
Forms-Based Service Composition

Ingo Weber, Hye-Young Paik, and Boualem Benatallah

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW, Australia, 2052

{ingo.weber,hpaik,boualem}@cse.unsw.edu.au

Abstract. In many cases, it is not cost effective to automate business
processes which affect a small number of people and/or change frequently.
We present a novel approach for enabling domain experts to model
and deploy such processes from their respective domain as Web service
compositions. The approach is based on user-editable service naming, a
graphical composition language where Web services are represented as
forms, a targeted restriction of control flow expressivity, automated pro-
cess verification mechanisms, and code generation for executing orches-
trations. A Web-based service composition prototype implements this
approach, including a WS-BPEL code generator.

1 Introduction

Business process management (BPM) refers to a discipline and software suites
that automate, improve, and optimize business processes to enhance productivity
[12]. Despite BPM’s success, the reality is that today many processes are in
fact not automated. First, among other reasons, BPM products are not suitably
equipped to deal with processes that are ad-hoc [14]. Second, there are costs and
high skills involved in implementing automated processes. This affects primarily
the “long tail of processes” [9], i.e. processes that are less structured, that do
not affect many people uniformly, or that are not critical.

In recent reports and studies [10,11], the split between BPM technology and
its value for end-users is acknowledged. The reports include recommendations
on increasing the relevance of BPM for end-users, allowing process changes by
non-technical personnel, and reducing the complexity of BPM technology.

Motivated by the need for user-friendly BPM technology, the goal of this work
is to devise an approach to support domain experts in their long-tail process
automation needs. We focus on processes that can be implemented as Web
service compositions. As a user group, we target business domain experts, i.e.,
non-IT professionals. We believe that these often have a good understanding
of the processes they participate in; and that they are able to abstract from
single process instances to the bigger picture of the process model containing
alternatives and exceptions. An example is hiring a new employee, where HR
recruiters have a good understanding of the default process and under which
circumstances they may deviate from it.

The traditional approaches to BPM for process automation have inherited
from programming. We believe this causes difficulties for the targeted users.
The following lists the problems and requirements that are relevant to our goal:

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 627–635, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



628 I. Weber, H.-Y. Paik, and B. Benatallah

– Programming requires writing code as abstract artifacts, symbolic or textual
[5]. It is hard for untrained users to match their tasks to the abstractions.

– The so-called selection barrier [6] refers to the fact that often the users do
not know how to express what they want the computer to do.

– Immediate program verification is needed to give feedback to the user [5].
– The system needs to understand high-level instructions of the user and trans-

late them to a formal representation [5].

Our goal is to create a language and system for forms-based service composi-
tion, to allow domain experts to address their idiosyncratic, long-tail process
automation needs themselves.Since we want to include processes where parts
are executed conditionally, we propose a scripting approach to design process
models. We focus on a graphical representation based on forms for designing
processes. In the approach, services can be described using names that are
meaningful to the user, and independent of the services’ technical names. We
use these names during service discovery and in the process design.

Also, we aim at keeping the complexity of process modeling low, in order to
make the approach applicable to domain experts. As such, we include features
to verify the correct combination of the modeled control and data flows through
automated verification techniques. A code generator can automatically translate
the models to an executable language. The complexity is further limited through
a targeted restriction of control flow expressivity. However, to enable fast execu-
tion, we include an automatic parallelization technique in our code generation.
We note that the approach outlined above is very different to other service com-
position or workflow tools (e.g., JOpera, Kepler, Taverna)1, which tend to support
highly complex modelling and programming capacity, and demand higher level of
assumed knowledge from their users. We conduct a preliminary case study with
use cases from the financial domain: data analysis processes such as finding a
correlation between news and stock price changes. The use cases are taken from
our industry partner, Sirca2.

In summary, the contributions of this paper are the following:

– A forms-based composition method, where (i) forms are linked to Web ser-
vices; and (ii) compositions can be modeled in a restricted, yet powerful
generic language.

– Immediate automated process verification for reducing the burden on the
user to build a correct composition.

