig. 5.3). The CVAO

links with a sister oceanographic station, the Cape
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Verde Oceanic Observatory, located upwind of the

CVAO at 17.59�N, 24.25�W. This was set-up by

IFM-Geomar (Germany) in collaboration with the

Cape Verde Fisheries Institute (INDP).

Similarly to Barbados, the Cape Verde archipelago

is a region subject to very large depositions of dust,

originating from the Sahel region, as well as from

north-western Saharan sources and as far east as the

Bodélé depression in Chad. In this region, dust is

deposited mainly by dry deposition, peaking in the

winter months when African desert dust is exported

across the Atlantic within the lower troposphere. The

ionic composition of the aerosol at Cape Verde is

dominated by sea salt, but in Saharan dust episodes

iron typically constitutes ca. 3.8 % of the total aerosol

mass, with aluminium, a tracer of mineral dust, at a

slightly higher concentration of ca. 7 % (Trapp et al.

2010; Carpenter et al. 2010). Total iron content

reaches up to 33 μg m�3 in winter, and the soluble

Fe content is between 0.1 % and 15.7 % (Carpenter

et al. 2010). Higher solubilities are measured at lower

atmospheric dust concentrations, a ubiquitous feature

among aerosol solubility datasets.

Although the total aerosol mass is dominated by sea

salt, in aerosol particles < 0.14 μm diameter, non-sea-

salt components contribute about 80 % of the mass.

These components include low-molecular-weight

dicarboxylic acids (DCAs) and hydroxylated DCAs,

methanesulphonic acid (MSA) and aliphatic amines.

A bimodal size distribution for the DCA oxalic acid

and coarse mode concentration maxima for the other

DCAs are observed, as is typical for marine aerosols.

The MSA concentration closely follows that of non-

sea-salt-sulphate and the size distribution shows a

Fig. 5.2 The Cape Verde Islands and location of the CVAO, marked on São Vicente with a red cross. Prevailing trade winds are

from the north-east (Map from http://commons.wikimedia.org/wiki/File:Cape_Verde_Map.jpg)
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maximum mean concentration in the accumulation

mode and in sea-salt particles. Aliphatic amines,

assumed to be important in the growing process of

sulphuric acid clusters, are correlated with phyto-

plankton activity in the subtropical North Atlantic,

especially during an unexpected winter algal bloom

(Müller et al. 2009).

TheCVAO is one of the fewglobalGAWstations that

measures nitrogen oxides (NOx) (as well as NOy – both

with low pptv detection limits) and VOCs (including

oxygenated (O)VOCs). There is very little information

on the abundance and distribution of these gases in the

marine boundary layer (MBL) in part due to an inability

to observe some of these compounds at the very

low concentrations characteristic of this environment.

Nitrogen oxides act as a catalyst for O3 production and

cycle HO2 to OH, so are central to determining both the

concentration of O3 and CH4. Observations show that in

this region NOx levels peak in winter (at 35–45 pptv),

when air masses from Africa and Europe prevail

(Lee et al. 2009a; Carpenter et al. 2010). This seasonality

is attributedmainly to increasedNOx transported from the

West African continent from e.g. soils, particularly after

rainfall events over the Sahel region during the summer

monsoon (Jaeglé et al. 2005; Stewart et al. 2008) or from

anthropogenic sources, either directly as NOx or locally

produced from transported reservoir species (e.g. peroxy

acetyl nitrate (PAN) or nitric acid (HNO3)). These

reservoir species may undergo decomposition within

long-range plumes re-releasing NOx, particularly for

PAN as air masses descend and reach higher tempera-

tures. Averaged NO mixing ratios at Cape Verde (daily

averages are between 2 and 8 pptv) are negatively

correlated with observed photochemical O3 destruction;

these observations were reproduced using a simple box

model and together imply that the presence of 17–34 pptv

of NOwould be required to turn the tropical North Atlan-

tic from anO3 destroying to anO3 producing regime (Lee

et al. 2009a). Since NOx emissions from shipping (e.g.

Dalsøren et al. 2010) and African anthropogenic sources

(Clarke et al. 2007) are believed to be increasing, future

trends of background O3 in this region could be of major

concern for air quality and climate (Lelieveld et al. 2004).

OVOCs are generally present in higher concen-

trations in the lower atmosphere than non-methane

hydrocarbons (NMHC) and have a comparable if not

greater effect on oxidising capacity through reaction

with hydroxyl radical (OH). Upon photodecomposition,

they produce organic radicals that can form organic

nitrate compounds such as PAN, sequestering NOx and

transporting it to remote regions of the atmosphere, thus

affecting the tropospheric ozone budget and concen-

trations of OH (Singh et al. 1995; Tie et al. 2003). In

the remote marine atmosphere, oceanic sources and

sinks are expected to play a significant role in controlling

OVOC concentrations, however both the magnitude

and direction of OVOC fluxes are a matter of debate

(Heikes et al. 2002; Carpenter et al. 2004;Williams et al.

2004; Jacob et al. 2005). Five years of acetone,methanol

and acetaldehyde data from the CVAO (October

2006–September 2011) have recently been analysed

using the CAM-Chem chemistry-transport model

(Read et al. 2012). Observed annual mean mixing ratios

of acetone, methanol and acetaldehydewere 763 � 126

pptv, 1,029 � 151 pptv and 511 � 106 pptv, respec-

tively. All three OVOCs show a similar cycle with

maxima in spring (March) and autumn (between July

and September with particularly high peaks in some

years in September), lower levels in summer and gener-

ally the lowest levels in winter (Nov-Jan). The model

reproduced the acetone concentrations fairly well in

magnitude (annual average 670 � 41 pptv) although

underestimating the measured autumn peak, possibly

due to underestimation of African biogenic sources.

The modeled methanol levels (annual average

355 � 17 pptv) were almost a factor of 3 lower than

the observations, showed considerably less variability,

and did not capture the pronounced peaks in spring

and in summer – autumn. Possible reasons for the

discrepancies include an underestimate by the model

of methane concentrations and of terrestrial biogenic

sources of methanol, and/or that the tropical North

Atlantic is a significant net source of methanol, as

suggested by recent data (Beale et al. 2013). Indeed,

including estimates of the sea-air flux of methanol

based upon these measurements led to an increase in

the simulated levels by a factor of ~ 2.5 (new modeled

annual average 879 � 84 pptv) (Read et al. 2012).

Of the three OVOCs, the most pronounced model-

measured discrepancy was for acetaldehyde, with a

model underestimation of over a factor of 10 (modelled

annual mean mixing ratio 38 � 7pptv) and a predicted

strong seasonal minimum in summer, contrary to the

observations. Acetaldehyde is produced in the ocean

through photodegradation of coloured dissolved organic

matter and has a strong dependence on sunlight (Kieber

andMopper 1990). Including estimates of the sea-air flux

of acetaldehyde from the measurements of Beale et al.
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(2013) led to a significant increase in concentrations

of acetaldehyde (annual average 139 pptv � 46). The

model thus still falls short of the observations (especially

in September through to December – a period of high

coastal and continental African influence) for reasons

that are currently unknown.

Reactive marine-derived halogens have been pro-

posed to exert a globally significant effect on the

concentration and lifetimes of climatically active

gases through gas and aerosol phases of the marine

boundary layer (Vogt et al. 1996; von Glasow et al.

2002a, b). Bromine and iodine-containing reactive

halogen species can influence tropospheric oxidation

capacity via a number of reaction cycles including

catalytic O3 destruction, modification of NOx and

HOx cycles with resulting effects on the lifetimes of

other climatically important trace gases (Keene et al.

2009), oxidation of DMS (von Glasow et al. 2004);

and oxidation of sulphur(IV) in acidified sea-salt aero-

sol and cloud droplets (Vogt et al. 1996). Observations

of halogen oxide radicals, ozone, and supporting data

at Cape Verde made in 2007 provided the first direct

experimental evidence for halogen-catalysed tropo-

spheric ozone destruction (Read et al. 2008). More

recently, the presence of such halogens at only at a

few pptv has been shown to constitute nearly 20 % of

the instantaneous sink of HO2 in this region (Whalley

et al. 2010). Iodine monoxide (IO) radicals are

believed to be produced mainly via photolysis of

iodine-containing halocarbons volatilised from the

ocean, yet recent data shows that the sea-air flux of

these compounds is sufficient to explain only ~ 20–25%

of the levels of IO observed at Cape Verde (Jones et al.

2010; Mahajan et al. 2010). Recent research (Martino

et al. 2009; Jammoul et al. 2009; Carpenter et al. 2013)

suggests a role for sea surface chemistry in producing

additional halogens, however the significance of such

mechanisms remains an open question.

Cape Verde researchers aim to build on these first

few years of measurements at the CVAO over the next

decade by, for example, quantifying the nitrogen

oxides budget, elucidating the nature and magnitude

of oceanic iodine emissions, evaluating the influence

of dust on the ocean heat budget, understanding oce-

anic nitrogen fixation, quantifying air-sea exchange

fluxes of important gases in the west African upwell-

ing area, and analysing long-term trends in trace gases

and aerosols in the context of environmental and

climate change. CVAO data can be accessed at

http://badc.nerc.ac.uk/data/solas/projects/capeverde.

html and http://gosic.org/gcos/GAW-data-access.

htm.

5.1.1.5 Conclusions
Oceanic and atmospheric time-series sites started in the

1950s, and their contribution has been invaluable. Some

have been in continuous operation without any interrup-

tion, some have stopped temporarily and some indefi-

nitely. Since the early 2000s, the launch of the Argo

programme with the target of 3,000 floats per year

cruising the global ocean has brought a new perspective

since it provides a unique and systematic source of

information about the interior of the ocean. Only the

combination of eulerian and lagrangian observatories in

an integrated framework will allow a four dimensional

vision of the state of the ocean. One basic key to success

of these networks is the constant quest for the best

procedures for quality checking, intercomparability

and treatment of the data collected. Another key is for

the data to be archived in a responsiblemanner,meaning

ensuring proper software developments and addressing

management challenges of really huge datasets to

secure online delivery and long-term security.

5.1.2 Earth Observation Products

In 1957, the Sputnik was successfully launched and

the space age initiated, heralding the evolution of

Earth Observation, i.e. the scientific study of the Earth’s

surface and atmospheric composition from space.

Since the early 1970s, satellite oceanography has made

huge progress and global satellite observations are now

crucial elements of the global climate observing systems

(GCOS). Remotely sensed data are also basic ingredi-

ents of any oceanic and atmospheric process study. Sea

surface temperature, sea level, wave height, winds,

sea surface salinity, sea ice and ocean colour are

ocean–atmosphere observables monitored with near

global coverage on a daily to monthly basis. Satellite

measurements of concentrations of trace gases and long

lived greenhouse gases, when combined appropriately

with atmospheric chemistry models, have over the past

30 years provided a continuously improving picture of

the distribution of the surface fluxes of these gases at the

air-sea interface. Satellite observations are instrumental

tools of SOLAS science to address seasonal to multi-

decadal time scale variability in the ocean–atmosphere
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exchange of gases and aerosol-borne chemicals. In situ

observations, both oceanic and atmospheric, presented

in Sect. 5.1.1, provide groundtruthing for the calibration

algorithms necessary for deriving these oceanographic

and atmospheric properties from space. Remotely

sensed data provide global-scale data sets at an unprece-

dented spatio-temporal resolution. One major challenge

ahead is to avoid any discontinuity of operating satellites

for the long-term archive and to minimise calibration

drift for performing proper climate studies. Earth obser-

vations represent a unique observational capability to

detect changes in the ocean–atmosphere system and

to better understand how planet Earth functions as a

complex adaptive system. The following subsections

briefly introduce each type of ocean–atmosphere

observation.

5.1.2.1 Altimetry, SST, Winds, Sea State
The advent of satellite altimetry has given oceano-

graphers a unique tool for studying oceanic circulation

and its changes with time. From the vantage point of

space, a radar altimeter is able to measure the shape of

the sea surface globally and frequently. Due to three

decades of international effort, satellite altimetry has

benefited from a series of missions, leading to an

improvement in measurement accuracy by three orders

of magnitude, from tens of meters to a few centimeters

(Fu and Cazenave 2001). The evolution from Seasat

(1978), Geosat (1985–1989), ERS-1/2 (1991–2011),

TOPEX/POSEIDON (1992–2008), Jason1 (2001 to

present), OSTM/Jason2 (2008 to present), ENVISAT

(2000–2012) to Cryosat-2 (2010 to present) has pro-

duced and will produce a wealth of data of progres-

sively improving quality (http://www.aviso.oceanobs.

com/, http://sealevel.jpl.nasa.gov). The Saral/Altikal

mission, launched in 2012, will ensure, in association

with Jason-2, the continuity of the service currently

provided by the altimeters onboard Envisat and

Jason-1, and will contribute to building a global

ocean observing system. The Surface Water and

Ocean Topography (SWOT, http://swot.jpl.nasa.gov/

mission) mission to be launched in 2020 will revolu-

tionise our conceptual view of ocean dynamics since it

will characterise mesoscale and submesoscale circu-

lation with a 10 km space resolution or better. In order

to meet the long wavelength calibration accuracy

requirements, topography profile measurements will

be available with an accuracy equal to or better than

the Jason series of altimeters and radiometers (see

SWOT Science Requirements Document, Version

1.1, 2012). Satellite altimetry observations, often

assimilated by global ocean circulation and coupled

numerical models, constitute the first global synoptic

data sets for the study of the following topics: large

scale circulation, mesoscale eddies, boundary currents,

tropical circulation, large-scale variability on time

scales from intraseasonal to interannual in relation to

forcing mechanisms, El Niño and La Niña, planetary

wave dynamics, eddy dynamics, to list a small sample

of topics.

Sea Surface Temperature (SST) is a difficult para-

meter to define exactly because the upper ocean (~ 10m)

has a complex and variable vertical temperature structure

that is related to ocean turbulence and the air-sea fluxes

of heat, moisture and momentum. Figure 5.4 presents a

schematic diagram that summarises the definition of SST

in the upper 10 m of the ocean. The skin temperature

(SSTskin) is defined as the temperature measured by an

infrared radiometer typically operating at wavelengths

3.7–12 μm (chosen for consistency with the majority

of infrared satellite measurements) that represents the

temperature within the conductive diffusion-dominated

sub-layer at a depth of ~ 10–20 μm. Merging measure-

ments of SST made by different satellite and in situ

instruments on drifting or moored buoys requires a

proper framework to understand the information content

and relationships between these measurements.

Fig. 5.4 The hypothetical vertical profiles of temperature for

the upper 10 m of the ocean surface in high wind speed

conditions or during the night (red) and for low wind speed

during the day (black) (https://www.ghrsst.org/ghrsst-science/

sst-definitions) (# American Meteorological Society. From

Donlon et al. 2007. Used with permission)
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The latest reprocessing (Pathfinder Version 5.2) is a

new reanalysis of the Advanced Very High Resolution

Radiometer (AVHRR) data stream developed by the

University of Miami RSMAS and the NOAA National

Oceanographic Data Center. It uses an improved version

of the Pathfinder algorithm and processing steps to pro-

duce twice-daily SST and related parameters dating back

to 1981, at an areal resolution of approximately 4 km,

the highest possible for a global AVHRR (see http://

www.nodc.noaa.gov/SatelliteData/pathfinder4km/). The

through-cloud capabilities of microwave radiometers

(AMSR-E, TMI) provide a global daily SST map with-

out missing data due to orbital gaps or environmental

conditions precluding SST retrieval. Microwave

optimally-interpolated products have been proposed at

¼� resolution, and by blending with infrared SSTs from

MODIS at 0.09� resolution.
Under the Global Ocean Data Assimilation Experi-

ment (GODAE) umbrella, theGroup for High Resolution

SST (GHRSST) aims at providing the best quality sea

surface temperature data, without missing data, for

applications in short, medium and decadal/climate time

scales in the most cost effective and efficient manner.

Each day theGHRSSTMulti-product Ensemble (GMPE)
experiment produces a median SST map and associated

standard deviation map using SST analysis data collected

over the previous 24 h period (i.e. yesterday). Thus, the

nominal analysis time for the GMPE median ensemble

SST is 12:00 for the previous day (i.e. T-1). The GMPE

median ensemble SST is computed as a median average

using a variety of GHRSST L4 analysis products after

their differing analysis grids have been homogenised by

area averaging onto a standard ½� latitude longitude

grid (https://www.ghrsst.org/data/todays-global-sst/).

The median-ensemble SST coverage is restricted by

the use of the OSTIA analysis land mask. The GMPE
median ensemble SST is currently derived using the

following inputs: the Met Office OSTIA SST analysis

http://ghrsst-pp.metoffice.com/pages/latest_analysis/

ostia.html, the NCEP RTG_SST_HR SST analysis

http://polar.ncep.noaa.gov/sst/, the NAVOCEANO

NAVO K10 SST observations https://www.navo.navy.

mil/ops.htm, JMA MGDSST SST analysis http://goos.

kishou.go.jp/rrtdb-cgi/jma-analysis/jmaanalysis.cgi, the

RSS MW Fusion SST and MW + IR Fusion SST

analyses mentioned above http://www.remss.com/sst/

microwave_oi_sst_browse.html, the FNMOC GHRSST-

PP SST analysis http://www.usgodae.org/cgi-bin/

datalist.pl?summary¼Go&dset¼fnmoc_ghrsst, the

MERSEA ODYSSEA SST analysis http://www.mersea.

eu.org/Satellite/sst_validation.html, the NOAA AVHRR

OI (Reynolds) http://www.ncdc.noaa.gov/oa/climate/

research/sst/oi-daily.php, the Meteorological Service

of Canada (CMC) 1/3� SST analysis http://www.msc-

smc.ec.gc.ca/contents_e.html, and the BMRC GAMSSA
SST analysis http://podaac.jpl.nasa.gov/dataset/ABOM-

L4LRfnd-GLOB-GAMSSA_28km.

As an example central to ocean–atmosphere

interactions at the heart of SOLAS science, Fig. 5.5

presents the GMPE ensemble SST anomaly map for

January 18, 2012 showing clearly that La Niña

conditions are present across the Equatorial Pacific.

