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Abstract. Broadcast encryption (BE) schemes allow a sender to se-
curely broadcast to any subset of members but requires a trusted party
to distribute decryption keys. Group key agreement (GKA) protocols en-
able a group of members to negotiate a common encryption key via open
networks so that only the members can decrypt the ciphertexts encrypted
under the shared encryption key, but a sender cannot exclude any partic-
ular member from decrypting the ciphertexts. In this paper, we bridge
these two notions with a hybrid primitive referred to as contributory
broadcast encryption (CBE). In this new primitive, a group of members
negotiate a common public encryption key while each member holds a
decryption key. A sender seeing the public group encryption key can
limit the decryption to a subset of members of his choice. Following this
model, we propose a CBE scheme with short ciphertexts. The scheme is
proven to be fully collusion-resistant under the decision n-Bilinear Diffie-
Hellman Exponentiation (BDHE) assumption in the standard model. We
also illustrate a variant in which the communication and computation
complexity is sub-linear with the group size. Of independent interest,
we present a new BE scheme that is aggregatable. The aggregatability
property is shown to be useful to construct advanced protocols.

Keywords: Broadcast encryption; Group key agreement; Contributory
broadcast encryption; Provable Security.

1 Introduction

With the fast advance and pervasive deployment of the communication tech-
nologies, there is an increasing demand of versatile cryptographic primitives
to protect modern communication and computation platforms. These new plat-
forms, including instant-messaging tools, collaborative computing, mobile ad hoc
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networks and social networks, allow exchanging data within any subset of their
users. These new information technologies provide potential opportunities for or-
ganizations and individuals. For instance, the users of a social network may wish
to share their private photos/videos with their friends; scientists from different
places may want to collaborate in a research project by means of an insecure
third-party platform.

These new applications call for cryptographic primitives allowing a sender to
securely encrypt to any subset of the users of the services without relying on a
fully trusted dealer. Broadcast encryption (BE) [15] is a well-studied primitive
intended for secure group-oriented communications. It allows a sender to securely
broadcast to any subset of the group members. Nevertheless, its security heavily
relies on a trusted key server to generate and distribute secret decryption keys
for the members; both the sender and the receivers must fully trust the key
server who can read all communications to any subset of the group members.

Group key agreement (GKA) [20] is another well-established primitive to se-
cure group-oriented communications. A conventional GKA protocol allows a
group of members to establish a common secret key via open networks. How-
ever, whenever a sender wants to broadcast to a group, he must first join the
group and run a GKA protocol to share a secret key with the intended members.
To overcome this limitation, Wu et al. recently introduced asymmetric GKA [32]
in which only a common group public key is negotiated and each group mem-
ber holds a different decryption key. However, neither conventional symmetric
GKA nor newly-introduced asymmetric GKA allows the sender to exclude any
particular member on demand1. Hence, it is essential to find more flexible cryp-
tographic primitives allowing dynamic broadcasts without a fully trusted dealer.

1.1 Our Contributions

In this paper we present the Contributory Broadcast Encryption (CBE) prim-
itive, which is a hybrid of GKA and BE. The new cryptographic primitive is
motivated by the emerging communication and computation platforms. In CBE,
a group of members contribute to the public group encryption key, and a sender
can securely broadcast to any subset of the group members chosen in an ad hoc
way. Specifically, our main contributions can be summarized as follows.

First, we present a model of CBE and formalize its security definitions. CBE
incorporates the underlying ideas of GKA and BE. In the set-up stage of a CBE
scheme, a group of members interact via open networks to negotiate a common
encryption key while each member holds a different secret decryption key. Using
the common encryption key, anyone can encrypt any message to any subset of
the group members and only the intended receivers can decrypt. Unlike GKA,
CBE allows the sender to exclude some members from reading the ciphertexts.

1 Dynamic GKA equipped with a leave sub-protocol allows a sender to exclude some
members from decrypting ciphertexts. In this case, the sender has to negotiate with
the remaining members for their agreement to run the leave sub-protocol. The sender
cannot exclude any member on his own demand.
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Compared to BE, CBE does not need a fully trusted third party to set up
the system. We formalize collusion resistance by defining an attacker who can
adaptively corrupt some members during the set-up stage and can also query
the decryption keys of the group members after the system is set up. Even if the
attacker fully controls all members outside the intended receivers, she cannot
extract useful information from the ciphertext. A trivial CBE scheme can be
constructed by concurrently encrypting to each member with her/his regular
public key. Unfortunately, the trivial solution incurs a heavy encryption cost
and produces linear-size ciphertexts. The challenge is to design CBE schemes
with efficient encryption and short ciphertexts.