– Automatic code generation with parallelization, to generate executable or-
chestrations from the forms-based composition language.

We also present a prototype and show how the approach can be enacted.3

1 www.jopera.org/, kepler-project.org/, www.taverna.org.uk/, respectively
2 http://www.sirca.org.au
3 A full technical report and a demonstration video of the prototype can be found at
http://www.cse.unsw.edu.au/~FormSys/FormSys/. The tool has also been demon-
strated at the 9th Intl. Conference on Business Process Management (BPM) in
August 2011, without publication.

www.jopera.org/
kepler-project.org/
www.taverna.org.uk/
http://www.sirca.org.au
http://www.cse.unsw.edu.au/~FormSys/FormSys/


Forms-Based Service Composition 629

2 Forms-Based Service Composition Approach

In this section, we explain how services are created and managed in a repository,
how they are represented for domain experts, and how domain experts can then
model processes graphically. We start by introducing a running example.

2.1 Use Case: News and Financial Data Analysis Process

Research and development within Sirca on the possible utilization of available
datasets led to the implementation of numerous Web services [13]. The types
of Web services range from query/search, data cleaning, to complex statistical
analysis. Currently, each Web service is invoked by a simple user interface based
on Web forms, and the services operate independently. One such example is
described in Fig. 1, where each step represents a Web service.

1. Find news data: e.g., news data on the company ‘BHP’
2. Find performance data: e.g., hourly stock price summary for code ‘BHP.AX’
3. Merge datasets: e.g., merge the result data sets from the first two steps
4. Perform statistical analysis: e.g., which news were possibly influential on the price
5. Visualize dataset: e.g., influential news and the prices

Fig. 1. Financial data analysis from Sirca, for an Australian mining company ‘BHP’

Repeating the above process by operating the Web forms involves around 30
mouse clicks, as well as entering the same information repeatedly at multiple
steps. Once the processing is complete, the exact parameters that resulted in a
given graph are lost. The set of changing parameters and the details of which
service to use with which parameters differs between analysts and their tasks at
hand. Therefore, while being repetitive, the processes are required to be flexibly
executable or adaptable by the analyst.

Automating such processes is of interest to (i) reduce the required amount of
user interaction, and (ii) retain the parameters that led to some visualization.
The latter is important, because comparable graphs can be required periodically.
With this motivating example in mind, we present our approach next.

2.2 Forms as Service Interface Representations

In our repository, every service is collectively represented by a WSDL document,
a user-editable name, an icon, and forms as graphical representations of input
and output messages. While WSDL needs to be present in the repository, it is
completely hidden from the domain expert designing processes.

Graphical Representations: The service is a computational entity that per-
forms some function, which is represented with an icon. For example, Figure 2
shows the icon for the “Find News Data” service.



630 I. Weber, H.-Y. Paik, and B. Benatallah

Fig. 2. Find News Data ser-
vice as icon

Fig. 3. Graphical representation of Input Message
for Find News Data

The technical information about a service is stored as standard WSDL. In fact,
a service in our approach corresponds to a WSDL operation. An invocable WSDL
operation has an input and an optional output message4. The input and output
messages for a service are represented as forms – reflecting the service’s running
user interface. Fig. 3 shows an example of an input message as a form. The
names of form fields, corresponding to the service’s input/output parameters,
as well as the names of services themselves can be set to names meaningful to
the users, which are used during search and composition of services. The form
representation is also useful when the domain experts specify data mappings
between messages.

Each data field from the message which is to used in process designs has a box
associated to it, somewhere in the form. How the boxes correspond to data fields
in the message has to be marked up manually for now, to enable automatic
execution of designed processes. By default, the form could be rendered from
the XML Schema type that belongs to the respective message. However, given
our focus on domain experts, we believe that the form representation should be
something the user is already familiar with. Hence, a screenshot of the UI through
which the user commonly accesses this service makes a good representation.