SSTs are at least 0.5 �C below average across much of

the central and eastern equatorial Pacific ocean. A

horseshoe pattern of above-average SSTs extends

from the Maritime Continent into the mid-latitudes

of the Pacific Ocean. The sea surface height anomalies

from Jason-2 for January 20, 2012 confirm that La

Niña is peaking in intensity in the equatorial Pacific

(Fig. 5.6). This image is based on the average of 10

days of data centered on January 20, 2012. It depicts

places where the Pacific sea surface height is higher

than normal (due to warm water), and where the sea

surface is lower than normal (due to cool water).

Green colour indicates near-normal conditions. The

La Niña episode changes global weather patterns and

is associated with less moisture in the air over cooler

ocean waters. This results in less rain along the coasts

of North and South America and along the equator,

and more rain in the far Western Pacific.

Ocean surface winds are needed to estimate

momentum transfer (surface stress) and gas transfer

velocity between the atmosphere and the ocean, and

are instrumental for determining large-scale ocean

circulation and transport. Accurate wind speeds are

essential for ensuring reliable computations of air-sea

heat and mass fluxes making surface winds critically

important for budgeting energy, moisture, gases and

particles (Fairall et al. 2010). Several reviews of

space-based wind measurements and applications

have been published (i.e. Liu 2002; Liu et al. 2008;

Bourassa et al. 2010). The challenge is to continuously

improve the present ocean wind system by means of

better bias removal and calibration for low and very

high wind speeds, increased temporal sampling using

a constellation of instruments, finer spatial resolution

and improved methods of fusing observations from

multiple platforms.
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Instruments that are routinely used to measure

vector winds (speed and direction or two vector

components) include scatterometers, passive polari-

metric sensors and Synthetic Aperture Radar (SAR),

and those measuring scalar winds (speed only) include

passive microwave radiometers and altimeters. The

SeaWinds scatterometer on the QuikSCAT satellite

measures surface winds with a resolution of ~ 25 km

across a swath width of ~ 1,600 km. The temporal

sampling is a function of the orbit and the swath

width. The main weaknesses of scatterometers are

rain contamination for some rain conditions and lack

of data near land (~ 15 km for QuikSCAT) (Weissman

et al. 2002; Draper and Long 2004; Nie and Long

2008). Fusion of data from multiple scatterometers

significantly improves the temporal coverage (Liu

et al. 2008). The assimilation of scatterometer winds

in Numerical Weather Prediction (NWP) models has

improved the quality of forecasts of tropical cyclones

(e.g. in wave forecasting and hurricane force warnings

for nowcasting applications). High winds play a large

role in Earth’s climate, dramatically enhancing gas

exchange of greenhouse and trace gases and marine

aerosols. However, validation under high winds is

difficult due to the scarcity of such events and their

tendency to occur in high latitude regions, together

with uncertainty in data from buoys and/or ships in

rough seas due to wave sheltering.

The root mean square (rms) difference between

remotely sensed and buoy wind speeds is generally

less than 1 m s�1 in non-rainy regions, provided that

atmospheric stability and surface currents are taken

into account as satellite measurements are physically

more related to wind stress than to atmospheric wind

speed. The sensitivity of satellite microwave (syn-

thetic aperture radar, scatterometer, altimeter and

microwave radiometer) measurements to the sea

state varies according to the instrument type and to

its operating frequencies.

In the future, the combination of multi-frequency,

multi-angular and multi-sensor measurements should

improve the characterisation of the sea state and
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Fig. 5.5 GMPE ensemble SST anomaly map for January 18,

2012; climatology is derived from NCEP/NOAA between

1985 and 2001 (https://www.ghrsst.org/data/todays-global-sst/;

Martin et al. 2012) (Figure provided by J. Roberts-Jones, Met

Office UK, Crown Copyright)
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spatial resolution, especially in rainy cases and in very

strong wind speed cases. Recent studies show that the

retrieval of wind speed in rainy regions, with a

degraded precision, is now possible using WindSat

radiometric measurements (Meissner and Wentz

2009), that ocean satellite altimetry can retrieve wind

speeds from the radar backscatter in gale to storm

conditions (Quilfen et al. 2011) and that the new

L-band radiometer measurements, much less affected

by rain than at higher frequencies, allow

measurements of winds in a cyclone up to 50 m s�1

(Reul et al. 2012b). Apart from wind speed, the com-

bination of existing and future instruments should also

help to retrieve wave parameters.

Altimeters enable the measurement of wave height

and mean square slope (mss) in various wavelength

ranges depending on the altimeter frequency. Until

now, altimeters (e.g. Jason, ENVISAT) have operated

at three frequencies (S, C, Ku bands), corresponding to

wavelengths of 2.2, 5.6 and 9.3 cm. The future Saral/

Altika altimeter operating in the Ka band (wavelength

of 8 mm) will complement existing measurements.

First retrievals of mean square slope using Global

Navigation Satellite System-Reflectometry (GNSS-

R) are encouraging (e.g. Clarizia et al. 2009).

Among the new planned missions, the French-

Chinese CFOSAT mission (see http://smsc.cnes.fr/

CFOSAT/index.htm) will, in addition to wind speed,

provide the directional wave spectrum.

Scatterometer observations together with micro-

wave observations of SST have facilitated the collec-

tion of data that couple air-sea processes at scales

smaller than the regional, typically at the mesoscale.

Indeed Chelton et al. (2004) and Small et al. (2008)

have identified an intimate link between modification

of the dynamics of the atmospheric boundary layer by

the SST and the feedback of this modification on the

ocean through wind surface stress and heat flux. This

link has been observed between sharp SST gradients

and surface winds – the so called ‘Chelton effect’,

where winds tend to accelerate over warm and decel-

erate over cold waters in the frontal zone, resulting in a

Fig. 5.6 Jason-2 Sea surface

height anomalies centered on

January 20th, 2012 (Figure

courtesy of NASA/JPL-

Caltech)
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quasi-linear relationship between the curl (divergence)

of the wind and the SST gradient according to a per-

pendicular (parallel) direction to the wind (Fig. 5.7).

The remarkable 10-year QuikSCAT data record has

given some insight into the nature of this variability

and the dynamic and thermodynamic impacts of this

atmosphere–ocean coupling on ocean circulation and

atmospheric weather patterns. However, the intricacy

of interaction between the atmospheric and oceanic

boundary layers through the ‘Chelton effect’ has yet

to be merged with the still unresolved biogeochemical

impact of mesoscale eddies (Siegel et al. 2011).

5.1.2.2 Sea Surface Salinity
While sea surface temperature, sea level, sea ice and sea

state are relatively well monitored as an intrinsic part of

the global climate observing system (GCOS 2009),

until 2009 sea surface salinity (SSS) was not measured

from space. Salinity is recognised as an essential cli-

mate variable (GCOS 2010) and satellite SSS is

expected to be highly complementary to existing

in situ salinity measurements (Lagerloef et al. 2010).

The feasibility of measuring SSS from space was

first demonstrated in the frame of the Skylab mission

launched in 1973. However, at L-band frequencies

around 1.4 GHz, the sensitivity of radiometric

measurements to salinity is low and the radiometric

resolution of the instruments remained an obstacle

to the development of new satellite missions until

the 1990s. Since then, the development of new

technologies (Lagerloef et al. 1995) has contributed to

two satellite missions accepted by space agencies: the

Soil Moisture and Ocean Salinity (SMOS) mission of

the European Space Agency and the Aquarius/SAC-D

Fig. 5.7 Frontal-scale SST effects on wind stress divergence

and curl. Shown are binned scatter plots of spatial high-pass

filtered fields of the wind stress divergence as a function of the

downwind SST gradient (top row) and the wind stress curl as a

function of the crosswind SST gradient (bottom row) for four
geographical regions: the Southern Ocean, the eastern tropical

Pacific, the Kuroshio Extension and the Gulf Stream. The points

in each panel are the means within each bin computed from 12

overlapping 6-week averages, and the error bars are � 1 stan-

dard deviation over the 12 samples in each bin. The wind stress

divergence and curl are multiplied by 107 and the units are

Nm�3 (From Chelton et al. 2004)
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mission of the NASA/CONAE agencies. SMOS uses a

new antenna concept (synthetic aperture) for

spaceborne radiometry applications and was launched

in November 2009; Aquarius uses a large size real

aperture antenna and was launched in June 2011. The

goal of these two missions is to achieve SSS accuracy

of ~ 0.2 or better when averaged over 150–200 km and

a monthly timescale.

An overview of the first retrievals of SMOS SSS is

given in Font et al. (2012) and is detailed in papers

submitted to the IEEE TGRS SMOS special issue

(May 2012). Recently, numerous improvements have

been made; below we present examples obtained from

recently reprocessed data (Fig. 5.8).

Data for the entire year 2010 has been reprocessed

at the Centre Aval de Traitement des Données SMOS

(CATDS-CEC-OS). In order to remove outliers linked

to radio-frequency interferences (RFI), consistency

checks based on yearly SMOS data have been

performed before retrieving SMOS SSS. When com-

paring monthly 1� SMOS SSS with in situ SSS data

from ships, ARGO and moorings at a global scale, the

error standard deviation is 0.6 globally and 0.4 in the

tropics (Reul et al. 2012a).

SSS derived in July 2010 with Version v5 of the

ESA processors (v5 will be used for the whole mission

reprocessing until the end of 2011), led to a precision

of 0.2 for SSS averaged over 10 days and 100 km in

the subtropical Atlantic. In the rainy tropical Pacific

Ocean between 5�N and 5�S, the SMOS-ARGO SSS

scattering is greater due to the SSS vertical gradient:

SMOS exhibits a mean freshening of 0.1 in the surface

water with respect to 5 m depth (Fig. 5.9 Boutin et al.

2012).

The new SMOS data processing demonstrates the

capability of retrieving SSS from satellites with a preci-

sion of about 0.3 or even better in warm areas. The

combination of experience from the SMOS and Aquarius

missions is expected to improve this precision.

New satellite SSS will be a key tool for studying

air-sea interactions, e.g. the spread of fresh river water

into the open ocean, rain surface freshening and the

detection of fronts (see BEC processings on http://

www.smos-bec.icm.csic.es/).

5.1.2.3 Marine Carbon Observations from
Satellite Data: Ocean Color/PIC/POC

Phytoplankton are the basis of marine food webs and

contribute up to about 50 % of global primary produc-

tion. Phytoplankton play a role in the budgets of

both organic trace gases and aerosols as a marine

source: for example, dimethylsulphide production by

a b

Fig. 5.8 SMOS SSS maps derived at (CATDS-CEC-OS), after

applying a thorough filtering of the outliers. (a) global map in

April 2010; (b) in the Gulf of Guinea from 21 to 30 April 2010

(See http://www.catds.fr/ for CATDS processing activities;

N. Reul and J. Tenerelly, SMOS Level 3 SSS Research products

-Algorithm Theoretical Breadboard Document, 2011, available

on http://www.ifremer.fr/naiad/salinityremotesensing.ifremer.fr/

CATDS_CECOS_SMOS_Level3Products_ATBD.pdf)
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oceanic phytoplankton, leading to the formation of

sulphate aerosol and cloud condensation nuclei forma-

tion/growth in the marine atmosphere has been studied

extensively (e.g. Liss et al. 1997). A link between

oceanic chlorophyll a content (chl a), the indicator of
phytoplankton biomass, and cloud droplet numbers

over the Southern Ocean (Plass-Dülmer et al. 1995)

has been observed, as well as enhanced organic mass

in marine aerosols during periods of enhanced ocean

biological activity (Singh et al. 2003; O’Dowd et al.

2004). Bromoform observations in the tropical eastern

Atlantic Ocean (Quack et al. 2004, 2007) have

revealed a pronounced subsurface maximum at the

depth of the subsurface chl a maximum, suggesting a

phytoplanktonic source of bromoform. Ocean-emitted

volatile organic compounds also appear to be related

to phytoplankton activity (e.g. Gantt et al. 2009;

Yassaa et al. 2008). An improved quantification of

the dependence of atmospheric composition on marine

biological activity is important for studying the

ocean–atmosphere interactions of gases and particles

and understanding the Earth’s climate system and its

response to anthropogenic influence. In order to study

the dynamics of phytoplankton distribution over

longer timescales, optical remote sensing of ocean

phytoplankton (ocean colour) provides data on

phytoplankton distribution and related parameters

with near global coverage on a daily to monthly time

resolution. Using relationships derived from in situ

oceanic and atmospheric data at or just above the sea

surface, ocean colour data products can then be used to

infer emission rates of trace gases on longer time

scales with reasonable temporal and spatial resolution

(down to 1 km), e.g. Arnold et al. (2009, 2010).

Ocean colour has been focused since the 1980s on

the detection of chl a, due to its strong absorption

properties. Merged chl a and reflectance satellite data

products are available from the SeaWiFS, MODIS and

MERIS sensors (1997 until present), through NASA

and ESA efforts to produce essential climate variables

(Maritorena et al. 2010). However, chl a concentration

changes with species composition and physiological

state and cannot be converted directly into carbon

biomass, which is the currency used in ocean carbon

models. Therefore, recent advances in ocean colour

have focused on the quantification of carbon pools,

such as particulate organic carbon (POC), particulate

inorganic carbon (PIC) and dissolved organic carbon

(DOC), as well as on the assessment of different phy-

toplankton functional types (PFTs). Different PFTs

have distinct impacts on the marine food web and

biogeochemical cycling, e.g. variable relationships of

Fig. 5.9 SMOS SSS at 1 cm

depth minus ARGO SSS at

5 m depth in the tropical

Pacific Ocean (5–15�N;
180–110�W) versus SSMI

Rain Rate (Boutin et al. 2012)

(More details about along-

track SMOS ESA processing

is available on www.argans.

co.uk/smos/ and about

LOCEAN/IPSL SMOS Cal/

Val activities on www.locean-

ipsl.upmc.fr/smos)
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different PFTs to isoprene production have been

observed in laboratory experiments (Bonsang et al.

2010). Ocean colour satellite observation is restricted

to the near-surface layer, which varies from meters to

about 60 m thick depending on the presence of

optically-significant water constituents and the wave-

length considered (Smith and Baker 1978). Products

derived from ocean colour satellite data are integrated

over the first penetration depth.

POC algorithms are based on empirically-derived

relationships of POC to either inherent optical

properties (particle backscattering or attenuation

coefficients), which are related to reflectances,

measured by remote sensing at several wavelengths

(Stramski 1999, Loisel et al. 2001, 2002; Gardner

et al. 2006), or to the blue-to-green reflectance ratio

(Stramski et al. 2008). The latter algorithm seems less

sensitive to regional variability, but is closely related to

chl a as it uses the same input parameters (the blue

to green reflectance ratio). For biogeochemical studies,

satellite near-surface POC data are insufficient because

they correspond to the first attenuation layer only and

deep chl a maxima often exist. Moreover, biogenic

detrital particles, heterotrophic bacteria and viruses

also contribute to POC in variable proportions through-

out the entire water column. Stramski et al. (2008)

provided quantitative estimates of the POC reservoir

in three oceanic layers: the attenuation, the mixed-

layer (MLD) and the 200m layer depth. In oligotrophic

waters, this approach may underestimate the POC

reservoir where high POC accompanies deep chl a

maxima, because it assumes that POC is uniform

throughout the MLD and equals the near-surface

POC concentration. This work has been improved by

the empirical algorithm of Duforêt-Gaurier et al.

(2010) who derive integrated euphotic zone POC

from the entire SeaWiFS satellite data set.

The PIC ocean colour product represents biogenic

particles composed of calcium carbonate which is

produced by several phytoplankton groups, mainly

coccolithophores. These create massive blooms in

the ocean, and their PIC, being white, strongly reflects

light, which imparts a turquoise-blue-white colour to

the ocean. The blooms are easily observed in the

pseudo-true-colour images from satellites and can be

monitored using ocean colour (Brown and Yoder

1994). Algorithms have been elaborated to quantita-

tively retrieve PIC at regional and global scales

(Gordon et al. 2001; Balch et al. 2005) and the

most recent have been used to process the whole

SeaWiFS andMODIS data set. An important constraint

of these algorithms is that, at typical non-bloom

concentrations, the PIC scattering represents only a

few percent of the total scattering. Thus, to maximise

the signal to noise ratio, satellite pixels must be

aggregated in space and time, in order to define accu-

rate mean concentrations. Currently, more verification

with PIC field measurements is underway to optimise

the use of PIC ocean-colour data in models (Balch et al.

2011). PIC is also produced by certain zooplanktonic

organisms but these particles are too large to be

detected by ocean colour (Balch et al. 1996).

Different bio-optical and ecological methods have

been established that use ocean colour data to identify

and differentiate between PFTs or phytoplankton size

classes (PSCs) in the surface ocean. These can be

summarised into four main types: spectral-response

methods which are based on differences in the shape

of the light reflectance/absorption spectrum for differ-

ent PFTs/PSCs (Sathyendranath et al. 2004; Alvain

et al. 2005, 2008; Ciotti and Bricaud 2006; Bracher

et al. 2009; Sadeghi et al. 2011; Brewin et al. 2010a;

Devred et al. 2011), methods which use information

on the magnitude of chlorophyll a biomass or light

absorption to distinguish between PFTs or PSCs

(Devred et al. 2006; Uitz et al. 2006; Hirata et al.