Second, we present the notion of aggregatable broadcast encryption (ABE)
and construct a concrete ABE scheme. The construction is based on the newly
introduced aggregatable signature-based broadcast (ASBB) primitive [32]. Our
ABE construction is tightly proven to be fully collusion-resistant under the
decision BDHE assumption, and offers short ciphertexts and efficient encryp-
tion. Further, the proposed ABE scheme is equipped with aggregatability, which
means that different instances of the ABE scheme can be aggregated into a new
instance. We observe that the BE schemes in the literature are not aggregat-
able. However, the aggregatability of ABE schemes seems very useful to design
advanced protocols, as illustrated in the construction of our CBE scheme.

Finally, we construct an efficient CBE scheme with our ABE scheme as a
building block. The CBE construction is proven to be semi-adaptively secure
under the decision BDHE assumption in the standard model. Only one round is
required to establish the public group encryption key and set up the CBE system.
After the system set-up, the storage cost of both the sender and the group
members is O(n), where n is the number of group members participating in the
set-up stage. However, the online complexity (which dominates the practicality of
a CBE scheme) is very low. Indeed, at the sender’s side, the encryption needs only
O(1) exponentiations and generates O(1)-size ciphertexts; and at the receivers’
side, the decryption requires only O(1) exponentiations and O(1) bilinear map
operations. We also illustrate a trade-off between the set-up complexity and
the online performance. After the trade-off, the variant has O(n2/3) complexity
in communication, computation and storage. This is comparable to up-to-date
regular BE schemes which have O(n1/2) complexity in the same performance
metrics, but our scheme does not require a trusted key dealer. As a versatile
GKA scheme, our CBE does not require additional rounds to enable a new
sender to broadcast to the group members or to let a sender revoke any subset
of group members. These features are desirable for applications in which the
sender and the group members may change frequently.

1.2 Related Work

Considerable efforts have been devoted to protect group communications. Among
them, the most prominent notions are key agreement and broadcast encryption.
Since the inception of the Diffie-Hellman protocol [14] in 1976, a number of pro-
posals have addressed key agreement protocols for multiple parties. The schemes
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due to Ingemarsson et al. [20] and Steiner et al. [29] are designed for n parties
and require O(n) rounds. Tree key structures have been further proposed and
reduced the number of rounds to O(log n) [23, 24, 27]. A multi-round GKA pro-
tocol poses a synchronism requirement on group members and it needs all group
members to simultaneously stay online to complete the protocol. Several propos-
als (e.g., [8, 18, 30]) have been motivated to optimize round complexity in GKA
protocols. Burmester and Desmedt [12] proposed a two-round n-party GKA pro-
tocol for n parties. The Joux protocol [21] is one-round and only applicable to
three parties. The work of Boneh and Silverberg [5] shows that a one-round
(n+1)-party GKA protocol can be constructed from n-linear pairings. However,
it remains unknown whether there exist n-linear pairings for n > 2.

Dynamic GKA protocols provide extra mechanisms to cope with member
changes. Bresson et al. [9, 10] extended the protocol in [11] to dynamic GKA
protocols which allow members to leave and join the group. The number of
rounds in set-up/join algorithms of their protocols [9, 10] is linear with the
group size, but the number of rounds in the leave algorithm is constant. The
theoretical analysis [28] proves that, for any tree-based group key agreement
scheme, the lower bound of the worst-case cost is O(log n) rounds for a member to
join or leave. Without relying on a tree-based structure, Kim et al. [22] proposed
a two-round dynamic GKA protocol. Recently, Abdalla et al. [1] presented a two-
round dynamic GKA protocol in which only one round is required to cope with
the change of members if they are in the initial group. Observing that existing
GKA protocols cannot handle sender changes efficiently, Wu et al. presented the
notion of asymmetric GKA [32] to support sender changes and their instantiated
protocol allows anyone to securely broadcast to the group members.