Using Service Names Meaningful to Users: Besides the technical informa-
tion from WSDL and the graphical representations, the services in our repository
are also given non-technical names. These names are created by users, at the time
when entering a service into the repository. In the process modeling tool, the user
can assign different names to services, if they prefer them for the processes at
hand. For instance, while some user called a service “Find News Data”, another
user may refer to it as “Import News Data”.

4 For simplicity, we currently neglect fault messages and exception handling, as well
as certain XML Schema constructs and certain WSDL features.



Forms-Based Service Composition 631

2.3 Forms-Based Control Flow Modeling

Using the rich service descriptions outlined in the previous section, modeling an
executable process becomes a matter of drag-and-drop and clicking. We treat
control flow and data flow as two separate, but not independent, layers. The
control flow serves as an abstract process description: which services should be
executed, under which conditions and in which order? The data flow adds more
detail, by specifying how the input and output message fields of the various
services interact.

In order to retain the focus on domain experts, the control flow modeling
is restricted: services are arranged into a single sequence, and may be subject
to some condition. If the condition evaluates to true in a process instance, the
associated services are executed; if it evaluates to false, they are skipped in this
instance. The conditions are free text, and, through code generation, are turned
into questions to users starting process instances. The above restrictions have
strong impact on expressiveness5. However, anecdotal evidence from experience
with industry contacts suggests that forcing the occasional user of our system
to understand the particularities of the semantics of an expressive language
alienates most targeted domain experts. Therefore, we try to keep the control
flow modeling as simple as possible – see Fig. 4 for a screenshot from our tool.

Fig. 4. Graphical Process Modeling of the Running Example

2.4 Forms-Based Data Flow Modeling

The data flow modeling works roughly as follows in our approach. Each service
has an input and possibly an output message. A message consists of a set of
fields, and has a form as graphical representation – c.f. Fig. 3. Data fields from
one message can be mapped to data fields of another message in our approach.
For instance, in our running example, the outputs of the two import services can
be mapped to the merge service’s input; the from/to dates in one data import
service can be mapped to the date range of the other import service; etc.

Data fields of input messages fall into one of three categories, with respect
to processes: user-static (i.e., always the same value for some user), process-
static (i.e., always the same value for some process model), and process-instance-
specific data (i.e., likely to be different for each instance of a process).
5 In the technical report3 , we discuss the expressiveness issue of our approach in detail

with regards to workflow patterns.



632 I. Weber, H.-Y. Paik, and B. Benatallah

In our method, the user can define certain kinds of mappings between / as-
signments to fields of messages of different Web services:

– specifying that an output field of one service corresponds to the input field
of another (output-input mapping);

– specifying that two (or more) input fields of separate services will get the
same value from the process-specific user input (input-input mapping);

– specifying a static value for an input field, including null (static
assignment).

2.5 Process Verification

Implicitly, a data flow graph is created from output-input mappings (the di-
rected edges of the graph). There can be contradictions within the data flow, or
between the data flow and control flow of a process. Our approach includes an
automatic verification for a set of problems that may appear. With the verifica-
tion technique, the modeler can be kept from modeling, e.g., (illegal) loops in the
data flow. More details, including a (semi-)formal treatment of the problems and
solutions (based on well-known graph algorithms), are in the technical report3.

2.6 Code Generation for Process Execution

The goal of modeling a process in our approach is to automate the execution
of repetitive tasks. In order to determine the necessary input for the process,
our solution combines all inputs for all services, and removes any field which is
the target of a mapping or static assignment. The result forms a message with
the consolidated input data format to start the process. For this message, we
generate a Web form, where the user can enter the information and trigger an
instance of the process. Analogously, the outputs of all services are consolidated
to one output message of the process, for which again a Web form is created.

When desired by the user, our approach can parallelize steps in the process
based on the data flow, by ignoring additional constraints from the control flow.
This is achieved by mapping the problem onto graph algorithms, as before.
The resulting, non-redundant process is then translated to WS-BPEL directly.
Details can be found in the technical report3.

3 Related Work

Here we present related work in brief; an exhaustive discussion of related work
is included in the technical report3.