2008; Brewin et al. 2010b; Hirata et al. 2011; Mouw

and Yoder 2010), methods that retrieve the particle

size distribution from satellite-derived backscattering

signal and derive PSCs (Kostadinov et al. 2010), and

ecological-based approaches which use information

on environmental factors, such as temperature and

wind stress, to supplement the bio-optical data for

investigating PFTs (Raitsos et al. 2008). All methods

derive dominant phytoplankton groups, while Uitz

et al. (2006), Bracher et al. (2009, improved by

Sadeghi et al. 2011) and Hirata et al. (2011) also

give chl a for the different PFTs. Nearly all the PFT

methods mentioned use information from the multi-

spectral ocean colour sensors SeaWiFS, MERIS or

MODIS and are based on the parameterisation of a

large global or regional in situ data set in order to yield

PFTs from satellite chl a or normalised water leaving

radiances. Unexpected changes in the relationships

between these parameters resulting from a regional

or temporal sampling bias leads to a bias in the
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detection of PFTs. In contrast, the PhytoDOAS

method of Bracher et al. (2009, improved by Sadeghi

et al. 2011) exploits the whole spectrum by using

hyperspectral data of the satellite sensor SCIAMACHY

and discriminates different PFTs by their characteristic

absorption. Diatoms, cyanobacteria, dinoflagellates and

coccolithophores are quantified (example in Fig. 5.10)

without assuming empirical relationships as in the case

of other PFT methods. Recent PFT algorithm intercom-

parison studies show the robustness of the abundance-

based approaches at detecting dominant PSCs (Brewin

et al. 2011). A new PFT algorithm intercomparison has

been initiated where the quantitative assessment of PFT

distributions will be compared. PFT monthly resolved

products are available for the whole SeaWiFS or

SCIAMACHY missions, using the methods of Alvain

et al. (2008) and Hirata et al. (2011) covering

1998–2009 for the first data sets and the PhytoDOAS

method covering 2002–2011.

5.1.2.4 Sea Ice
Methods for studying sea ice, including Earth obser-

vation products, have recently been thoroughly

reviewed by Eicken et al. (2009), which includes a

comprehensive reference list. Here we provide a brief

summary of the approaches most relevant to the

science of surface ocean-lower atmosphere exchanges.

In addition to satellite-borne remote sensing tools

(e.g. Massom 2009), automated in situ systems (see

Perovich 2009), mainly mounted on buoys, are prov-

ing to be a critical component of the global sea-ice

observing network. In contrast to open water, sea ice is

a very complex and variable surface, complicating

calibration of remote sensing signals, and information

from multiple sources is generally required to resolve

measurements. Therefore, both multiple satellite

sensors and widely distributed automatic measure-

ment stations (also called ice-based observatories)

remain critical to interpreting Earth observation data

on sea ice (see Massom 2009 for a detailed

discussion).

Sea ice distribution and motion are fundamental

parameters needed for research on air-sea exchange

in polar oceans. Passive microwave data (e.g. from the

SSM/I series satellites) may be the most valuable tool

available for tracking sea ice. Not only does micro-

wave radiation provide information in the dark and

through clouds, but in the Arctic, where summer brine

Fig. 5.10 Global climatology for April of coccolithophore

biomass (given as chlorophyll a concentration) derived from

the average of all SCIAMACHY data retrieved via PhytoDOAS

multitarget-fitting (according to Sadeghi et al. 2011, 2012)

(Source: T. Dinter, A. Bracher, Phytooptics, AWI-IUP)
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flushing is common, it can also distinguish between

first- and multi-year ice. While the relatively low

resolution of passive microwave data precludes their

use for studying landfast ice, synthetic aperture radar

(SAR; aboard, for example, the ERS series and

RADARSAT satellites) provides very high resolution

data, to as good as 1 m, which is adequate not only for

fast ice, but also for detailed ice edge information.

Visible and infrared sensors (e.g. MODIS and

AVHRR) also provide data on ice distribution,

although only far-infrared sensors are useful during

winter. Deriving ice motion from time series of satel-

lite images carries a high uncertainty, and data from

drifting ice buoy arrays are a vital component of accu-

rate ice motion estimates.

Beyond the simple presence or absence of sea ice,

ice thickness and the rates of freezing or melting

strongly impact air-ice-ocean exchanges. To date, ice

mass balance buoys (e.g. Metocean) and moored sonar

have been the most accurate tools available to deter-

mine sea ice thickness over distributed areas. Kwok

(2010) reviewed satellite remote sensing of sea-ice

thickness and concluded that at least in the Arctic,

ice thickness from radar and lidar altimetry is matur-

ing and its shortcomings are relatively well under-

stood. In contrast, Southern Ocean ice cover, in

which flooding and snow-ice formation cause substan-

tial density variations and where there are fewer

observations to help address processing deficiencies,

sea-ice thickness retrieval has not achieved the same

level of accuracy as in the Arctic. The CryoSat-2-

satellite, launched in 2010, was designed to use SAR

to measure ice thickness very precisely, and appears to

be meeting expectations.

While visible-IR sensors can provide surface skin

temperatures, sea ice is often covered by a snow layer

of variable thickness, and the temperature at the ice-

snow interface is an important parameter in determin-

ing ice-atmosphere exchanges. Passive microwave has

shown potential for providing information on both the

snow thickness and snow-ice interface temperatures,

but these applications are still in development. The

impurity content of the snow (i.e. its salinity) can be

derived from visible-IR imagery, and the salinity of

sea ice substantially influences its radar transparency,

providing a potential tool for remotely sensing sea ice

bulk salinity that has not yet been fully developed.

Frost flowers, which form on the surface of new ice

under very cold and still conditions, appear to play

an important role in transferring sea-ice salts,

organohalides, and other organic matter to the atmo-

sphere and can be identified with synthetic aperture

radar or with a combination of active and passive

microwave sensors (Kaleschke and Heygster 2004).

Regardless of which sensor data are used, classifi-

cation of ice types, including leads or polynias,

from remote sensing involves refined analytical tools

(e.g. Soh et al. 2004; Qin and Clausi 2010). Most are

formulated in Bayesian frameworks, which require

substantial ground truth data to train the analytical

classifier. To help meet this need, Clausi et al. (2010)

developed a tool for generating high-resolution (pixel-

based) maps for SAR images. They provide estimates

of ice concentrations, types, and floe sizes derived

from manually classified ice charts of low spatial

resolution, such as those produced by the Canadian

Ice Service. Similarly, Röhrs et al. (2012) used manual

observation of visible satellite images to test and

validate an algorithm for identifying leads in passive

microwave imagery. Note that although these

approaches provide a lot of data for training classifica-

tion algorithms, the data are not truly ground-truthed,

which requires instruments at the surface.

The autonomous O-buoys developed by the

Ocean–Atmosphere-Sea Ice-Snow (OASIS)

programme during IPY (Fig. 5.11) have successfully

measured both ozone and CO2 over sea ice for at least 3

months during the winter-spring transition (Knepp

et al. 2010). As these buoys are further developed and

more are deployed, they will provide valuable ground-

truthing data to supplement those from satellite-borne

absorption spectrometers (see Sects. 5.1.2.5 and

5.1.2.6) measuring aerosol and trace gas emissions

from sea ice.

As yet, surface waters below the ice are inaccessible

to satellites except through openings in the ice, such

as leads and polynias. Therefore, the only available

tools that potentially could provide operational infor-

mation on ice-sea water exchanges are ice buoys,

such as the Autonomous Ocean Flux Buoys (AOFB),

and ice-tethered profilers (Krishfield et al. 2008).

Gliders also have the potential to provide surface-

ocean information at higher temporal and spatial

resolution than ship-borne measurements, but their use

at shallow depths under sea ice can be complicated

by ice keels.

As noted before, interpreting remotely sensed data

on sea ice requires synthesising information from
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numerous tools, including different satellite sensors

and buoy arrays. Recent initiatives to coordinate

observations in ice-covered seas should substantially

improve the utility of Earth observation products for

sea ice research. Notably, the International Polar Year

programme on integrated Arctic Ocean Observing

Systems initiated basin-wide research coordination in

the Arctic Ocean, including deployments of ice buoys

and ice-tethered profilers (e.g. Dickson 2009; Perovich

et al. 2012, IAOOS: Ice-Atmosphere- Arctic Ocean

Observing System see http://www.iaoos-equipex.upmc.

fr/en/index.html). A similar initiative in the Southern

Ocean (SOOS, the Southern Ocean Observing

System) is also now underway (Rintoul et al. 2012).

5.1.2.5 Aerosols
Properties of aerosols in the marine atmosphere are

extensively described in Chap. 4 of this book (see also

Sects. 5.1.1.3 and 5.1.1.4), including the use of satel-

lite remote sensing for the determination of the

organic mass fraction in sea spray aerosol. In this

section we further elaborate on the use of satellite

remote sensing for the determination of aerosol

properties, which started some three decades ago

with the retrieval of the aerosol optical depth (AOD,

often also called aerosol optical thickness or AOT)

over the ocean. The retrieval of aerosol properties

over the oceans can be achieved due to the relatively

small reflection of solar radiation by the ocean surface,

as compared to the reflection by aerosol particles, at

wavelengths in the visible and near infrared part of the

electromagnetic spectrum. Over land the surface

reflection at these wavelengths is much larger and

over bright surfaces this overwhelms the aerosol

signal.

A brief description of the history of aerosol

observations from space was presented by Lee et al.

(2009b) and Kokhanovsky and de Leeuw (2009),

including an overview of instruments used for this

purpose (see also de Leeuw et al. 2011a). Currently,

AOD observations are available from several

instruments, including operational products such as

MODIS, which provides AOD with a validated accu-

racy over the ocean of � (0.03 + 0.05AOD) (Remer

et al. 2008). Other examples of instruments providing

aerosol products are: MISR, PARASOL, AATSR,

MERIS, OMI, SCIAMACHY, GOME-2, MSG

and CALIOP. These products include a variety of

parameters, in addition to AOD at one or more

wavelengths, such as fine mode fraction, absorption

aerosol index (AAI) and an indication of aerosol

chemical composition. Products, accuracy and spatial

and temporal coverage depend on the instrument

characteristics. The results are validated by comparison

with independent ground-based sun photometer data.

Results from a comparison of MISR and MODIS

aerosol products by Kahn et al. (2009) show good

correlations between the AOD products (correlation

coefficient 0.9 over ocean and 0.7 over land) and the

Ångström exponent (correlation coefficient 0.67 over

ocean whenMISR AOD values > 0.2 are considered).

Kahn et al. emphasise the necessity for proper

interpretation of the satellite products. In particular

Fig. 5.11 O-buoy OB-5

shortly after deployment on

August 5, 2011, at 78� 0.40 N,
139� 55.50 W in the Beaufort

Sea (Photo: John W. Halfacre)
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data-quality statements should be followed to ensure

proper interpretation and use of the satellite aerosol

products. Other intercomparisons of satellite products

also reveal significant discrepancies between AOD

(order of 0.1) from different instruments, even over

the ocean (Myhre et al. 2004, 2005).

The AOD is important for the measurement-based

assessment of aerosol effects on climate and chemical

processes in the atmosphere. Satellite data also show

the spatial distribution of aerosols over the ocean which

reveals, e.g. transport patterns of dust, biomass burning

aerosols and anthropogenic pollution, all of which play

a role in the atmospheric input of nutrients into the

ocean and their biogeochemical effects (see Chap. 4

for a description of current knowledge on this subject).

Measurements of AOD over the ocean clearly show

the effect of wind speed on SSA production, as

reported by e.g. Mulcahy et al. (2008); O’Dowd et al.

(2010), both using local sun photometer and wind

speed measurements at Mace Head, Glantz et al.

(2009) using SeaWifs data and ECMWF wind speeds,

Lehahn et al. (2010) using MODIS AOD and

QuickSCAT, AMSR-E and SSM/I data, Huang et al.

(2010) using AATSR AOD and ECMWF wind speed

data, Kiliyanpilakkil and Meskhidze (2011) using

CALIOP and AMSR-E data and Smirnov et al.

(2011) using data from the Marine Aerosol Network

(MAN, Smirnov et al. 2011). Smirnov et al. (2012)

compare various AOD versus wind speed relationships

showing large differences in the AOD at the same

wind speed. Most of these relationships show a similar

change in AOD over the wind speed range of

0–10 ms�1, with the exception of the relations of

Mulcahy et al. (2008) and O’Dowd et al. (2010). The

latter relations show exponential dependence of AOD

on wind speed whereas Smirnov et al. (2012) found a

linear dependence.

AOD has been used by several authors to evaluate or

improve their model results. Sofiev et al. (2011) used

MODIS AOD data to evaluate their model results over

the ocean. Jaeglé et al. (2011) used AOD observations

to include the effect of SST on the production flux of

coarse mode sea-salt aerosol in their model through a

correction to the sea salt aerosol source function (see

Chap. 4 and Sect. 5.2.4). Lapina et al. (2011) used

MODIS and MAN AOD data for comparison with

GEOS-Chem model results that use the Jaeglé et al.

(2011) correction for coarse mode sea-salt aerosol pro-

duction fluxes as well as an emission scheme for

organic matter (see Chap. 4). These authors found that

the model AOD is lower than the mean MODIS AOD

value but agrees well with MAN AOD for the studied

regions. Lapina et al. (2011) argue that this may be

partially explained by uncertainties in the satellite

retrieval and that uncertainties in the marine OM emis-

sion scheme cannot account for the AOD estimate.

They conclude that only a sea spray aerosol emission

parameterisation resulting in a very different spatial

distribution of sea salt could resolve this discrepancy,

which may suggest that either some additional marine

source of aerosol has not been accounted for or that

observations used in the study are insufficient to close

the marine aerosol budget.

Sea spray aerosol is principally produced from

waves breaking under the action of the wind. The

area of the ocean covered with whitecaps is expressed

in the whitecap fraction. The retrieval of whitecap

fraction using satellite data was explored by

Anguelova and Webster (2006). A review of this sub-

ject can be found in Lewis and Schwartz (2004), see de

Leeuw et al. (2011b) for the current status in this area

and a comparison of different methods.

5.1.2.6 Satellite Measurements of Trace
Gases Over the Oceans

Carbon dioxide (CO2) and methane (CH4,) are the two

most important greenhouse gases (GHG) being

modified directly by anthropogenic activity, primarily

fossil fuel combustion, biomass burning and land use

change. In 1957, during the International Geophysical

Year, IGY, accurate measurements of the mixing ratio

of CO2 at the Mauna Loa Observatory, led by C.D.

Keeling, were initiated. These revealed the growth of

CO2, attributed to fossil fuel combustion, and the

annual biogeochemical seasonal cycling of CO2.

Measurements were extended to other sites and

to include CH4 and other relevant gases, resulting

in a global but sparse network. However global

measurements at high spatial resolution are needed to

identify and assess the local and regional response of

CO2 and CH4 surface fluxes in a warming world and

for the verification of national inventories of GHG.

During the 1980s, the retrieval of the total dry

atmospheric columns of CO2 and CH4 from space

was proposed as part of the SCIAMACHY (SCanning

Imaging Absorption spectroMeter for Atmospheric

CartograpHY, Burrows et al. 1995 and Bovensmann

et al. 1999) mission. This is achieved by the remote
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sounding in the short wave infrared spectral region and

the retrieved CO2/CH4 data products, provided they

have been adequately sampled with sufficient accu-

racy and are coupled with models, constrain local and

regional surface fluxes. SCIAMACHY was selected in

1989, as a national contribution by Germany to the

ESA ENVISAT, with The Netherlands and Belgium

joining the funding consortium in Phase A and B,

respectively. ENVISAT flies in a sun-synchronous

orbit in descending node, having an equator crossing

time of 10.00 a.m. and was launched on the 28th of

February 2002. SCIAMACHY measures contiguously

in eight channels scattering, reflecting and transmit-

ting solar electromagnetic radiation upwelling from

the earth’s atmosphere between 214 and 2,380 nm at

a channel dependent spectral resolution between 0.2

and 1.4 nm. Measurements are made alternately in

limb and nadir viewing geometry and for solar and

lunar occultation. Mathematical inversion of the nadir

measurements of the absorptions of CO2, CH4 around

1.6 μ and molecular oxygen, O2 around 0.76 μ, yields
the total dry columns of CO2 and CH4.

The map of the average dry total column of methane

is shown in Fig. 5.12. The source regions in the north-

ern hemisphere, such as natural wetlands, rice paddies

and anthropogenic regions are readily identified along

with the hemispheric gradients. In Fig. 5.13 the dry

column of CO2 and CH4 are plotted against time and

sin(latitude) to show the latitudinal distribution of

increase from 2003 to 2012. Combining these

measurements appropriately with atmospheric models

yields and constrains the surface fluxes of CH4 and

CO2. There is now a growing body of literature

combining these data and an accurate network of

measurements with which to assess our understanding

of surface flux distributions. SCIAMACHY has

demonstrated the feasibility, but higher spatial resolu-

tion measurements and improved sampling are needed

to unambiguously measure point sources and sinks of

CO2 and CH4.

The GOSAT (Greenhouse gases Observing SATel-

lite) was launched on 23rd of January 2009. The instru-

ment TANSO-FTS (Thermal And Near infrared Sensor

for carbon Observations - Fourier Transform Spectrom-

eter) has now made over four years of measurements in

space (Hamazaki et al. 2004). The measurements have

higher spectral resolution and contain potentially more

information than those of SCIAMACHY but have

poorer sampling. The OCO (Orbiting Carbon Observa-

tory) was selected by NASA but the OCO-1 launch

vehicle failed in February 2009 (Crisp et al. 2004).

OCO aims to make high spatial resolution

measurements of the dry column of CO2 and OCO-

2 is now planned for launch in 2014. Based on the

success of SCIAMACHY, the MaMap instrument was

developed in 2006 to demonstrate that high spatially

resolved measurements, e.g. 50 m, and high signal to

noise of the total dry mole fraction of CO2 and CH4 are

feasible from aircraft (Gerilowski et al. 2011). The

results of MaMap have been used to retrieve surface

fluxes of CO2 and CH4 from point sources. This dem-

onstration was an essential prerequisite for the develop-

ment of the CarbonSat and CarbonSat Constellation

concepts. A single CarbonSat was proposed for the

ESA earth explorer opportunity mission 8, and selected

in November 2010 by ESA for Phase A, B1 studies,
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Fig. 5.12 The average global

distribution of the dry column

of methane retrieved from

SCIAMACHY, showing the

source regions such as natural

wetlands and rice paddies and

the hemispheric gradient
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yielding 5 day global coverage. A constellation yields

the daily measurements at high spatial resolution

measurements required for the verification of CO2 and

CH4 emissions in the post Kyoto era and the observa-

tion of the response of the ecosystem in a warming

world.