BE is another well-established cryptographic primitive developed for secure
group communications. BE schemes in the literature can be classified into two
categories, i.e., symmetric-key BE and public-key BE. In the symmetric-key
setting, only the trusted center generates all the secret keys and broadcasts
messages to users. Hence, only the key generation center can be the broadcaster
or the sender. Fiat and Naor [15] first formalized broadcast encryption in the
symmetric-key setting and proposed a systematic BE method. Similarly to the
GKA setting, tree-based key structures were subsequently proposed to improve
efficiency in symmetric-key BE systems [19, 31]. The state of the art along this
research line is presented in [13].

Public-key BE schemes are more flexible in practice. In this setting, in addition
to the secret keys for each user, the trusted center also generates a public key
for all the users so that any one can play the role of a broadcaster or sender.
Naor and Pinkas presented in [25] the first public-key BE scheme in which up
to a threshold of users can be revoked. If more than this threshold of users
are revoked, the scheme will be insecure and hence not fully collusion-resistant.
Subsequently, by exploiting newly developed bilinear pairing technologies, a fully
collusion-resistant public-key BE scheme was presented in [3] which has O(

√
n)

complexity in key size, ciphertext size and computation cost. A recent scheme [26]
slightly reduces the size of the key and the ciphertexts, although it still has sub-
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linear complexity. The schemes presented in [4, 6, 17] strengthen the security
concept of public-key BE schemes. However, as to performance, the sub-linear
barrier O(

√
n) has not yet been broken.

Although both GKA and BE are used to secure group communications, they
have very different features as they were initially developed for different types of
group-oriented applications. First, GKA can be applied to ad hoc groups where
there is no fully trusted party while BE is usually deployed to secure group
communications where a fully trusted third party is available. Second, the en-
cryption key in GKA protocols is usually established by group members in a con-
tributory way, regardless of conventional symmetric GKAs or newly-introduced
asymmetric GKAs. On the contrary, the encryption key in BE schemes is usually
generated by a centralized key server. Third, the secret decryption key in GKA
protocols is computed by each member with public inputs from other members
and his/her own private inputs. Contrary to GKA protocols, the decryption key
of each member in BE schemes is assigned by the dealer, which implies that the
dealer can read all communications to any subset of the group members and n
secure unicast channels have to be established before a BE scheme is set up.
Finally, in a GKA protocol group members need to interact to update their keys
if the membership changes, which implies that a sender cannot exclude some
members from reading the ciphertexts. Unlike GKA, BE supports a much more
flexible revocation mechanism. It allows a sender to choose the intended receivers
on demand to read the ciphertexts. This revocation mechanism does not require
cooperation among group members or extra interactions between the dealer and
the group members. For the newly-emerging applications, the contributory fea-
ture of GKA protocols is desirable but GKA protocols do not allow a sender
to exclude receivers from reading specific ciphertexts on demand; the flexible
revocation mechanism of BE schemes is desirable but BE schemes heavily relies
on a fully trusted authority that is hard to implement in the motivated sce-
narios. These observations inspire us to investigate more versatile cryptographic
primitives to bridge the gap.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we model CBE and
define its security. In Section 3, we present a collusion-resistant regular public-key
BE scheme with aggregatability. Efficient CBE schemes are realized in Section 4,
and Section 5 concludes the paper.

2 Modeling Contributory Broadcast Encryption

We begin by formalizing the CBE notion bridging the GKA and BE primitives.
In CBE, a group of members first jointly establish a public encryption key, then
a sender can freely select which subset of the group members can decrypt the
ciphertext. Our definition incorporates the up-to-date definitions of GKA [32]
protocols and BE [3] schemes. Since the negotiated public key is usually employed
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to transmit session keys, we define a CBE scheme as a key encapsulation mecha-
nism (KEM). Knowing this public encryption key, anyone can send a session key
ξ to any subset of the initial group members. Only the intended receivers can
extract ξ. Even if all the outsiders including group members not in the intended
subset collude, they receive no information about ξ.