Mashups have similar goals to our system. Topics such as data harvesting and
visualization, composition of existing data and UI, and custom views or UIs for
existing services are common in mashups [18]. While this may facilitate certain
processes, the predominant composition paradigms in mashups are event-based
synchronization [19] and data flow between components, not control flow over



Forms-Based Service Composition 633

process activities [4]. While there is some overlap between mashup approaches
and ours, we see them as largely complementary.

End-User Process Modelling: Todor Stoitsev [15] investigates using Task
Management (Outlook plugin) for “process modelling by example”: the system
tracks how people split up larger tasks into subtasks, and delegate some subtasks
to others; this can be used as input to a workflow design tool. [8] describes a
technique for constructing process models with formal execution semantics from
informal models (e.g., Powerpoint drawings). The technique stops at producing
BPMN, but possibly could be extended to generate executable models. However,
the missing aspects to enable that (e.g., service selection, data flow) are not
explored. [3] describes BPEL4UI / MarcoFlow: a language and tool for enabling
BPEL designers to incorporate distributed UI composition in BPEL processes.
Mashup-like UI components are synchronized between each other (for a single
user), with UI components at other users, and the process. Microsoft InfoPath6

essentially is a code-free software engineering tool. However, it is still for users
familiar with programming, e.g., who know how databases work or what Web
service are. PICTURE is a domain-specific modeling method and notation for
public administration [1]. The key differences to our work are: PICTURE targets
capturing the processes, and does not support creating executable processes; and
PICTURE is domain-specific, whereas our tool is generic.

End-User Programming: A field of research that has a similar goal to ours,
although in a different domain, is end-user programming (EUP). EUP is the um-
brella term for approaches that “make limited forms of programming sufficiently
understandable and pleasant that end users will be willing and able to program”
[2]. An approach in EUP that we consider closely related work is CoScripter [7],
which primarily focuses on personal processes in the scope of browsing and us-
ing Web applications. The user can record, play and publish/share such browser
processes on a public Wiki. The processes are stored in a simple end-user under-
standable language, using natural language keywords such as “go to <URL>”
and “click on <link>”. In CoScripter, all steps in a script need to be standard
operations in a browser. While closely related to our work in terms of the under-
standability of process steps and the user focus, it does not support Web service
invocation or conditional execution.

Own work: The work presented herein is also related to our own work. The
tool in its current form has been presented (without publication)3. The tool and
approach are significant extensions of earlier work for processes made up of PDF
forms [17]. The PDF form-filling services are, in turn, the result of a separate
work [16], with which FormSys Process Designer shares some database tables.
The idea to relate Web services and their messages to forms stems from the
earlier work, but representing arbitrary WSDL Web services through forms is a
novel contribution of this paper.

6 http://office.microsoft.com/en-us/infopath/

http://office.microsoft.com/en-us/infopath/


634 I. Weber, H.-Y. Paik, and B. Benatallah

4 Conclusion, Discussion and Future Work

We have presented a forms-based service composition approach which allows
domain experts with little technical knowledge to encode idiosyncratic, repetitive
business processes themselves from design to execution.

Our preliminary evaluation revealed the following as desirable: user-editable
input/output forms of the process; conditional data mappings; and process simu-
lation in the design environment. For our use cases, the number of data mappings
stayed reasonably small and therefore using colors to represent them was suf-
ficient. However, if too many colors are required, they can eventually become
confusing. These findings guide part of our immediate future work; in particu-
lar, a richer language for data mapping is under investigation, to enable more
complex mappings and conditions over data fields. The tool will be further tested
by our industry partner, and user studies will be conducted.

Acknowledgements. This work has been supported by a grant from the Smart
Services CRC7. We thank Maurice Peat, Fethi Rabhi, Kader Lattab, and Angel
Lagares Lemos for their valuable feedback.