The background concentration of most trace gases in

the lower marine atmosphere is difficult to quantify

from space, mainly due to low atmospheric

concentrations and the low reflectance of the

ocean surface. This is particularly true for ozone as its

concentration in the lower troposphere is considerably

lower than that throughout the rest of the ozone column.

However, emissions from volcanic eruptions (e.g.

SO2), shipping routes (NO2) and long-range transport

plumes can be monitored over the oceans.

International shipping routes are a significant

source of pollution in the marine boundary layer.

Emissions of traces gases such as NO2 have been

measured from different satellite instruments

(e.g. Richter et al. 2004; Beirle et al. 2004). For

instance, Franke et al. (2009) compared modelled

and satellite-observed NO2 for the shipping lane

between India and Indonesia using GOME,

SCIAMACHY, OMI and GOME-2 data, finding

indications of an upward trend in shipping emissions

over recent years.

The background concentration of SO2 is difficult to

measure by instruments onboard satellites, although

volcanic eruptions and their emission plumes can be

monitored over several days. The first observation of a

volcanic eruption from satellite SO2 measurements

was made using data from the Total Ozone Mapping

Spectrometer (TOMS) during the El Chichón eruption

in 1982 by Krueger (1983). Since then, several authors

have reported satellite SO2 observations from volcanic

ash plumes across the world (e.g. Heue et al. 2010;

Nowlan et al. 2011).

Reactive halogen species, such as BrO and IO, lead

to ozone destruction in the lower atmosphere,
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Fig. 5.13 Plots of the dry

mole fraction of CO2 and CH4

versus sin (latitude) from 2003

to 2012 retrieved from

SCIAMACHY. These show

the latitudinal increase of CO2

and the changes in CH4. The

rate of increase accelerates in

2008 and is not yet

unambiguously explained

(Figures courtesy of

O. Schneising, M. Buchwitz

and J. P. Burrows University

of Bremen)
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especially during the polar spring. Measurements from

satellite instruments such as GOME, GOME-2,

SCIAMACHY and OMI have delivered detailed

maps of BrO (e.g. Chance 1998; Wagner and Platt

1998; Richter et al. 1998). The detection of IO over

Antarctica has also been demonstrated using

SCIAMACHY data (Saiz-Lopez et al. 2007;

Schönhardt et al. 2008).

Oxygenated volatile organic compounds such as

HCHO and (CHO)2 are key intermediate species

produced during the oxidation of precursor

hydrocarbons. Their short lifetime of a few hours

in the lower troposphere links them to emission

sources and makes them useful tracers of photo-

chemical activity. Vrekoussis et al. (2009) and

Lerot et al. (2010) observed high values of glyoxal

over the oceans, mainly in the tropics close to the

upwelling areas and regions having significant

amounts of phytoplankton, implying oceanic bio-

genic activity as a possible source of glyoxal

precursors. Marbach et al. (2009) have reported the

detection and quantification of HCHO linked to

shipping emissions from GOME data.

5.1.2.7 Conclusions
The success of integration of Earth Observations

products in SOLAS Science depends on the efforts

of the international atmospheric and marine science

communities. They need to maintain a continuous

series of sensors on satellite missions, without inter-

ruption, with a constant aim to optimise the quality

of the retrieved observables. This required quality

implies continuous and rigorous calibration with in

situ measurements in the atmosphere and in the

ocean including coastal regions. The European

Space Agency has launched in 2011 a Support to

Science Element Project on SOLAS Science entitled

Oceanflux (http://due.esrin.esa.int/stse/projects.php)

comprising three themes: Upwellings, Sea spray

aerosols and Greenhouse Gases to foster the use of

EO data in addressing these SOLAS science

questions. Ultimately, it is up to SOLAS scientists

together with Earth Observation experts to imagine

and develop novel sensors, products, algorithms and

methodologies to provide the long duration records

of all relevant parameters of the ocean–atmosphere

coupled system. Together with models, Earth Obser-

vation products constitute the key sentinels for

predicting the future trajectory of Earth’s climate.

5.1.3 Modelling

Modeling has emerged as a critical and successful

method to answer scientific questions, to test

hypotheses and to make predictions (Gruber and

Doney 2008). Models range from conceptual (essen-

tially ideas about the functioning of a system or

process) to complex realistic models that push the

boundaries of computational capabilities. We restrict

our discussion here to mathematical models and their

numerical implementations unless explicitly stated.

But in all cases, models are designed for a particular

purpose and therefore their transferability is often

strongly limited.

Modeling has become the third pillar of the scien-

tific method. In particular, the development of models

can be thought of as an iterative process in that

observations and experiments stimulate the formula-

tion of conceptual models and hypotheses, which are

then translated into mathematical models. The models

can then produce predictions, which when confronted

with new observations permit the developer to evalu-

ate the models and to either corroborate their underly-

ing hypotheses or to reject them. This leads to an

iterative process of modification and improvement.

The predictions do not necessarily have to lie in the

future (forecast mode), since models can also make

“predictions” for the past, i.e. when the models are run

in hindcast mode. Finally, models can also be run in

assimilation mode, where the model’s parameters or

its initial or boundary conditions are modified in order

to optimally fit a given set of observations.

Physical models of oceanic and atmospheric circu-

lation are used routinely and several mature coupled

climate modelling systems exist (e.g. Gent et al. 2012;

Roeckner et al. 2006; Collins et al. 2006). Ocean

biogeochemical models, obtained by coupling ocean

circulation models with mathematical representations

of biogeochemical processes, are less mature partly

because the quantitative understanding of biogeo-

chemical processes is relatively patchy and mostly

empirically-based. This is aggravated by the relative

lack of critical biological and chemical observations.

As a result, ocean biogeochemical/ecological models

differ widely in terms of their complexity (e.g. number

of functional plankton groups/state variables) and pro-

cess parameterisations used (see e.g. Le Quéré et al.

2005). Arguably this is less due to differences in

scientific objectives and more to the fact that an
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optimal compromise between realism and feasibility

has not yet emerged (Anderson 2005). Also, biogeo-

chemical predictions depend on many parameter-

isations and parameter choices that are not well

constrained – a direct reflection of the relative paucity

of biogeochemical observations and experiments.

Ocean and atmospheric models are often run

independently of each other, where atmospheric

model output is used as boundary information for

ocean models (e.g. atmospheric temperature, humid-

ity and carbon dioxide concentration) and vice versa.

An interactive coupling between ocean and atmo-

sphere is needed when feedbacks are of interest

that lead to changes in the oceanic or atmospheric

mean state, e.g. in climate models and Earth System

models such as those used in the IPCC assessments.

Global models are constantly being pushed to finer

spatial resolutions. However, for reasons of compu-

tational efficiency and convenience models are often

run at regional and local scales (as three-dimensional

or one-dimensional, vertical models). Regional

models allow for higher spatial resolution and more

complex representation of biogeochemical processes

than global models. They can thus be targeted to better

resolve, for example, the scales of open ocean process

studies or processes in coastal regions and on continen-

tal shelves (e.g. Gruber et al. 2011). These regional

models require boundary information either from

climatological observations or larger scale models.

Model simulation results are always approximations

of reality. They come with uncertainties resulting from

inadequacies in process resolution and parameter-

isations, numerical approximations and imperfections

in initial and boundary information. Some of these

uncertainties are not well understood or quantified.

Data assimilation and inverse modeling, which encom-

pass a variety of statistically based techniques for

blending observations and models, are a way to reduce

uncertainty in model simulations. Data assimilation

has been used routinely for many years in numerical

weather prediction for short-term forecasting and, more

recently, for ocean models that are run operationally (in

forecast mode) or for improving state estimates in

hindcasts (e.g. Wunsch and Heimbach 2007; Brasseur

et al. 2009).

For model development and validation in general

and data assimilation and inverse modeling in particu-

lar, the availability of high-quality observations is

essential. For example, the Argo array has led to

remarkable improvements in our ability to character-

ise the physical state of the ocean (see Sect. 5.1.1.1).

Expansion of this initiative aimed at including chemi-

cal and bio-optical measurements will likely lead to

tremendous improvements in our ability to character-

ise the biogeochemical state of the ocean (Johnson

et al. 2009; Brasseur et al. 2009).

Perhaps the most pressing modeling challenge is to

provide estimates of how the mean physical and bio-

geochemical state of ocean and atmosphere and

variations around this mean will change in the future

on time scales of a century or longer. Such simulations

are referred to as projections. An obvious difficulty is

that these future states are outside the envelope of

historical observations against which models can be

validated. One strategy is to run climate models for

periods in the geological past, where some information

is available from palaeo-oceanographic proxies,

although this solution is imperfect in that no direct

and well-understood analogue to the future exists and

that palaeo-proxies provide only an incomplete

characterisation of the coupled ocean–atmosphere

system. In IPCC assessments, attempts are made to

address uncertainty in future projections by using

multi-model ensembles. Experience has shown that

the means of such ensembles frequently perform better

than any single model (e.g. Tebaldi and Knutti 2007).

In summary, modeling is an integral part of SOLAS

science. Different modeling approaches and

techniques are used for different purposes depending

on the scientific objective. Key examples are given in

the following sections.

5.1.3.1 Global Perspective, Prognostic IPCC
and Hindcast

Over the past two centuries, the ocean has taken up

about 30 % of total anthropogenic CO2 emissions,

which include the emissions from the burning of fossil

fuel and from land use change (Sabine et al. 2004).

Although this uptake came at the cost of ocean acidifi-

cation, it helped considerably to mitigate the accumu-

lation of this anthropogenic CO2 in the atmosphere. It

is thus of great importance to determine whether the

ocean will continue to provide this service to mankind,

or whether feedbacks between global climate change

and the ocean carbon cycle will reduce the uptake of

CO2 from the atmosphere (Sarmiento et al. 1998; Joos

et al. 1999; Gruber et al. 2004). Increases in ocean
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stratification and marine oxygen levels can also lead to

the enhanced production of marine N2O, which would

further accelerate global warming (see Chap. 3).

Global prognostic models are the only means to

provide answers to such questions. In order to assess

all aspects of such climate-ocean-biogeochemical

feedbacks, coupled Earth system models need to be

employed. In such models, all components of the sys-

tem, i.e. atmosphere, ocean, land surface and sea-ice

are fully prognostic, and include not only descriptions

of how energy, momentum, and water are cycled

between these reservoirs, but also how carbon and

other important biogeochemical constituents, such as

nitrogen, are transported and transformed. In the last

10 years, several such models have been developed,

and they have formed an important contribution to the

4th assessment report of IPCC (Denman et al. 2007).

Such models are typically forced with a prescribed set

of CO2 emission scenarios, and the model itself then

determines what fraction of the emitted CO2 stays

in the atmosphere, and what amount of warming

corresponds to the resulting increase in this greenhouse

gas (Friedlingstein et al. 2006).

Roy et al. (2011) recently conducted an intercom-

parison of four such Earth system models and

investigated how the net ocean CO2 uptake was altered

in response to increases in atmospheric CO2 and

global warming. Specifically, a linear sensitivity anal-

ysis was performed, where they represented the net

oceanic CO2 uptake as a sum of a CO2-driven part, and

of a temperature-driven part, i.e.,

Int ðFasnetÞ dt ¼ γ� ΔTþ β� ΔCO2

where Fas
net is the net ocean CO2 uptake, ΔT is the

change in global mean temperature and ΔCO2 is the

change in atmospheric CO2, and where γ is the tem-

perature sensitivity and β that for CO2 (Friedlingstein

et al. 2006). Figure 5.14 reveals that all values of β are
negative, i.e. that the oceanic CO2 uptake increases as

atmospheric CO2 increases. Small differences in the

responses are related to differences in the buffer factor

and differences in the age structure of the water that

resides at the surface (Gruber et al. 2009; Roy et al.

2011). Regions where waters upwell that have not been

in contact with the atmosphere for several decades and

more have a large relative deficit with regard to anthro-

pogenic CO2 and hence have a high tendency to take it

up from the atmosphere. Figure 5.14 also shows that

most regions have a positive γ, i.e. that climate change

decreases the uptake of atmospheric CO2. An important

exception are the high-latitude oceans, especially the

Southern Ocean and the Arctic, where global warming

tends to increase the uptake. These differential patterns

are a result of the complex interactions occurring

between ocean physics (primarily warming and vertical

stratification) and ocean biology working primarily on

the natural carbon cycle. Although these results repre-

sent multi-model means, the robustness of the details in

these results is not yet well established. Nevertheless,

the general tendency is clear. Climate change will tend

to make the ocean carbon sink weaker (Gruber et al.

2004; Denman et al. 2007).

5.1.3.2 Regional Perspectives from
High-Resolution Modeling

A disproportionate fraction of the air-sea fluxes of

climatically relevant gases (e.g. CO2, N2O) is thought

to occur in coastal and continental shelf regions even

though they cover only about 7 % of the global ocean

surface area. However, processes on continental shelves

are not well described by global and basin-wide models,

primarily because these models do not resolve the

smaller scales relevant for shelf and coastal processes.

Instead high-resolution regional models are nested

within larger scale, state-of-the-art operational models

such as MERCATOR (Bahurel et al. 2006) and

HYCOM (Chassignet et al. 2007) and are used to

quantify air-sea fluxes in these regions and to improve

our understanding of the underlying mechanisms. For

example, drivers of air-sea CO2 fluxes for the wide,

passive-margin shelves of the western North Atlantic

were studied by Fennel et al. (2008), Fennel and

Wilkin (2009) and Previdi et al. (2009) and for the

semi-enclosed North Sea, a marginal sea in the eastern

North Atlantic, by Prowe et al. (2009) and Kühn et al.

(2010). Lachkar and Gruber (2013) recently investi-

gated the air-sea CO2 fluxes in the Canary and

California Current Systems.

On the western North Atlantic shelves, where

exchange between shelf and open ocean waters is

restricted by a pronounced shelf-break front, coupling

between biogeochemical processes in sediments and

in the overlying water column was found to be highly

relevant for air-sea fluxes of CO2 (snapshots of the air-

sea gradient in partial pressure are shown in Fig. 5.15).

For example, sediment denitrification (the anaerobic

remineralisation of organic matter which produces
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nitrogen gas, N2) leads to decreases in primary pro-

duction and increases in alkalinity, both of which alter

air-sea fluxes of CO2 (Fennel et al. 2008). Further-

more, the restricted exchange of shelf water with the

open ocean prevents an efficient export of shelf-

generated organic carbon to the deep ocean (Fennel

and Wilkin 2009). Previdi et al. (2009) investigated

interannual variations in air-sea fluxes of CO2 and

found differences in the Middle Atlantic Bight to be

driven mostly by changes in wind stress while

differences in the Gulf of Maine were due to changes

in sea surface temperature and new production.

In the North Sea, which is seasonally stratified in its

northern part and year-round tidally mixed in its south-

ern part, pronounced spatial differences exist in terms

of air-sea fluxes of CO2. In the stratified northern part

there appears to be net uptake of CO2 from the atmo-

sphere driven in large part by biological processes

including the overflow production of semi-labile

dissolved organic matter in summer. In contrast, the

tidally mixed southern part is a weak source of CO2 to

the atmosphere (Prowe et al. 2009). Interannual

variability of air-sea CO2 fluxes in the North Sea

appears to be driven by variability in atmospheric

forcing and river inputs (Kühn et al. 2010).

Continental shelf regions are heterogeneous with

respect to air-sea fluxes and regional differences result

from a diversity of characteristics and mechanisms.

This makes it hard to scale up from individual regions

to global estimates. Since coastal regions are of most

direct relevance for human activities and most directly

subjected to many human perturbations (e.g. riverine

and atmospheric inputs of nitrogen), regional modeling

studies will continue to play an important role.

In eastern boundary upwelling regions, the net air-

sea CO2 exchange is governed by a zone of intense

outgassing in the nearshore region, and a region of

marginal outgassing to actual uptake further offshore,

Fig. 5.14 Separation of the

regional response of

integrated air-sea CO2 fluxes

into a CO2 (a) and a

temperature (b) driven
component. Data are for the

period from 2010 until 2100

and represent the multi-model

mean (From Roy et al. (2011)

# American Meteorological

Society. Used with

permission)
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making the entire region a small sink to a small source

(Lachkar and Gruber 2013; Turi et al. 2013). The zone

of intense outgassing is a consequence of the nearshore

upwelling of waters rich in respired CO2, creating

strongly supersaturated conditions when these waters

reach the surface. As these waters are rich in nutrients

as well, the upwelling stimulates a strong growth by

phytoplankton, creating a strong drawdown of DIC and

consequently also of CO2. Overall there appears to be a

balance between upwelling-driven outgassing and bio-

logically driven uptake, with preformed concentrations

also playing a role (Hales et al. 2005).

5.1.3.3 Inverse Modelling
The aim of inverse modelling is to estimate the air-sea

exchange fluxes of CO2 (or other trace gases) on the

basis of suitable data sets. This requires some model

to quantitatively link the measured quantity and the

CO2 fluxes. Then, state variables or parameters of the

model can be fit to the data by ‘inverse methods’.

A prototypical example uses measurements of

tracer abundance within the ocean or the atmosphere,

respectively. This ‘transport inversion’ method is

based on the fact that the spatial and temporal patterns

of air-sea exchange, being transported and mixed

away, lead to spatial gradients and temporal changes

in the oceanic/atmospheric tracer field. Air-sea fluxes

can thus be estimated from the condition that their

corresponding tracer field, as simulated by a numerical

or empirical model of oceanic/atmospheric transport,

matches as closely as possible the tracer observations.

Mathematically, the match is most often quantified by

a ‘least squares’ cost function minimisation.

The oceanic transport inversion was introduced by

Gloor et al. (2001) and Gruber et al. (2001). Based on

inorganic carbon observations from throughout the

ocean, the first set of CO2 fluxes was estimated by

Gloor et al. (2003). As inorganic carbon is not only

changed by air-sea exchange but also by marine pho-

tosynthesis and remineralisation, nutrient data are

needed to remove these biological influences from

the data (C* method, based on Redfield ratios between

biological carbon and nutrient changes). Moreover,

the portion of carbon recently injected into the ocean

following the anthropogenic CO2 rise can be split off

from the data (e.g. using the ΔC* technique, Gruber

et al. 1996), allowing separate estimates of natural and

anthropogenic air-sea CO2 exchange.