2.1 Syntax

We first define the algorithms that compose a CBE scheme. Let λ ∈ N denote
the security parameter. Suppose that a group of members {U1, · · · ,Un} wants to
jointly establish a CBE system, where n is a positive integer and each member
Ui is indexed by i for 1 ≤ i ≤ n. We focus on bridging BE and GKA and we
assume that the communications between members are authenticated, but we
do not further elaborate on the authentication of the group members. Formally,
a CBE scheme is a tuple CBE =(ParaGen, CBSetup, CBEncrypt, CBDecrypt) of
polynomial-time algorithms defined as follows.

ParaGen(1λ). This algorithm is used to generate global parameters. It takes as
input a security parameter λ and it outputs the system parameters, including
the group size n.

CBSetup(U1(x1), · · · ,Un(xn)). This interactive algorithm is jointly run by
members U1, · · · , Un to set up a BE scheme. Each member Ui takes pri-
vate input xi (and her/his random coins representing the member’s ran-
dom inner state information). The communications between members go
through public but authenticated channels. The algorithm will either abort
or successfully terminate. If it terminates successfully, each user Ui outputs
a decryption key dki securely kept by the user and a common group en-
cryption key gek shared by all group members. The group encryption gek
is publicly accessible. If the algorithm aborts, it outputs NULL. Here, we
leave the input system parameters implicitly. We denote this procedure by
(U1(dk1), · · · ,Un(dkn); gek)←CBSetup(U1(x1), · · · ,Un(xn)).

CBEncrypt(R, gek). This group encryption algorithm is run by a sender who
is assumed to know the public group encryption key. The sender may or
may not be a group member. The algorithm takes as inputs a receiver set
R ⊆ {1, · · · , n} and the public group encryption key gek, and it outputs a
pair 〈c, ξ〉, where c is the ciphertext and ξ is the secret session key in a key
space K. Then (c, R) is sent to the receivers.

CBDecrypt(R, j, dkj , c). This decryption algorithm is run by each intended
receiver. It takes as inputs the receiver set R, an index j ∈ R, the receiver’s
decryption key dkj , a ciphertext c, and it outputs the secret session key ξ.

2.2 Security Definitions

The correctness of a CBE scheme means that if all members and the sender follow
the scheme honestly, then the members in the receiver set can always correctly
decrypt. Formally, the correctness of a CBE scheme is defined as follows.
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Definition 1 (Correctness). A CBE scheme is correct if for any parameter
λ ∈ N and any element ξ in the session key space, (U1(dk1), · · · ,Un(dkn); gek)
← CBSetup(U1(x1), · · · ,Un(xn)), and (c, ξ) ←CBEncrypt(R, gek), it holds that
CBDecrypt(R, j, dkj , c) = ξ for any j ∈ R.

We next define the secrecy of a CBE scheme. In the above, to achieve better
practicality, a CBE scheme is modeled as a KEM in which a sender sends a
(short) secret session key to the intended receivers and simultaneously, (long)
messages can be encrypted using a secure symmetric encryption algorithm with
the session key. Hence, we define the secrecy of a CBE scheme by the indistin-
guishability of the encrypted session key from a random element in the session
key space. Since there exist standard conversions (e.g., [16]) from secure KEM
against chosen-plaintext attacks (CPA) to secure encryption against adaptively
chosen-ciphertext attacks (CCA2), it is sufficient to only define the CPA se-
crecy of CBE schemes. However, noting that CBE is designed for distributed
applications where the users are likely to be corrupted, we include full collusion
resistance into our secrecy definition.

The fully collusion-resistant secrecy of a CBE scheme is defined by the fol-
lowing secrecy game between a challenger CH and an attacker A. The secrecy
game is defined as follows.

Initial. The challenger CH runs ParaGen with a security parameter λ and ob-
tains the system parameters. The system parameters are given to the at-
tacker A.

Queries. The attacker A can make the following queries to challenger CH.
Execute. The attacker A uses the identities of n members U1, · · · ,Un to

query the challenger CH. The challenger runs CBSetup(U1(x1), · · · ,
Un(xn)) on behalf of the n members, and responds with the group en-
cryption key gek and the transcripts of CBSetup to the attacker A.

Corrupt. The attacker A sends i to the Corrupt oracle maintained by the
challenger CH, where i ∈ {1, · · · , n}. The challenger CH returns the pri-
vate input and inner random coins of Ui during the execution of CBSetup.