References

1. Becker, J., Algermissen, L., Pfeiffer, D., Räckers, M.: Bausteinbasierte Model-
lierung von Prozesslandschaften mit der PICTURE-Methode am Beispiel der Uni-
versitätsverwaltung Münster. Wirtschaftsinformatik 49, 267–279 (2007)

2. Cypher, A., Dontcheva, M., Lau, T., Nichols, J. (eds.): No Code Required - Giving
Users Tools to Transform the Web. Morgan Kaufmann (2010)

3. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From People to
Services to UI: Distributed Orchestration of User Interfaces. In: Hull, R., Mendling,
J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 310–326. Springer, Heidelberg
(2010)

4. Di Lorenzo, G., Hacid, H., Paik, H.-Y., Benatallah, B.: Data Iintegration in
Mashups. SIGMOD Rec. 38(1), 59–66 (2009)

5. Harel, D.: Can Programming Be Liberated, Period? Computer 41, 28–37 (2008)
6. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming

systems. In: VLHCC 2004, pp. 199–206 (2004)
7. Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter: Automating & Sharing

How-To Knowledge in the Enterprise. CHI Letters: Human Factors in Computing
Systems 10(1), 1719–1728 (2008)

8. Mukherjee, D., Dhoolia, P., Sinha, S., Rembert, A.J., Gowri Nanda, M.: From
Informal Process Diagrams to Formal Process Models. In: Hull, R., Mendling, J.,
Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 145–161. Springer, Heidelberg (2010)

9. Oracle White Paper. State of the Business Process Management Market (August
2008), http://tinyurl.com/3c4u436 (accessed November 20, 2009)

10. Pettey, C., Goasdu, L.: Gartner Reveals Five Business Process Management
Predictions for 2010 and Beyond. Gartner Press Release (January 13, 2010),
http://www.gartner.com/it/page.jsp?id=1278415 (accessed September 2, 2010)

7 http://www.smartservicescrc.com.au

http://tinyurl.com/3c4u436
http://www.gartner.com/it/page.jsp?id=1278415
http://www.smartservicescrc.com.au


Forms-Based Service Composition 635

11. Reijers, H.A., van Wijk, S., Mutschler, B., Leurs, M.: BPM in Practice: Who Is
Doing What? In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 45–60. Springer, Heidelberg (2010)

12. Richardson, C., Vollmer, K., Clair, C.L., Moore, C., Vitti, R.: Business Process
Management Suites, Q3 2009 – The Need For Increased Business Agility Drives
BPM Adoption. Forrester TechRadar For BP & A Pros (August 13, 2009)

13. Robertson, C., Rabhi, F., Peat, M.: Consumer Information Systems and Rela-
tionship Management: Design, Implementation and Use. In: A Service-Oriented
Approach towards Real Time Financial News Analysis. IGI Global (2011)

14. Schurter, T.: BPM State of the Nation 2009. bpm.com,
http://www.bpm.com/bpm-state-of-the-nation-2009.html (accessed November
25, 2009)

15. Stoitsev, T.: End-User Driven Business Process Composition. PhD thesis, TU
Darmstadt, Fachbereich Informatik, Telekooperation (2009)

16. Weber, I., Paik, H., Benatallah, B., Gong, Z., Zheng, L., Vorwerk, C.: FormSys:
Form-processing Web Services. In: WWW 2010: Proceedings of the 19th Interna-
tional World Wide Web Conference, Demo Track (2010)

17. Weber, I., Paik, H.-Y., Benatallah, B., Vorwerk, C., Gong, Z., Zheng, L., Kim,
S.W.: Managing Long-Tail Processes Using FormSys. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 702–703. Springer,
Heidelberg (2010)

18. Wong, J., Hong, J.: What Do We “Mashup” When We Make Mashups? In: WEUSE
2008, pp. 35–39 (May 2008)

19. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

http://www.bpm.com/bpm-state-of-the-nation-2009.html

	Forms-Based Service Composition[-3mm]
	Introduction
	Forms-Based Service Composition Approach
	Use Case: News and Financial Data Analysis Process
	Forms as Service Interface Representations
	Forms-Based Control Flow Modeling
	Forms-Based Data Flow Modeling
	Process Verification
	Code Generation for Process Execution

	Related Work
	Conclusion, Discussion and Future Work