As oceanic transport proceeds on long time scales,

the ocean inversion can estimate the mean spatial

pattern of air-sea exchange, but not its seasonal or

interannual variability. Results are also affected by

errors in the modelled transport, though this can par-

tially be taken into account by considering ensembles

of transport models (Mikaloff Fletcher et al. 2006,

2007; Gruber et al. 2009).

The atmospheric transport inversion was pioneered

by Bolin and Keeling (1963), and later formalised by

Fig. 5.15 Snapshots of simulated pCO2 difference between

atmosphere and surface ocean (positive values indicate uptake

of atmospheric CO2) for the western North American shelves

(Reproduced from Fennel and Wilkin 2009 by permission of the

American Geophysical Union)
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Newsam and Enting (1988). Presently, more than 100

atmospheric measurement stations have been operated

by many institutions, providing weekly or even hourly

CO2 mixing ratio time series, some of which extend

for several decades. These data have been used to

estimate the spatial patterns of CO2 exchange (e.g.

Gurney et al. 2002) or their seasonal and interannual

variability (e.g. Bousquet et al. 2000; Rödenbeck et al.

2003; Baker et al. 2006, and many others).

However, the atmospheric CO2 mixing ratios do

not only reflect ocean–atmosphere exchanges, but

also terrestrial and anthropogenic fluxes. Due to the

diffusive nature of the atmospheric flow, the CO2 data

from the relatively few locations do not provide

enough information to fully separate land and ocean

fluxes. The dominance of the terrestrial signals in the

atmospheric records thus largely obstructs the estima-

tion of ocean–atmosphere exchange. Several studies

therefore rely on Bayesian prior estimates of ocean

fluxes, most often based on the flux climatology of

Takahashi et al. (2009) calculated from measurements

of CO2 partial pressure (pCO2) and a gas exchange

parameterisation. In some cases, Bayesian priors are

derived from results of ocean transport inversions;

Jacobson et al. (2007) formalised this into a joint

ocean–atmosphere inversion. In all these cases, how-

ever, air-sea fluxes are mainly constrained by the oce-

anic data from most of the globe. An exception is the

Southern Ocean, where multi-decadal trends in the

ocean–atmosphere CO2 exchange have tentatively

been detected from atmospheric data (Le Quéré et al.

2007).

Besides oceanic or atmospheric transport

inversions, recent studies use measurements of CO2

partial pressure (pCO2) in an inverse context. Valsala

andMaksyutov (2010) employed a tracer transport and

biogeochemical model, and inversely adjusted the

inorganic carbon concentration to match the pCO2

observations. Ongoing studies involve neural

networks, using inverse methods to ‘learn’ the

relationships between pCO2 and oceanic state

variables available from ocean reanalysis projects;

these relationships can then be applied to calculate

the pCO2 field at any location and time. Other ongoing

studies employ simple diagnostic models of the bio-

geochemistry in the oceanic mixed layer, estimating

ocean-internal carbon sources and sinks.

A common challenge of all these pCO2-based stud-

ies is the need to parameterise air-sea gas exchange,

involving substantial uncertainties in its formulation

as well as in the driving wind fields (see Chap. 2). This

problem may be solved by combining the pCO2

approach with transport inversions, which do not

depend on gas exchange parameterisations.

Further information on air-sea CO2 fluxes may be

obtained from measurements of other tracer species

that share source and sink processes. For example,

biological processes do not only involve uptake or

release of carbon, but also of oxygen. Measurements

of the small changes in the atmospheric oxygen

content have been used in an atmospheric transport

inversion (Rödenbeck et al. 2008) to infer interannual

variations in the biogeochemistry of the tropical

oceans. Also remote-sensing data offer potential to

constrain air-sea CO2 fluxes. On the one hand,

measurements of the atmospheric CO2 column

mixing ratios (see Sect. 5.1.2.6) with much higher

spatial density (albeit lower precision) than the sur-

face stations, may allow atmospheric transport

inversions to better separate land and ocean fluxes.

Satellite observations of ocean surface properties,

such as ocean colour (see Sect. 5.1.2.3) reflecting

chlorophyll a content, can also constrain inverse

models of ocean productivity as part of the CO2

exchange.

5.1.3.4 Conclusions
The scope and ambition of modeling is rapidly

expanding. For example, exponentially increasing

computational power now permits scientists to

simulate global and regional models at ever increasing

resolution and over longer periods. The complexity of

the models and of their coupling is rapidly increasing

as well. While these two developments provide many

fascinating new opportunities, they also come with

certain risks. Our level of understanding of the results

of high-resolution complex models tends to develop

less rapidly, creating increasing gaps between our

ability to model a system and our ability to fully

decipher why a particular model produces a particular

result (e.g. Anderson 2005). A second risk is that

the observations and experiments that challenge the

models are also not increasing as rapidly as the model

development is being pushed forward. This requires

sustained efforts, also in the interests of the modeling

community, to maintain and expand oceanographic

observations.
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5.1.4 SOLAS/COST Data Synthesis Efforts

The very nature of data collection at sea leads to

relatively small-scale cruises of necessarily limited

spatial/temporal scope. At an international level, the

elevated resource requirements and organisational

difficulties associated with large-scale research

campaigns further impede coordinated data collection

efforts. Considering this, it is unsurprising that oceanic

data coverage is fragmentary. As set out within the

Memorandum of Understanding for COST Action 735

and the aims of SOLAS Project Integration, a major

Earth System Science challenge is to translate the

findings of these research campaigns into large scale

datasets and climatologies that help improve our

understanding of global concentrations and air/sea

fluxes. Data paucity calls for centralising all concen-

tration measurements of relevant SOLAS parameters

into one common database to secure their longevity.

The tasks seemed dantean because of two major

issues, central to the usability of a database, to be

solved as a pre-requisite. One is intercomparing

measurements originating from different cruises/

instruments/scientists, and another is establishing

rigorous quality control and flagging of the data.

To get global concentration fields, methods to inter/

extrapolate in space and time are used introducing

uncertainties in the resulting concentrations. Including

the uncertainty in gas exchange velocity parameteri-

sation will yield substantial uncertainties in air/sea flux

calculations. Any progress in the future in this velocity

parameterisation will allow recomputation of fluxes

from the existing global concentrations data sets.

This section presents some specific initiatives car-

ried out within the COST Action 735 and SOLAS

Project Integration framework trying to highlight in

each case the difficulties encountered, the solutions

found and the recommendations proposed.

5.1.4.1 MEMENTO (MarinE MethanE and
NiTrous Oxide) Database

The assessments of radiative forcing from long-lived

greenhouse gases such as nitrous oxide (N2O) and

methane (CH4) depend on an accurate synthesis of

the global distribution and magnitudes of N2O and

CH4 sources and sinks (see Chap. 3 of this book).

Atmospheric dry mole fractions of N2O and CH4

have been routinely available since the late 1970s

and they benefit from a highly coordinated global

monitoring network (see e.g. Prinn et al. 2000). In

stark contrast, although measurements of marine

N2O and CH4 date back over almost four decades,

they lack the temporal continuity and spatial coverage

of their atmospheric counterparts. This is because

almost all of them relate to single cruises or at best

coordinated cruise programmes of rather limited

scope. In large part this reflects the high costs and

organisational difficulties of mounting large coordi-

nated oceanographic expeditions, especially at the

international level. Not surprisingly, oceanic data

coverage remains fragmentary.

Seasonal and interannual variability, spatial hetero-

geneity in coastal areas and gradients between coastal

and open ocean areas all impact the quality of marine

emission estimates for N2O and CH4, compounded by

the limited overall data coverage (Bange et al. 2009).

A cost effective way of using all existing N2O and

CH4 measurements, despite the data limitations, is

to establish a global database to improve the value

of marine emissions estimates. To this end the

MEMENTO (MarinE MethanE and NiTrous Oxide)

database has been launched as a joint initiative between

SOLAS and COST Action 735. MEMENTO’s major

aims are to:

• Collect available N2O and CH4 data (i.e. underway

and depth profile data) from the global ocean

including coastal areas. To date 129,012 N2O and

21,003 CH4 measurements have been collated;

• Archive the data in a database with open access for

the scientific community;

• Compute global fields of dissolved N2O/CH4

concentrations as well as air-sea fluxes in both the

open and coastal ocean, and;

• Publish the database and the derived flux data.

Once all existing datasets have been incorporated

into MEMENTO it will rapidly become a valuable tool

for identifying regions of the world ocean that should

be targeted in future work to improve the quality of the

emissions estimates. The locations of the data archived

so far in MEMENTO are shown in Fig. 5.16. Further

information on MEMENTO can be obtained from

https://memento.ifm-geomar.de/.

5.1.4.2 HalOcAt (Halocarbons in the Ocean
and Atmosphere)

Compilation of existing air and seawater

measurements of halogenated hydrocarbons into

the project HalOcAt (https://halocat.geomar.de/) was
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initiated through SOLAS/COST Action 735 in May

2009 and is still ongoing. Global oceanic and atmo-

spheric halocarbon data with an emphasis on short-

lived brominated and iodinated trace gases from the

surface ocean and lower atmosphere have been col-

lated in order to obtain concentration fields and air-sea

fluxes. At the time of writing, the database contains

191 contributions, comprising roughly 55,400 oceanic

and 476,000 atmospheric data points from depth

profiles in the surface ocean and a range of heights in

the lower atmosphere. Although predominantly

bromoform measurements, these data represent 19

different halocarbon compounds and were collected

between 1989 and 2011 during research cruises, air-

craft missions and coastal studies from all over the

globe. The database stems from active submission of

data, literature review and publicly available data.

Quality checks as well as precision and error

estimates were often missing from the contributions,

coinciding with a large range in reported concentra-

tions. Based on the current available scientific knowl-

edge it is unfortunately not possible to retrospectively

identify which data is ‘correct’ or ‘incorrect’. Espe-

cially for oceanic data, recalibration is highly unlikely

and the database is too small to perform a statistical

evaluation of the data quality or to take advantage of

utilising datasets that physically crossed paths for

inter-calibration. There is some hope that it might

be possible to check the consistency of atmospheric

data from time series stations, and the community

is already assessing inter-calibrations for some

compounds (Jones et al. 2011). This information will

be incorporated into the HalOcAt data analysis.

In spite of the challenges described above and the

paucity of data on a global scale it has been possible to

construct meaningful global concentration fields on a

1� � 1� grid. Data interpolation, statistical regression,
analysis of published distributions and information

about coastal and biological sources including relation

to physical and biogeochemical constraints has

enabled the calculation of plausible compound

distributions (Ziska et al. 2013). From these data,

global climatological air-sea fluxes have been calcu-

lated for certain halocarbons such as CHBr3 (see

Fig. 5.17) and these fall within the published ranges

of top down and bottom up emission approaches

(Montzka and Reimann 2011). This novel data set

now facilitates the use of more realistic data based

emission fields to drive atmospheric chemistry models

and enables the community to revise current emission

scenarios.

Future work on and with the database will focus on

its further enlargement, quality control and publication

of the data products (database and climatologies

of concentrations and ocean/atmosphere exchange).

Although simple correlations between oceanic halo-

carbon concentrations and biological, physical and

chemical parameters have not yielded noteworthy
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Fig. 5.16 Locations of N2O (a) and CH4 (b) measurements archived in MEMENTO (Version as of October 2012)
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results to date, the construction and evaluation of

proxies and parameterisations for concentrations and

fluxes will continue to be explored.

5.1.4.3 DMS-GO (DMS in the Global Ocean)
In 1999 Jamie Kettle andMeinrat Andreae (Kettle et al.

1999) initiated a collation of available seawater DMS

measurements into a global database and subsequently

created a climatology of surface ocean concentrations

based on the data available. However, this important

contribution to the literature (over 285 citations to date)

was limited by the number of data points (15,617) of

surface seawater DMS concentration and the large

areas of the global ocean that lacked data, requiring

crude estimates to be made. In the years since, many

more DMS measurements have been made and in

2010 the DMS-GO (DMS in the Global Ocean) team

initiated a call to update the database and climatology.

In April 2010 the DMS database had grown to approx-

imately 47,000 data points (Fig. 5.18), and these were

used to construct an updated surface ocean DMS con-

centration climatology.

The construction of the climatology involved

data mapping, extrapolation and interpolation onto

biogeochemical provinces, smoothing, and data

re-assimilation (see Lana et al. 2011 for details). The

first step was the transformation of DMS concentration

data into a mean value using a delineation of 1� � 1�

grid squares. The second step was also based exclu-

sively on the DMS measurements – a background

DMS field was created using biogeochemical ocean

provinces (Longhurst 2007), which have been defined

using spatial similarities in the chemistry, physics and

biology of the world ocean. The background field was

created for each province for each month using an

average DMS concentration. If there was a temporal

paucity of data, the gaps were filled by applying an

interpolation to the time series of the province, or in

some cases by substituting with a scaled pattern of

another province with similar biogeochemical

characteristics. After these two steps, the construction

of the climatology was based on the combination of

1� � 1� pixels and the background field. The new

DMS climatology along with an estimate of the uncer-

tainty (upper and lower concentration bounds) is

available online for free download on the SOLAS-

BODC server (http://www.bodc.ac.uk/solas_integration/

implementation_products/group1/dms/).

The global sea-to-air DMS flux estimate (between

17.6 and 34.4 Tg S year�1) using the new climatology

has improved understanding of ocean–atmosphere

DMS emissions in the global sulphur cycle and

suggests an approximate 17 % increase in flux c.f.

the previous climatology, mainly due to the inclusion

of data from new areas of the ocean (e.g. the Indian

Ocean). The updated distribution of global DMS

measurements and the new DMS climatology will

be useful for the validation of future ocean biogeo-

chemical models. In addition, the continuous climato-

logical surface ocean DMS field will likely be used

as an input variable for atmospheric chemistry

models. However, the updated DMS database has

also highlighted areas of the global ocean that require

more measurements and this is powerful information

in the context of recent developments in automatic

and semi-automatic DMS analysis systems. As new

Fig. 5.17 Global air-sea flux

climatology of bromoform in

pmol m�2 h�1 including

surface oceanic bromoform

data points (white points)
extracted from the HalOcAt

database
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techniques become more widely-used the challenge

will be ensuring data inter-comparability as the data-

base swells in size (see Bell et al. 2011).

5.1.4.4 The Surface Ocean CO2 ATlas (SOCAT)
The Surface Ocean CO2 ATlas (SOCAT) is a global

synthesis of surface ocean carbon dioxide (CO2)

measurements collected on research vessels, voluntary

observing ships and moored as well as drifting

platforms (http://www.socat.info/). The first public

release of SOCAT (version 1.5) took place at

UNESCO in September 2011. Version 1.5 consists of

6.3 million quality controlled, uniform format and

recalculated surface water fCO2 (fugacity of CO2)

data from 1851 voyages in the global ocean between

1968 and 2007 (Fig. 5.19).

SOCAT was initiated at the Surface Ocean CO2

Variability and Vulnerabilities (SOCOVV) workshop

in 2007 (IOCCP 2007). At that time surface ocean

CO2 data were archived in a wide range of formats

and at numerous sites around the world, each with its

own rules for access, and documentation of the data

was frequently poor. This made it virtually impossible

to generate comprehensive data synthesis products for

large scale or long-term studies. To alleviate this situ-

ation the international ocean carbon community

decided to initiate the Surface Ocean CO2 Atlas as a

community driven effort to assemble, harmonise,

quality control and document the surface ocean CO2

data into one open access database. While the outlook

of the SOCAT products in version 1.5 has closely

followed this original vision, as documented in the

2007 meeting report, the community underestimated

the amount of work involved in the first release of

SOCAT. It took 4 years of hard work by marine carbon

scientists around the world to assemble and quality

control the first version of SOCAT.

Two SOCAT products are available:

1. A global data set of recalculated surface water

fCO2 values in a uniform format, which has

undergone 2nd level quality control;

2. A global, gridded product of monthly mean surface

water fCO2, with no temporal or spatial

interpolation.

The above SOCAT products can be accessed at

the Carbon Dioxide Information Analysis Center

(CDIAC, http://cdiac.ornl.gov/oceans/) on a global

and basin wide level. In addition to the concatenated

data, products are all recalculated and available at

the ICSU World Data Centre PANGAEA – Data

Publisher for Earth & Environmental Science (http://

www.pangaea.de/) as individual cruise files. Those files

Fig. 5.18 Locations of global

surface ocean DMS

measurements (approx.

47,000 as of April 2010) for

all months of the year (white)
plotted over the mean

climatological DMS

concentration (in nM) from

the same data (Data is

available for download at

http://saga.pmel.noaa.gov/

dms/)
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are in a uniform format and give access to the detailed

metadata, input data and recalculated fCO2 values.

SOCAT tools include an online data visualisation and

analysis tool (PMEL’s Live Access Server) and desktop

tools like an Ocean Data View Collection. All can be

accessed via http://www.socat.info/.

The methods in SOCAT are fully documented

(Pfeil et al. 2013; Sabine et al. 2013). The products

and individual cruises are citable through Digital

Object Identifiers (DOI-s). Cruises in SOCAT have

an Expocode (a code containing Cruise ID, Year,

Month and Day of Cruise), a DOI and detailed infor-

mation on the data, so-called metadata (e.g. investiga-

tor name, vessel, methods, calibrations). Every data

point in SOCAT has a link to its cruise file as archived

at PANGAEA via the DOI string in the data file.

Preparations for the second version of SOCAT are

underway. Regular releases of SOCAT are planned,

e.g. every 1–2 years from the 3rd release onwards.

Data can be submitted to CDIAC (http://cdiac.ornl.

gov/oceans/submit.html) for inclusion in future

SOCAT releases. Prompt data and metadata submis-

sion as well as citation of SOCAT in publications are

deemed essential for the future existence of SOCAT.