Reveal. The attacker A sends i to the Reveal oracle maintained by the
challenger CH, where i ∈ {1, · · · , n}. The challenger CH responds with
dki, which is the decryption key of Ui after execution of CBSetup.

Challenge. At any point, the attackerA can choose a target set R
∗ ⊆ {1, · · · , n}

to attack, with a constraint that the indices in R
∗ have never been queried

to the Corrupt oracle or the Reveal oracle. Receiving R
∗, the challenger CH

randomly selects ρ ∈ {0, 1} and responds with a challenge ciphertext c∗,
where c∗ is obtained from (c∗, ξ)←CBEncrypt(R, gek) if ρ = 1, else if ρ = 0,
c∗ is randomly sampled from the image space of CBEncrypt.

Output. Finally, A outputs a bit ρ′, its guess of ρ. The adversary wins if ρ′ = ρ.

We define A’s advantage Advsecrecy−fc
CBE,A in winning the above fully collusion-

resistant secrecy game as

Advsecrecy−fc
CBE,A = |Pr[ρ = ρ′]− 1/2|.
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Definition 2. An n-party CBE scheme has adaptive (τ, n, ε)-secrecy against a
full-collusion attack if there is no adversary A which runs in time at most τ and
has advantage Advsecrecy−fc

CBE,A at least ε in the above secrecy game. An n-party
CBE scheme has semi-adaptive (τ, n, ε)-secrecy against a full-collusion attack if,
for any attacker A′ running in time τ , A′’s advantage Advsecrecy−fc

CBE,A′ is less than
ε in the above secrecy game, with extra constraints that A′ (1) must commit
to a set of indices R̃ ⊆ {1, · · · , n} before the Queries stage, (2) can only query
Corrupt and Reveal with i /∈ R̃ and (3) can only choose R

∗ ⊆ R̃ to query CH in
the Challenge stage.

The above definition captures the full collusion resistance since the attacker is
allowed to access the Corrupt and Reveal oracles. The Corrupt oracle is used
to model an attacker who compromises some members during the set-up stage
to establish the group encryption key. The Corrupt oracle is used to capture
the decryption key leakage after the CBE system has been established. This
difference can be used to differentiate the secrecy against attacks during the
set-up stage from the secrecy against attacks after a CBE system is deployed.

2.3 Remarks on Complexity Bounds of CBE and BE Schemes

Before concrete CBE schemes are constructed, it is meaningful to examine the
complexity bound of a CBE scheme for the purpose of guiding the design of
CBE schemes.

A CBE scheme consists of an offline stage (consisting of ParaGen and CBSetup)
to establish the group encryption key and an online stage enabling a sender to
securely encrypt to intended receivers. Since CBE allows to revoke members,
the members do not need to reassemble for a new run of the CBSetup procedure
until some new members join. This implies that the practicality of a CBE scheme
critically depends on the overheads of the CBEncrypt and CBDecrypt procedures
for online encryption of session keys and decryption of ciphertexts. Hence, special
efforts should be devoted to improve this online performance.

It is easy to see that there exists a trivial construction of CBE schemes. A
group of n members independently generate public/secret key pairs in a standard
public-key cryptosystem. The public group encryption key is a concatenation of
each member’s public key, and each member’s decryption key is his/her secret
key. To broadcast to a subset of the members, a sender first encrypts the session
key using each member’s public key and obtains the CBE ciphertext by concate-
nating the generated n ciphertexts in the underlying public-key cryptosytems.
This trivial CBE has nτPKE online encryption cost, n�PKC-size ciphertext, where
�PKC is the binary length of the ciphertext in the standard public-key cryptosys-
tem, and τPKE is the time to perform a standard public-key encryption operation.
Hence, the upper bound of online complexity of a CBE scheme is O(n).

We next analyze whether there exist CBE schemes with online complexity less
than O(n). From the definition of CBEncrypt, a sender has to read the indices in
R ⊆ {1, · · · , n} and perform some operations involving each index. This implies
that the CBEncrypt procedure has a cost |R|τCEO, where |R| = n in the worst
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case and τCEO is the time to perform a basic cryptographic encryption operation
involving each index. Also, the sender needs to send (c, R) to the receivers. This
requires �c + n bits, where �c is the binary size of the CBE ciphertext. The
analysis shows that the lower bound of the online complexity of a CBE scheme
is also O(n).