Automation of data and metadata submission and qual-

ity control as well as inclusion of additional variables

(e.g. atmospheric CO2 and calculated fCO2 from dis-

crete measurements) is currently being discussed.

SOCAT meets the needs of the global carbon

community by making high quality surface water fCO2

data available for addressing major scientific questions

in the field of global change. The large number of

visitors to the SOCAT website (> 1,000 hits/month)

demonstrates the intense interest in these carbon

synthesis products. It is anticipated that SOCAT will

be used in high profile scientific analyses informing

policy decisions by governments and intergovernmen-

tal organisations. We kindly ask colleagues to inform

SOCAT (submit@socat.info) of recommendations for

and publications that use SOCAT data products.

Updates on SOCAT will be posted on http://www.

socat.info/.

5.1.4.5 Aerosol and Rainwater Chemistry
Database

The development of the aerosol and rainwater chem-

istry database is motivated by the desire to provide a

repository for datasets collected from ships at sea

because there had previously been no facility for

collecting such data, while databases for land-based

measurements are already well established (e.g. the

World Data Centre for Aerosols; http://wdca.jrc.it/

data/parameters/data_chem.html). The database has a

deliberately broad focus in terms of the chemical spe-

cies accepted, with nutrients, trace metals and organics

being primary targets, but other data equally welcome.

So, for instance, iron data may be a key interest for the

database, but submitters of iron data are encouraged to

also supply any other chemical data associated with

those measurements. This ancillary data may be of use

to the iron community as well as in other, unrelated

research fields.

Data has been collated at BODC since 2007 and a

data portal was added to the site in 2011 (http://www.

bodc.ac.uk/solas_integration/implementation_products/

group1/aerosol_rain/). At the time of writing the

database has ~ 1,300 aerosol and ~ 80 rainfall data

points, most directly downloadable from the website

Fig. 5.19 Spatial distribution

of recalculated fCO2

measurements of SOCAT

Version 1.5 (Courtesy of

NOAA/PMEL), http://www.

socat.info/
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(Fig. 5.20). The site also contains links to other on-line

databases holding related data and seven datasets of

aerosol chemistry obtained from island sites which are

not housed in any other publicly available database.

Baker et al.’s study (2010) is a good example of the

potential benefits attainable from large ship-based

datasets. Aerosol and rain data obtained during 12

cruises was used to estimate atmospheric nitrogen

inputs to the Atlantic Ocean. This was achieved partly

through a process of classifying the aerosol samples

in their database according to which source regions

they had recently passed over, and marrying these

classifications, and their chemical characteristics, to

an air mass climatology for the Atlantic basin. The

applicability of this approach is strongly determined

by the availability of data, and its spatial and seasonal

distribution, as well as the seasonal variation in atmo-

spheric source strength. For example, a subtly differ-

ent approach has been required for recent attempts to

estimate atmospheric iron inputs to the Atlantic

(Powell et al. in preparation).

To date, the COST Action 735 database contains

only chemical and very limited metadata such as sam-

ple positions, but no other potentially valuable

resources such as air mass back trajectories. All of

the studies discussed above used data obtained from

only one research group. Similar efforts using data

from multiple sources will encounter problems

associated with lack of inter-comparability, particu-

larly in ‘historical’ datasets. The marine aerosol com-

munity is only just starting to address these problems

through an inter-comparison exercise led by the

GEOTRACES programme, with active participation

from within SOLAS (see http://www.geotraces.org/

for more information).

5.1.4.6 A Data Compilation of Iron Addition
Experiments

In the last 3 years datasets from ten mesoscale iron

enrichment experiments have been brought together

through a SCOR working group (WG 131) entitled

‘The Legacy of mesoscale ocean enrichment

experiments’. This data collation has then been

transformed into a relational database (the Iron Syn-

thesis Database) by the database management team

(Cyndy Chandler & Steve Gegg at BCO-DMO) based

at Woods Hole Oceanographic Institution (WHOI) in

the USA (http://bcodmo.org/data). The database has

been structured using project and data directories,

metadata, the status of data rescue for each project,

and tools that are available to discover and download

data of interest (see Fig. 5.21).

Datasets from the following experiments reside

at the BCO-DMO site: IronEX I, IronEX II,
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Fig. 5.20 Distribution of aerosol sample locations contained in the database as of November 2011
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SOIREE, SAGE, SEEDS, SEEDS II, SOFEX North,

SOFEX South and SERIES. The dataset from the

Eisenex Southern Ocean study is held at the German

PANGEA database (http://www.pangaea.de/). No

comprehensive datasets are presently available from

the EifEX Southern Ocean experiment, although some

papers have been published (e.g. Hoffmann et al.

2006). The datasets within the relational database

consist of physical (e.g. mixed layer depth), chemical

(e.g. dissolved iron concentrations), biological

(e.g. net primary production rates), optical (e.g. inci-

dent irradiance) and in some cases meteorological

(e.g. wind speed) parameters.

The ten experiments all straddle High Nitrate Low

Chlorophyll (HNLC) regions from polar to tropical

HNLC waters and hence provide a robust test for

modeling studies and comprehensive details for syn-

thetic studies. For example, datasets concerning the

production of DMSP and its subsequent transforma-

tion to DMS are available for multiple experiments

including SOIREE and SERIES. Such datasets can be

readily related to a wide range of environmental

properties such as mixed layer depth, incident irradi-

ance, and microbial rate processes. The interplay of

these factors has been proposed as important in setting

DMS concentrations following iron enrichment

(Le Clainche et al. 2006). Data are also available

concerning changes in the concentration of other bio-

genic gases following iron enrichment, and in some

cases their efflux and fate.

The main challenge in setting up this relational

database was obtaining datasets from some of the first

in situ experiments – such as IronEX I and II – and

from some of the more recent experiments. In the case

of the early studies from almost two decades ago,

some of the data was on very old laptops. Alterna-

tively, for the most recent experiments, manuscripts

are still being written and published and at this point

there was an understandable reluctance to contribute

to the public domain.

So what is the future for large-scale Fe addition

experiments and what else would we really wish to

better understand? Some scientists have called for

larger experiments (100 km length scale) to over-

come some of the artefacts such as dilution with

surrounding HNLC waters, but these bring enormous

logistical challenges with them. In the conventional

10 km length scale experiments conducted so far, it

takes one ship 24 h to add the iron and SF6 (tracer) to

the 100 km2 area of ocean in a manner that results in

a coherent patch of tracer/iron. So how many ships

would be required to enrich 10,000 km2? Using

planes to ‘top-dress’ the ocean would be equally

problematic (Boyd 2008). The most promising

research areas for the future are the study of naturally

high iron regions where phytoplankton blooms occur,

such as around the Crozet Islands in the Southern

Ocean, and conducting medium scale in situ

enrichments, or using mesocosms, in the generally

quiescent oligotrophic waters of the lower-latitude

Fig. 5.21 Annual surface

mixed-layer nitrate

concentrations in units of

μmol liter�1 with approximate

site locations of iron addition

experiments. Fe addition

experiments: white crosses,
Fe natural enrichment

experiments: red crosses, and
joint Fe and P enrichment

study of the subtropical LNLC

Atlantic Ocean: green cross
(Figure reproduced with kind

permission from Science. See
Boyd et al (2007) for full

details)
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ocean to study the environmental controls on differ-

ent groups of diazotrophs.

5.1.4.7 Conclusions
The initiatives discussed in this section represent the

spectrum of integration activity within SOLAS.

MEMENTO and the aerosol and rainwater chemistry

databases are still in relative infancy, just beginning

to collate data. In contrast, the relatively mature

DMS database has recently been substantially updated,

tripling the number of data points and re-estimating the

climatological DMS flux to the atmosphere (Lana et al.

2011). Ultimately, the SOCAT project is leading the

field, with a lot of data points collated from the global

ocean and well established procedures for treating the

data and archiving it in a responsible manner. Its prog-

ress and willingness to continue pushing forward the

boundaries of data collation and synthesis are admira-

ble. Meanwhile, the synthesis of data and information

from the various large-scale iron addition experiments

has been invaluable.

Past experience suggests that such data collation

exercises often prove their worth many times over,

informing the scientific community in ways that were

previously unforeseen. For example, the original DMS

database attempted to find correlations between in situ

concentrations and other ancillary parameters such as

chlorophyll a (Kettle et al. 1999). Despite a relative

lack of success at the time, understanding of the

reduced sulphur cycle has benefitted enormously

from this database – much of the work carried out

after the initial data collation period has arguably

proven to be much more fruitful. Without attempting

to predict the future, a similar scenario appears to exist

with the HalOcAt database, with initial examinations

of the data suggesting no obvious correlating factors;

only time will tell. . .

What challenges remain for the integration of

SOLAS data? Success depends in part on the scope

of the project. Based on the projects outlined within

this chapter, data collation initiatives must overcome

the following issues common to many of the

databases:

Community engagement. The number of scientists

willing to be a part of any initiative and who

actively engage with the process can have a signifi-

cant impact on the scale of data collation and the

degree of community involvement. Engaging the

community to deliver to data bases is an extremely

time consuming effort which requires strong moti-

vation and determination.

Support for the project. This can take the form of a

website, advice on data management and/or project

personnel, often data managers. Existing projects

that have had resources for a data manager have

benefitted enormously from this. Data management

should be an intrinsic part of any project.

Approaches to data paucity. Whether extrapolating

to biogeochemical provinces (e.g. DMS-GO),

performing deep ocean cross over checks (e.g.

SOCAT) or using aerosol chemical composition

data to characterise different air masses within an

Atlantic-scale dataset, these techniques are very

important for ‘filling’ data gaps and estimating

global fluxes. The techniques need to be adequately

described stating clearly the assumptions being

made and resulting uncertainties.

Data intercomparability. Arguably, this is one of the
major challenges facing many datasets within

SOLAS science. Collating a large-scale dataset is

almost useless if the data are subsequently shown

to be incomparable. An obvious way forward is

to carry out regularly, at the international level,

measurement intercalibration exercises. Some

work has begun on the halocarbons (e.g. Butler

et al. 2010; Jones et al. 2011) and for DMS (Bell

et al. 2011), while GEOTRACES has plans to

address this important issue for trace metal aerosol

and rainwater chemical composition. SOCAT in

particular has spent a lot of time on such issues,

and it was noteworthy that in their 2007 meeting

report the community recognised that they had

probably underestimated the amount of work

involved for the first release of SOCAT.

Data legacy. Managing large data sets is a challenging

task. It takes dedicated efforts to set up efficient online

processed data delivery (e.g. metadata added and for-

matted in an internationally recognised format), to

mount them on an open access portal, to provide

archiving and data enhancement (e.g. post processing,

climatology enhancement), and to provide a data por-

tal for archived data. International and national data

centres should be the natural repositories to ensure

long-term security of our community efforts.

The success of SOLAS Integration and the production

of global databases depends on a concerted effort from

the international atmospheric and marine science

communities to not only collect data through extensive
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field campaigns, but also to engage with and support

projects such as those outlined above.

5.2 Examples of SOLAS Integrative
Studies

This section of the chapter offers a selection of

SOLAS integrative studies. Integration implies a

synergistic use of cross-cutting tools and eclectic

data in both the atmosphere and ocean to address

specific SOLAS science questions. These studies all

contribute to an improved understanding of biogeo-

chemical cycling, the establishment of present-day

climatologies or the closure of global budgets.

5.2.1 DMS Ocean Climatology and DMS
Marine Modelling

5.2.1.1 Global Climatologies Based
on Observations

The need for a global climatology of DMS sea-surface

concentrations was identified more than a decade ago.

The first global database of DMS measurements was

put together by Kettle et al. (1999) and Kettle and

Andreae (2000). At the time, the database compiled of

the order of 15,000 data points, unevenly distributed in

time and space. Since then, the original database has

been growing extensively and has now reached more

than 45,000 data points (see: http://saga.pmel.noaa.

gov/dms/). This on-going extension has been made

possible thanks to the scientific community feeding

the database with new measurements, but also thanks

to the DMS-GO initiative (see Sect. 5.1.4.3) and

SOLAS integration (Surface Ocean LowerAtmosphere

Study, http://www.bodc.ac.uk/solas_integration/).

As discussed in Sect. 5.1.4.3, Lana et al. (2011)

have used this updated database to obtain a new global

climatology of sea surface DMS concentrations

following a modified interpolation approach to the

one used by Kettle et al. (1999) (Fig. 5.22). They

obtained a global annual sea-to-air DMS flux,

estimated at 28.1 Tg S year�1 (17.6–34.4), which

represents a global emission increase of 17 % with

respect to previous calculations. Regionally, annually-

averaged concentrations show rather homogeneous

values, most of them between 1 and 5 nM.

The characteristics of the seasonal cycle, already

shown by Kettle et al. (1999), are mostly confirmed:

maximum concentrations (up to 15–20 nM) are

obtained in summer at high latitudes, in phase with

chlorophyll a. Between 40�S and 40�N, however,

DMS and chlorophyll a do not seem to be in phase,

with high summer DMS concentrations associated with

low chlorophyll a levels, a part of the DMS cycle

which has been referred to as the “summer paradox”.

5.2.1.2 Diagnostic Approaches: Based
on Empirical Correlations

In addition to the climatology described above, several

other approaches have been proposed to estimate

DMS concentrations (Anderson et al. 2001; Simó

and Dachs 2002; Belviso et al. 2004a). These diagnos-

tic approaches are based on empirical relationships

between DMS sea-surface concentrations and some

other variables (e.g. SST, chl a, MLD), derived at a

local scale, and then extrapolated to the global scale.

Anderson et al. (2001) generated monthly global DMS

fields using a relationship between DMS and the prod-

uct of chlorophyll a, light and nutrient concentration.

Simó and Dachs (2002) proposed a double-equation

algorithm in which chlorophyll a and mixed layer

depth are used to derive DMS sea-surface concentra-

tion. Belviso et al. (2004a) subsequently proposed a

non-linear parameterisation to relate DMS concentra-

tion to chlorophyll a and an index of the community

structure of marine phytoplankton.

These approaches offer some additional advantages

compared to the use of DMS climatologies solely

derived from in situ DMS measurements. They

make use of additional information (ocean physics and

biogeochemistry) in regions where no DMS

measurements are available. They can be used to study

the variability in time (e.g. interannual variability) of

DMS sea-surface concentrations and emissions if infor-

mation on ocean physics and biogeochemistry are avail-

able. These approaches have been compared in Belviso

et al. (2004b) and their use in Earth System Models in

the context of anthropogenic climate change has been

described in Halloran et al. (2010).

5.2.1.3 Prognostic Modelling: From 1D to 3D
In addition to the diagnostic approaches described

above, a number of prognostic DMS models have

been developed in the last decade. Contrary to diag-

nostic approaches, these models include an explicit
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description of processes leading to DMS production

and emission.

These models are coupled to marine biogeochemi-

cal models that represent plankton ecosystem

dynamics. They have been applied at specific one-

dimensional vertical column sites (1-D), but also at

the global scale coupled to Ocean General Circulation

Models (3-D OGCM).

Le Clainche et al. (2010) conducted a model

inter-comparison exercise, CODiM, which stands

for Comparison of Ocean Dimethylsulfide Models,

in the frame of the SOLAS science plan and

implementation strategy. They compared nine

process-based models, both local one-dimensional

(1-D) or global three-dimensional (3-D). From that

comparison, their major point is the divergence

among models related to their (in)ability to reproduce

the summer peak in DMS concentrations usually

observed at low- to mid- latitudes. This deficiency

in simulating the summer mismatch between chl

a

b

Fig. 5.22 (a) Annually-
averaged DMS concentrations

(nM), and (b) latitude-time

(Hovmoller) diagram of DMS

concentrations (nM)

(Modified from Lana et al.

(2011))
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a and DMS at low- to mid-latitudes could have

significant implications by reducing simulated global

DMS emissions by up to 15 %. They point towards

processes related to particulate DMSP production

and release as critical pathways not well represented

in prognostic DMS models, e.g. increased DMSP

synthesis in phytoplankton, increased DMS

release from phytoplankton under stress conditions,

light-dependent DMSP to DMS conversion by

bacteria.

5.2.1.4 Examples of Applications
Climate Change

Several diagnostic (Bopp et al. 2003; Gabric et al.

2004) and prognostic (Kloster et al. 2007) DMS

models have been coupled to climate models to

predict future DMS emissions and/or sea-surface

concentrations. Due to the large variety of approaches

used to model DMS emissions, there is still no

consensus among the different models, even for the

sign of evolution of DMS emissions with anthropo-

genic climate change: in summary, models tend to

simulate either a slight increase or a slight decrease in

global DMS emissions in a warming world. Gabric

et al. (2004) for example predict an increase of DMS

emissions of 14 % for a tripling of pre-industrial atmo-

spheric CO2. Models agree however in projecting large

spatial heterogeneities in future DMS emissions. Bopp

et al. (2003) for example predict an increase in the sea-

to-air DMS flux of 3 % for doubled atmospheric CO2

(Fig. 5.23), but with large spatial heterogeneities (up

to + 30 % in the Southern mid-latitudes).

Iron Fertilisation

Large increases (of up to 400 %) in DMS

concentrations have been documented in some

Fig. 5.23 Changes in DMS emissions at 2 � CO2 (in micromol m�2 d�1) as simulated by a coupled climate – ocean DMS model

(Adapted from Bopp et al. 2003)
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Southern Ocean artificial iron addition experiments

(Turner et al. 2004). These results have been used to

suggest that iron fertilisation of the Southern Ocean

could act to increase DMS fluxes from the ocean and

hence amplify the potential cooling due to increased

uptake of carbon (Wingenter et al 2007). Bopp et al.

(2008) used a global biogeochemical model including

a DMS process-based scheme. They showed that

whereas patchy iron fertilisation may stimulate a

short-term increase in DMS due to the initial increase

in productivity, a long-term and large-scale iron

fertilisation could indeed lead to reduced DMS sea-

surface concentrations and emissions because of an

increase in bacterial consumption rates of DMS.

5.2.2 North Pacific Volcanic Ash
and Ecosystem Response

The Pacific Ocean, the largest of the ocean basins, is

encircled by a ring of numerous explosive volcanoes

(the Pacific Ring of Fire) and hosts several hot spot

volcanic islands (e.g. Hawaii) (Fig. 5.24). The North

Pacific is one of the most active volcanic belts in the

Pacific, surrounded by more than 150 active volcanoes

in Kamchatka, the Aleutians and mainland Alaska

(Fig. 5.24), which create at least ten explosive volca-

nic eruptions each year (http://www.volcano.si.edu/).

Recent geochemical and bio-incubation experiments

have shown that volcanic ash rapidly releases suffi-

cient amounts of nutrients into seawater that are poten-

tially bio-available for phytoplankton production and

growth (Frogner et al. 2001; Duggen et al. 2007; Jones

and Gislason 2008; Hamme et al. 2010; Langmann

et al. 2010; Lin et al. 2011; Olgun et al. 2011). Atmo-

spheric impacts of other volcanic products such as

the sulphate aerosols are discussed in Sect. 4.2.3.5 of

Chap. 4.

The North Pacific, especially the subarctic region, is

a high-nutrient, low-chlorophyll (HNLC) ocean region

where phytoplankton growth is known to be limited by

iron (Martin and Fitzwater 1988; Boyd et al. 1996;

Boyd and Harrison 1999) and sporadically by silicate

(Wong and Matear 1999; Whitney et al. 2005). Epi-

sodic increases of Asian mineral dust input have been

observed to increase primary production in the North

Pacific (Young et al. 1991). The causal connection

between aeolian iron input and diatom production

over longer time-scales (e.g. Quaternary) was also

indicated by sediment core studies (McDonald and

Pedersen 1999). In the North Pacific, volcanic ash is

one of themajor iron sources, due to the high flux of ash

Fe-limited regions
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Fig. 5.24 World-map illustrating the distribution of subaerial

(Holocene-) active volcanoes indicated as triangles (highlighted
are the volcanoes cited in the text). Oceanic regions with higher

likelihood of volcanic ash deposition are shown as yellow
regions (Olgun et al. 2011), based on marine sediment core

data, the frequency of tephra layers found in the ocean

sediments (coloured circles) and global wind directions. Volca-

nic ash deposition can affect marine primary production in much

of the Fe-limited areas that are found in the Subarctic Pacific,

the Eastern Equatorial Pacific and the Southern Ocean (shown

as areas with oblique lines)
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released by active volcanism in the region (Olgun et al.

2011). Deposition of volcanic ash during explosive

eruptions can therefore impact phytoplankton and

marine foodwebs in the North Pacific by releasing

especially iron and other nutrients into seawater.

The first evidence of volcanic enhancement of

marine primary production was related to the eruption

of Miyake-Jima volcano (Japan, Fig. 5.24) in 2000

(Uematsu et al. 2004). The powerful Miyake-Jima

2000 eruption spread out a volcanic plume that formed

ammonium-sulphate aerosols, more than 200 km away

in the oligotrophic western North Pacific, resulting in

an increase in chlorophyll a levels (Uematsu et al.

2004). Similarly, the eruption of Anahatan Volcano

(in the Mariana Islands, Fig. 5.24) in 2003, produced a

bloom-like patch in the western North Pacific a week

after the eruption, evidenced by the MODIS images

(Lin et al. 2011).

Volcanic ash fall during a recent eruption of

Kasatochi volcano (a remote Aleution island,

Fig. 5.25) in August 2008, has also been speculated

to generate a massive diatom bloom in the Fe-limited

eastern subarctic North Pacific (Fig. 5.25). The unusual

phytoplankton bloom in the Gulf of Alaska started a

few days after the eruption (Hamme et al. 2010;

Langmann et al. 2010). Geochemical experiments

also confirmed that iron released from the Kasatochi

volcanic ash is sufficient to iron-fertilise the surface

North Pacific (Olgun et al. 2013). The bloom area in

the eastern subarctic North Pacific (Fig. 5.25) was

dominated by large diatoms, and a notably high abun-

dance of large copepods (Hamme et al. 2010),

providing a good-quality food-source for the young

salmon in the ocean. Lindenthal (2011) provided

another source of evidence for the fertilisation of the

NE Pacific Ocean by volcanic ash fertilisation from the

eruption of the Kasatochi volcano. Indeed, by using an

ocean biogeochemical model study and this iron

source, he found a good agreement between model

outputs and measured chlorophyll a, nutrient

concentrations, pH and surface ocean pCO2.

Volcanic eruptions are likely to have impacted the

marine foodweb in the North Pacific many times in

Earth’s recent history (Duggen et al. 2010). The 1980

eruption of Mount St. Helens, for example, was

suggested to have fertilised rivers and lakes and

Chlorophyll a  difference (mg/m3) (August 2008) - (August 2002-2007)

no data -1 -0.5 -0.3 -0.1 0.1 0.3 0.5 1.0

Position of the ash cloud between 8-11 August 2008 (hours after the erution).

867662523828151

40°

50°

60°
- 180° - 140° - 120°- 160°

Gulf of Alaska 500 km

Kasatochi 
2008

eruption

Fraser River
watershed

Fig. 5.25 MODIS-Aqua

image showing the diatom

bloom that has been related to

the volcanic ash-fall during

the Kasatochi eruption on 7th

and 8th of August 2008, with

the volcanic ash plume that

has been transported over the

Gulf of Alaska (coloured
areas show the position of the

plume) (Langmann et al.

2010). The relative increases

in chlorophyll a
concentrations in August 2008

are based on monthly mean

August 2008 minus the

monthly mean in the years

between August 2002 and

2007 (Langmann et al. 2010).

Also shown is the location of

the Fraser River watershed

area related to the discussion

of increased salmon

populations that are likely to

have been positively affected

by ocean fertilisation by the

Kasatochi eruption during

summer 2008
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led to an increase in populations of golden algae

(chrysophytes) and diatoms (Smith and White 1985).

Notably, the Kasatochi 2008 eruption has gained fur-

ther public attention because of its potential impact on

fish populations (Jones 2010; Parsons and Whitney

2012; Olgun et al. 2013).

In late summer 2010, record numbers of sockeye

salmon (estimated 35 million fish) returned back

to Fraser River (Fig. 5.25) 2 years after the large

Kasatochi eruption (Jones 2010). It has been speculated

that the Kasatochi eruption provided rich food

conditions (zooplankton) by enhancing marine primary

production (Hamme et al. 2010; Langmann et al. 2010),

and increased the marine survival of sockeye during

their most critical marine life stage – the first months

after they migrate into the ocean (July-October)

(Parsons and Whitney 2012; Olgun et al. 2013).

Similarly, one of the largest salmon runs in 1958

followed the large eruption of Bensiammny volcano in

Kamchatka. The eruption in 1912 of the Katmai vol-

cano (Alaska) was also suggested to have fertilised the

neighbouring lakes by input of phosphorus (Eicher and

Rousefell 1957). High ash-loads during Katmai erup-

tion, however, caused initial mortality of pre-smolts

due to gill damage (Eicher and Rousefell 1957;

Duggen et al. 2010). Despite the smaller number of

spawners after the Katmai eruption, the numbers that

returned in the following 4 years were as large as

the pre-eruption, indicating a rapid recovery and

favourable survival conditions in the ocean (Eicher

and Rousefell 1957).

Further surveys of the Kasatochi 2008 eruption

suggest that the local wildlife was also (directly or

indirectly) affected by the eruption (del Moral 2010;

Drew et al. 2010; Williams et al. 2010). The largest

direct impact was probably the mortality of about

20,000–40,000 young birds (Williams et al. 2010).

Most of the seabirds were displaced and the terrestrial

birds did not return in 2009 (Williams et al. 2010).

Marine mammals (e.g. seals) probably suffered less,

but there was a clear disruption or loss of breeding

habitat on the land due to meter-scale ash layers on the

island (Drew et al. 2010).

In summary, the long-term response (months to

years) of the ecology after major eruptions may pro-

vide new insights into how marine ecosystems are

affected. Recent observations indicate that ocean

fertilisation by volcanic eruptions may affect marine

biomass within the ash-fall and neighbouring areas.

5.2.3 CO2 in the North Atlantic

The North Atlantic Ocean is a major sink for atmo-

spheric carbon dioxide (CO2), and is therefore signifi-

cant in slowing the global increase of atmospheric

CO2 caused by human activity. Until 1994, the North

Atlantic stored approximately 23 % of anthropogenic

carbon whilst covering only about 15 % of the world’s

ocean surface area (Sabine et al. 2004). Due to its

significance, the North Atlantic uptake of CO2 is

continuing to be studied intensively, in order to deter-

mine the long-term trends of the uptake and its

variability.

In the North Atlantic, the high-latitudes are a net

sink of atmospheric CO2 whilst the low-latitudes are a

net annual source (Fig. 5.26). The mean seasonal cycle

is small near the equator, a winter sink and summer

source in the Subtropics, and a small winter source and

strong summer sink in the subpolar region.

The air-sea flux of CO2 is commonly estimated by

the difference of CO2 partial pressure (pCO2) between

the ocean and atmosphere combined with the transfer

velocity k, which can be derived from wind speed by

various parameterisations e.g. (Nightingale et al.

2000; Wanninkhof and McGillis 1999; Wanninkhof

1992, discussed in detail in Chaps. 2 and 3). The

atmospheric pCO2 is calculated from the molar frac-

tion of CO2 in the atmosphere (e.g. from Globalview

(2011)) and atmospheric pressure. In contrast to the

well-mixed atmosphere, surface seawater pCO2 con-

centration is subject to considerable variability in

space and time, mainly driven by temperature and

biological activity. Automated measurements of

pCO2 and related parameters onboard Voluntary

Observing Ships (VOS) have provided a valuable

monitoring network in the North Atlantic for more

than a decade. The pCO2 of seawater is commonly

determined by equilibrating a volume of air with sea-

water and measuring the CO2 concentration in the gas

phase (Pierrot et al. 2009). Alternatively, membrane-

based systems are used, where CO2 equilibrates (by

diffusion) through a membrane and is measured within

the sensor using an infra-red detector (Hales et al.

2004). An international effort to rigorously quality

control such measurements has led to the creation of

a global sea surface pCO2 data set, the Surface Ocean

CO2 Atlas, SOCAT (see Sect. 5.1.4.4 of this chapter,

http://www.socat.info/ and Pfeil et al. 2013). Addi-

tionally, pCO2 can be calculated from dissolved
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inorganic carbon (DIC), total alkalinity (TA), temper-

ature, salinity, and sea-surface pressure. This opens up

the possibility of computing or estimating pCO2 from

parameters that can be monitored on a basin- or

near basin-scale. Sea surface temperature (SST) is

remotely-sensed by satellites (see Sect. 5.1.2.1) and

measured by floats. Sea surface salinity (SSS) is mon-

itored by floats and satellite data will be available

soon through the Aquarius (Le Vine et al. 2007,

http://aquarius.nasa.gov/) and SMOS projects (see

Sect. 5.1.2.2). DIC and TA cannot yet be remotely-

sensed. But for any individual ocean basin, TA can be

estimated from SSS using a non-linear fit (Eden and

Oschlies 2006). In addition, the SeaWiFS project

provides satellite-derived estimates of the chlorophyll

a concentration (see Sect. 5.1.2.3).

The sea surface pCO2 and the air-sea CO2 flux vary

over time. A synthesis study by Watson et al. (2009)

presented annual CO2 flux estimates for the North

Atlantic for the years 2002–2007. It demonstrated

that the CO2 uptake is subject to large interannual

variability. Bates (2007) reported high observed

variability of CO2 fluxes due to increased wind speed

over a 20 year period (1984–2005) at the Bermuda

Atlantic Time Series (BATS) site. The occurrence of

hurricanes in this region accounts for up to 29 % of the

variability of summertime CO2 fluxes (Bates 2007)

and the increased frequency of hurricanes can poten-

tially impact by approximately 16 % the interannual

variability of CO2 fluxes in the North Atlantic Ocean.

In this context the North Atlantic Oscillation (NAO) is

also a driver of variable wind speeds as it drives large

scale climate variability over the North Atlantic

(Hurrell 1995) and increasing values of NAO index

correspond to increased CO2 fluxes in the northern

part of the North Atlantic (Olsen et al. 2003). How-

ever, Schuster et al. (2009) and Thomas et al. (2008)

reported a link between the variability of NAO and

CO2 fluxes for the rest of the North Atlantic, although

the heterogeneity makes the nature of the linkage

difficult to identify. Modelling studies (Le Quéré

et al. 2003; McKinley et al. 2004; Friedrich et al.

2006) show that SST is the primary control of North

Atlantic subtropical surface pCO2.

On a basin-scale, however, CO2 fluxes simulated in

the above model studies are not significantly correlated

with the NAO index. Chemical buffering of changes in

the CO2 concentrations by the large pool of carbonate

and bicarbonate ions (Broecker and Peng 1974) has

been suggested as one reason for this decoupling.

Seawater pCO2 itself is driven by sea surface tem-

perature (SST), mixing (advective and convective)

and biology (production/respiration). In the tropical

North Atlantic NA, the seasonal pCO2 cycle is strongly

coupled to the SST variability. These oligotrophic

waters do not support strong biological productivity

due to the lack of nutrients (Longhurst 2007). The

subtropical regions demonstrate low biological pro-

ductivity and the seasonal cycle of pCO2 is dominated

by temperature changes. The annual amplitude of

approximately 40 μatm peaks during the summer

months, which corresponds to the temperature peak

(Takahashi et al. 2009; Telszewski et al. 2009) but is

reduced to a certain extent by low primary production.

The pCO2 in the subpolar NA is driven by high tem-

perature variability (ΔSST ~ 8 �C) and high biological
productivity. Here the biological productivity during

spring and summer has a strong counteracting effect on

the temperature driven pCO2 increase during this

period (Körtzinger et al. 2008; Lüger et al. 2004).
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Steinhoff et al. (2010) have shown that the interannual

variability of convective mixing of the surface layer

may influence the wintertime budget of carbon and

nutrients which directly impacts the observed seawater

pCO2 and thus the ΔpCO2. Furthermore, advective

mixing in the northwest Atlantic has a strong influence.

The Labrador Current transports nutrient rich, colder,

and fresher water with a different CO2 signature into

the North Atlantic Drift region. On a decadal timescale,

increased SST and thus increased primary production

may explain the observed long-term changes of seawa-

ter pCO2 (Corbière et al. 2007; Takahashi et al. 2009).

The North Atlantic air-sea CO2 flux is, however,

not constant over time. Based on observations and

sinusoidal curve fitting, Schuster et al. (2009) found

that between 45�N and 65�N, pCO2 in the sea surface

increased faster than that in the atmosphere between

1990 and 2006 (3 and 1.8 μatm year�1, respectively),

resulting in a decreasing sink from 0.20 to

0.09 Pg C year�1, whilst winter-time observations in

the Subpolar North Atlantic showed that surface pCO2
in winter increased even faster at 3.7 μatm year�1

between 1993 and 2003 (Corbière et al. 2007).

Several problems arise when using related

parameters to gain an insight into basin-wide surface

pCO2. First of all, a direct calculation is not possible

with the data currently available. One needs to esti-

mate surface pCO2 from e.g. remote sensing data

using empirical fitting functions. Thus, errors in the

initial observations and data gaps will impair the accu-

racy of the pCO2 estimate or result in missing data.

The search for a fitting function can be challenging.

For example, Watson et al. (1991) and Lefèvre and

Taylor (2002) reported robust linear relationships

between SST and pCO2 in the subpolar and subtropi-

cal North Atlantic, respectively. The regression

coefficients in both studies were similar in magnitude,

yet of opposite sign. The study by Watson et al. (1991)

also documented a promising covariation of chl a and

pCO2. On the other hand, Lüger et al. (2004) found no

significant correlation between chl a and pCO2 based

on measurements covering an entire seasonal cycle in

the midlatitude North Atlantic.

The pioneering study by Lefèvre et al. (2005) was

the first to derive maps of North Atlantic in situ pCO2.

Using mainly VOS data of the years 1995–1997, mul-

tiple regression techniques and self-organising maps

(Kohonen 1982), monthly mean surface pCO2 fields

were constructed from temperature and position in

time and space on a 1� � 1� grid between 50�N and

70�N. The authors determined the Subpolar Gyre

uptake to be 0.13–0.15 Pg C year�1 based on their

pCO2 estimates and NCEP monthly wind speed. For

the year 2000, the climatological mean North Atlantic

sink was approximately 0.44 Pg C year�1 (equator to

80�N, Takahashi et al. 2009), whilst an ocean inversion
model showed the mean uptake to be 0.41 Pg C year�1

(equator to 90�N, Gruber et al. 2009). A recent study of

the air-sea CO2 fluxes in the Atlantic gives a best

estimate of the long-term mean flux for the North

Atlantic of 0.46 Pg C year�1 for the time period of

1990–2009 (Schuster et al. 2012); this study is based

on observations, atmospheric inversions, ocean inver-

sions, and ocean biogeochemical models. The avail-

ability of satellite-derived chl a and mixed layer depth

(MLD) allowed for an improvement of regression

techniques as demonstrated by Jamet et al. (2007).

The strongly enhanced VOS coverage achieved by

the CAVASSOO and CARBOOCEAN projects and

their US-American partners enabled Telszewski et al.

(2009) to provide seasonal pCO2 estimates for the

years 2004–2006 in the North Atlantic between 10�N
and 70�N.

The accuracy of pCO2 mapping is a major source of

uncertainty to this day. Common techniques such as a

validation against the data used for deriving the

mapping function or against an independent data set

(e.g. additional VOS data) were used in the studies

mentioned above. To what degree, however, errors

derived from individual VOS were representative of

the basin-wide mapping error remains unclear. The

study by Friedrich and Oschlies (2009a) addressed

this challenge through combining observational and

modelling approaches. The authors simulated the

procedure of VOS monitoring and remote sensing in

an eddy-resolving biogeochemical ocean model. Sub-

sequently, the modelled pCO2 output was used as a

ground truth to analyse the accuracy of the pCO2 maps

generated from simulated SST and chlorophyll a fields.

One major finding of this study was that the conven-

tional validation techniques underestimate the basin-

scale mapping error significantly, raising questions

about the reliability of error estimates in earlier studies.

However, it was also shown that despite large mapping

errors in some regions, the basin-wide CO2 uptake can

be determined with promising precision and that the

accuracy can be improved when ARGO float data are

used (Friedrich and Oschlies 2009b).
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In summary, the network of Voluntary Observing

Ships is an efficient way to monitor the evolution of

surface pCO2 in the North Atlantic and elsewhere.

Provided that sufficient coverage is maintained, VOS

measurements can be combined with data from

satellites and ARGO floats to generate basin-scale

maps of surface pCO2 and to estimate air-sea carbon

fluxes with good precision. Future instrumentation such

as floats that measure pCO2 will be a significant asset

and will help increase the accuracy of such estimates.

5.2.4 Global Distribution of Sea Salt
Aerosols

The global distribution of sea salt aerosols (SSA)

is generally estimated using chemical transport

models (CTMs) or General Circulation Models

(GCMs). Emissions are calculated by integrating a

size-dependent source function of SSA at each time

step over several size bins. Simultaneously, transport

and depositional loss of SSA are also calculated.

Models then solve the continuity equation for mass

conservation in each size bin.

The resulting global distribution of SSA is highly

dependent not only on the assumed sea-salt source

function (see reviews by Lewis and Schwartz 2004;

O’Dowd and de Leeuw 2007; de Leeuw et al. 2011b)

but also on the upper size range of particles, and mete-

orological fields, as demonstrated in the model inter-

comparison study of Textor et al. (2006). These authors

found a large inter-model range of 3–18 Tg for the

global SSA burdens calculated in 16 different CTMs.

Calculated SSA concentrations can differ by factors

of 2–3 when different source functions are used in the

same CTM (e.g. Guelle et al. 2001; Pierce and Adams

2006).Most source functions are a function of whitecap

coverage, with the frequently used 10 m wind speed

dependence of u10
3.41 (Mohanan and O’Muircheartaigh

1980). Thus, small biases in calculated wind speeds are

amplified in the resulting SSA emissions. Even when

SSA emissions are specified, differences in transport

and deposition can result in a factor of 2 variation in

predicted global SSA burdens for different models (Liu

et al. 2007; Textor et al. 2007).

Despite these significant differences in the absolute

concentrations of SSA, models generally display sim-

ilar features in the global distribution of SSA follow-

ing the spatial and seasonal distribution of surface

wind speed: year-round very high SSA concentrations

over the Southern Ocean, winter maximum over the

Northern mid latitude storm tracks, and a minimum in

the tropics and subtropics (Fig. 5.27, left panel).

This view has been challenged by three indepen-

dent studies using satellite and in situ observations as

top-down constraints on the global distribution of

SSA. Haywood et al. (1999) examined the clear-sky

solar irradiance measured by the CERES satellite and

found a strong signature of SSA over the oceans away

from pollution-influenced regions. The geographical

pattern of SSA reflectance displayed maxima over

both the Southern Ocean and the tropical oceans in

the 10–20� latitude band. Satellite measurements of

brightness temperature have been used to infer a first

estimate of global whitecap coverage (Anguelova and

Webster 2006). The resulting whitecap coverage

showed a fairly uniform distribution with latitude,

contrary to the expectation of strong enhancements

over high latitude regions with high wind speeds and

very low concentrations in the tropics.

Fig. 5.27 Global burden of SSA (in mg m�2) calculated with

the GEOS-Chem CTM for the year 2008. Left panel: SSA

burden calculated using the Gong (2003) source function

(MODEL-STD). Central panel: SSA burden with the

empirically derived source function including a sea surface

temperature dependence (MODEL-SST). Right panel: Zonal

average of SSA burden over the oceans (Adapted from Jaeglé

et al. (2011))
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Jaeglé et al. (2011) analysed cruise observations

of supermicron SSA mass concentrations (1–10 μm
diameter) from six Pacific Marine Environmental

Laboratory (PMEL) cruises (Quinn and Bates 2005)

with a CTM. They inferred that in addition to the

well-known wind speed dependence, SSA emissions

appear to depend on sea surface temperature. This is

consistent with laboratory experiments reporting

increased production of SSA with increasing water

temperature for coarse SSA particles (Bowyer 1984,

1990; Woolf et al. 1987; Mårtensson et al. 2003).

The temperature dependence leads to a decrease in

the predicted SSA burden over the cold high latitude

oceans, but enhanced SSA burden over the warm

tropical oceans, especially in the trade wind regions.

Implementing an empirical temperature- and wind

speed-dependent SSA source function in the CTM

leads to a more uniform global distribution of SSA

(Fig. 5.27 central and right panels) and also improves

agreement with in situ SSA observations and

remotely sensing aerosol optical depth observations

(Jaeglé et al. 2011).

These recent studies illustrate that one way to

reduce the very high uncertainties associated with

SSA source functions determined from laboratory

and field measurements is via integrative studies

that combine these source functions in CTMs and

GCMs and use top-down constraints based on in situ

and satellite observations. Compilations of aerosol

observations such as the SOLAS aerosol database

(Sect. 5.1.4.5), with a wide distribution over most of

the ocean basins are extremely useful in this endeavour.

5.3 Perspectives for the Future

In this chapter we have summarised some of the major

integrative SOLAS activities carried over the past

decade. While there is a remarkable diversity in the

scope, goals, approach, and tools associated with these

efforts, they all fall into one or more of the following

broad categories:

1. Understanding biogeochemical cycles: Compila-

tion of geospatial data sets for the purpose of under-

standing biogeochemical cycles and discovering

the physical and chemical controls on biogeochem-

istry. Such data sets permit hypothesis testing and

provide a common basis for comparison of global

models.

2. Establishing current climatologies: Establishing a

baseline describing the current physical and bio-

geochemical state of the oceans and atmosphere.

For most parameters we are far from an adequate

description of the modern Earth, and as a result, we

are ill prepared to detect changes.

3. Closing global budgets: Time series measurements

of the composition of the atmosphere, such as

the Mauna Loa CO2 record, provide a unique

integrated view of the global accumulation of

greenhouse gases and other pollutants. Detecting

change in the oceanic inventory of anthropogenic

emissions is an equally critical step towards closing

global budgets, but is considerably more logisti-

cally challenging.

The SOLAS integrative studies are examples

of activities that could contribute to an Earth Observ-

ing System. Such a system spans a wide range of

activities including process-scale laboratory and

expeditionary research, development of new observa-

tional capabilities, and operational data streams from

satellites, buoys, drifters and models. To be successful,

an Earth Observing system will require contributions

from many nations and a workforce of highly skilled

Earth Scientists and engineers who operate as a global

community. One of the most important and exciting

aspects of the integrated SOLAS science described

here is the extent to which it reflects the work of

young scientists from many nations, and the develop-

ment of a common vision for future priorities in global

environmental science.

With this in mind, the International SOLAS Steering

Committee identified five unresolved issues of signifi-

cance to the global climate system that required

improved international cooperation and networking

(Law et al. 2013). These novel cross-cutting areas, or

Mid Term Strategy Initiatives (http://www.solas-int.

org/about/mid-term-strategy.html), i.e. Upwellings and

associated Oxygen Minimum Zones, Sea ice biogeo-

chemistry, Marine Aerosols, Atmospheric nutrient

inputs to the oceans, and Ship Emissions, will benefit

from enhanced community engagement to deliver

major advances.

Looking forward, societal needs for large-scale

integrated data and models are increasing. The

human biogeochemical footprint on the planet is now
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so large that the future quality and sustainability of

environmental resources will be determined by socie-

tal choices rather than natural variability. At the same

time, it is critical to understand how natural Earth

systems will respond to this forcing. Large scale

Earth Observations and Earth System models will be

essential tools underpinning societal decision-making.

The future challenges include:

1. Discovery and detection: The pace of environmen-

tal change is increasing rapidly as a result of

increasing industrialisation, population growth,

and technological development. The ability to

detect large-scale changes in the environment at

an early stage is essential in order to allow society

adequate time to avoid or mitigate the deterioration

of environmental resources and services.

2. Attribution: When environmental changes occur, it

is critical to understand the underlying causes and

the extent to which they can be attributed to natural

or anthropogenic causes.

3. Prediction and uncertainties: Prediction of future

environmental change is an essential tool for the

development of effective environmental policy.

Almost every aspect of human society and its

infrastructure is sensitive to climate and other

environmental conditions. Science-based models

are the principle tool used to assess the likely

outcomes of current trends, the effectiveness

of proposed policy options and/or geoengineering

strategies, and the environmental impacts of

new technologies. Quantitative assessment of

uncertainties inherent in predictions of future envi-

ronmental change is one of the most important

products of Earth System Science models. These

uncertainties contribute greatly to risk assessments

of policy options.

There is enormous potential benefit to society in

understanding the environmental consequences of

societal trends and policies. These benefits include

long term planning to take advantage of new

opportunities (e.g. the melting of sea ice and the open-

ing of the Arctic Ocean to exploration and navigation),

or to avoid potential costs (i.e. minimising sea level sea

level rise by mitigating greenhouse gas emissions). For

the SOLAS realm, providing the types of information

needed for decision-making will require improved

process-level understanding of biogeochemistry, and

much better observational capability for remote

regions of the atmosphere and oceans. Significant

investment will be required in order to maintain

existing observing systems, develop and deploy new

sensors for in situ and remote observations, and

improve infrastructure for the archiving and distribu-

tion of data for both research and operational products.

The importance of the SOLAS realm to the future

trajectory of Earth’s climate and habitability is very

clear. Our ability to manage and improve the quality

of both natural and human systems will ultimately

depend on our understanding of these interactions.

The coastal zone is heavily populated and most peo-

ple are well aware of the impact that coastal water

quality can have on their lives and local economy.

Although the open oceans cover most of Earth’s

surface, they are largely uninhabited, and there is a

tendency for the average person to see them as

remote, unchanging, and disconnected from their

daily lives. The reality is far from that, and societal

decision-making must take into account the myriad

interactions that link us with the surface ocean and

lower atmosphere. The challenges are to identify and

understand these linkages, to inform the public about

them, and to develop tools for integrating scientific

knowledge into societal decision-making. The

research summarised in this volume demonstrates

the remarkable progress of SOLAS science over the

past decade, and shows the capacity of the SOLAS

scientific community to meet the broader challenges

ahead.
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Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat

L, Midorikawa T, Mintrop L, Miyazaki C, Murata A,

Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM,

Padin XA, Park G-H, Paterson K, Perez FF, Pierrot D,

Poisson A, Rı́os AF, Salisbury J, Santana Casiano JM,

Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger

R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco

K, Telszewski M, Thomas H, Tilbrook B, Vandemark D,

Veness T, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue

H (2013) Gridding of the Surface Ocean CO2 Atlas

(SOCAT) gridded data products. Earth Syst Sci Data

5:145–153. doi:10.5194/essd-5-145-2013

Sadeghi A, Dinter T, Vountas M, Taylor B, Peeken I, Bracher A

(2011) Improvements to the PhytoDOAS method for the

identification of major Phytoplankton groups using high

spectrally resolved satellite data. Ocean Sci Discuss

8:2271–2311. doi:10.5194/osd-8-2271-2011

Sadeghi A, Dinter T, Vountas M, Taylor B, Altenburg-Soppa M,

Bracher A (2012) Remote sensing of coccolithophore

blooms in selected oceanic regions using the PhytoDOAS

method applied to hyper-spectral satellite data.

Biogeosciences 9:2127–2143. doi:10.5194/bg-9-2127-2012

Saiz-lopez A, Chance K, Liu X, Kurosu TP, Sander S (2007)

First observations of iodine oxide from space. Geophys Res

Lett 34:L12812. doi:10.1029/2007GL030111

304 5 Perspectives and Integration in SOLAS Science

http://dx.doi.org/10.1029/2004GL020597
http://dx.doi.org/10.1029/2006JC003803
http://dx.doi.org/10.1175/JTECH-D-10-05000.1
http://dx.doi.org/10.1038/nature07035
http://dx.doi.org/10.1021/es302082p
http://dx.doi.org/10.1029/2007JD009661
http://dx.doi.org/10.1109/TGRS.2012.2188408
http://dx.doi.org/10.1029/2011JC007474
http://dx.doi.org/10.1029/2004GL020822
http://dx.doi.org/10.1175/JCLI3824.1
http://www.knmi.nl/publications/fulltexts/roemmich_et_al.oceanography_godae_09.pdf
http://www.knmi.nl/publications/fulltexts/roemmich_et_al.oceanography_godae_09.pdf
http://www.knmi.nl/publications/fulltexts/roemmich_et_al.oceanography_godae_09.pdf
http://dx.doi.org/10.5194/essd-5-145-2013
http://dx.doi.org/10.5194/osd-8-2271-2011
http://dx.doi.org/10.5194/bg-9-2127-2012
http://dx.doi.org/10.1029/2007GL030111


Sander R, Crutzen PJ (1996) Model study indicating halogen

activation and ozone destruction in polluted air masses

transported to the sea. J Geophys Res 101:9121–9138

Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998)

Simulated response of the ocean carbon cycle to anthropo-

genic climate warming. Nature 393:245–249

Sathyendranath S, Watts L, Devred E, Platt T, Caverhill C,

Maass H (2004) Discrimination of diatoms from other phy-

toplankton using ocean-colour data. Mar Ecol Prog Ser

272:59–68

Schönhardt A, Richter A, Wittrock F, Kirk H, Oetjen H,

Roscoe HK, Burrows JP (2008) Observations of iodine mon-

oxide columns from satellite. Atmos Chem Phys 8:637–653

Schuster U et al (2009) Trends in North Atlantic sea-surface

fCO2 from 1990 to 2006. Deep-Sea Res II 56

(8–10):620–629. doi:10.1016/j.dsr2.2008.12.011

Schuster U, McKinley GA, Bates N, Chevallier F, Doney SC,
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Moore RM, Orlikowska A, Raimund S, Reeves CE,

Reifenhaeuser W, Robinson AD, Schall C, Tanhua T,

Tegtmeier S, Turner S, Wang L, Wallace D, Williams J,

Yamamoto H, Yvon-Lewis S, Yokouchi Y (2013) Global

sea-to-air flux climatology for bromoform, dibromomethane

and methyl iodide. Atmos. Chem. Phys. Discuss.,

13:5601–5648, 2013 www.atmos-chem-phys-discuss.net/

13/5601/2013/ doi:10.5194/acpd-13-5601-2013

306 5 Perspectives and Integration in SOLAS Science

http://dx.doi.org/10.1029/2007JG000426
http://dx.doi.org/10.1029/2004GL020296
http://dx.doi.org/10.1029/2005JC003207
http://dx.doi.org/10.1111/j.1600-0889.2010.00495.x
http://dx.doi.org/10.1111/j.1600-0889.2010.00495.x
http://dx.doi.org/10.1029/2001JD000942
http://dx.doi.org/10.1029/2001JD000942
http://dx.doi.org/10.1126/science.1177394
http://dx.doi.org/10.1016/j.atmosenv.2007.07.021
http://dx.doi.org/10.1016/j.physd.2006.09.040
http://dx.doi.org/10.1016/j.physd.2006.09.040
http://dx.doi.org/10.1071/EN08047
http://dx.doi.org/10.1071/EN08047
www.atmos-chem-phys-discuss.net/13/5601/2013/
www.atmos-chem-phys-discuss.net/13/5601/2013/
http://dx.doi.org/10.5194/acpd-13-5601-2013

	Perspectives and Integration in SOLAS Science: 
	5.1 Perspectives: In Situ Observations, Remote Sensing, Modelling and Synthesis
	5.1.1 In Situ Observations
	5.1.1.1 ARGO (T, S, O2)
	5.1.1.2 Ocean Observatories
	5.1.1.3 Atmospheric Observatories
	5.1.1.4 Monitoring Reactive Trace Species in the Marine Atmosphere: Highlights from the Cape Verde Observatory
	5.1.1.5 Conclusions

	5.1.2 Earth Observation Products
	5.1.2.1 Altimetry, SST, Winds, Sea State
	5.1.2.2 Sea Surface Salinity
	5.1.2.3 Marine Carbon Observations from Satellite Data: Ocean Color/PIC/POC
	5.1.2.4 Sea Ice
	5.1.2.5 Aerosols
	5.1.2.6 Satellite Measurements of Trace Gases Over the Oceans
	5.1.2.7 Conclusions

	5.1.3 Modelling
	5.1.3.1 Global Perspective, Prognostic IPCC and Hindcast
	5.1.3.2 Regional Perspectives from High-Resolution Modeling
	5.1.3.3 Inverse Modelling
	5.1.3.4 Conclusions

	5.1.4 SOLAS/COST Data Synthesis Efforts
	5.1.4.1 MEMENTO (MarinE MethanE and NiTrous Oxide) Database
	5.1.4.2 HalOcAt (Halocarbons in the Ocean and Atmosphere)
	5.1.4.3 DMS-GO (DMS in the Global Ocean)
	5.1.4.4 The Surface Ocean CO2 ATlas (SOCAT)
	5.1.4.5 Aerosol and Rainwater Chemistry Database
	5.1.4.6 A Data Compilation of Iron Addition Experiments
	5.1.4.7 Conclusions


	5.2 Examples of SOLAS Integrative Studies
	5.2.1 DMS Ocean Climatology and DMS Marine Modelling
	5.2.1.1 Global Climatologies Based on Observations
	5.2.1.2 Diagnostic Approaches: Based on Empirical Correlations
	5.2.1.3 Prognostic Modelling: From 1D to 3D
	5.2.1.4 Examples of Applications
	Climate Change
	Iron Fertilisation


	5.2.2 North Pacific Volcanic Ash and Ecosystem Response
	5.2.3 CO2 in the North Atlantic
	5.2.4 Global Distribution of Sea Salt Aerosols

	5.3 Perspectives for the Future
	References