From the above analysis, it would seem that no better than a trivial CBE
can be done. However, a closer look shows this is not the case. First, a well-
designed CBE can be more efficient than a trivial CBE if τCEO 	 τPKE and the
performance difference can be further amplified by the factor n. Second, �PKC is
usually hundreds to thousands, thus a trivial CBE may consume hundreds to
thousands times more bits than an elegantly-developed CBE if �c is independent
of the group size n. Hence, the efforts to achieve non-trivial CBE schemes are
meaningful in practice.

To highlight this point, we further look at regular public-key BE schemes.
The definitions of encryption and decryption in our CBE are exactly the same as
those of standard public-key BE schemes [3]. Hence, the above online complexity
bounds also apply to regular BE systems. Furthermore, by slightly modifying the
above trivial CBE, one can also obtain a trivial public-key BE scheme. To strictly
follow the public-key BE definition, one just needs to let a trusted key dealer
generate the public/secret key pairs for all members. The rest is the same as the
trivial CBE. This implies that a trivial public-key BE scheme has exactly the
same asymptotical complexity as the trivial one. However, as discussed above, it
is still meaningful to construct non-trivial public-key BE schemes. Indeed, this
work has attracted a lot of attention and numerous efforts (e.g., [3, 4, 6, 26, 17])
have been devoted to reduce the �c size and the τCEO complexity. We do a parallel
work in the CBE setting.

3 An Aggregatable BE Scheme

Previously, aggregatability was mainly considered in the signature setting [7]
and exploited to reduce the signature verification time and the storage overhead
when numerous signatures need to be verified and stored. In [32], Wu et al.
first presented the ASBB notion and considered aggregatability in the static BE
setting. In this section, we integrate aggregatability into dynamic BE schemes
and instantiate an aggregatable BE (ABE) scheme.

3.1 Review of Aggregatable Signature-Based Broadcast

Our ABE scheme is based on the ASBB primitive [32]. An ASBB scheme con-
sists of the algorithms ParaGen, KeyGen, Sign, Verify, Encrypt and Decrypt.
ParaGen takes as input a security parameter λ and outputs the public parame-
ters π. KeyGen takes input π and outputs a public/secret key pair (pk, sk). Sign
takes as input the key pair (pk, sk) and a string s, and outputs a signature σ(s).
Verify takes as input the public key pk and the signature σ(s) of the string s,
and outputs 0 or 1. Encrypt takes as input a public key pk and a plaintext m,
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and outputs a ciphertext c. Decrypt takes as input the public key pk, a valid
string-signature (s, σ(s)) and a ciphertext c, and outputs the plaintext m.

An ASBB scheme has a key-homomorphic property. This property states that,
for any two public/secret key pairs (pk1, sk1) and (pk2, sk2) generated by run-
ning KeyGen(π), two signatures σ1 = Sign(pk1, sk1, s), σ2 = Sign(pk2, sk2, s)
on any message string s with respect to the two public keys, it holds that
Verify(pk1 ⊗ pk2, s, σ1 � σ2) = 1, where ⊗ : Γ × Γ → Γ and � : Ω × Ω →
Ω are two efficient operations in the public key space Γ and the signature
space Ω, respectively. Clearly, from the key-homomorphic property, we have that
Decrypt(pk1 ⊗ pk2, s, σ1 � σ2, c) = m for any plaintext m and the corresponding
ciphertext c = Encrypt(pk1 ⊗ pk2, m).

Furthermore, an ASBB scheme has an interesting property referred to as
aggregatability. Assume that an adversary A knows (π, pk1, · · · , pkn), where π is
the system parameters, and pk1, · · · , pkn are n different public keys generated by
independently invoking KeyGen of the ASBB scheme. For n public binary strings
s1, · · · , sn ∈ {0, 1}∗, the adversary A is provided with valid signatures σi(sj)
under pki for 1 ≤ i, j ≤ n and i 
= j. Due to the key-homomorphic property,
pk = pk1 ⊗ · · · ⊗ pkn forms the public key of the aggregated ASBB instance.
Aggregatability states that the new ASBB instance related to the aggregated
public key pk is secure against any polynomial-time adversary A. Wu et al.’s
ASBB scheme [32] is briefly reviewed next.

– ParaGen(π). Let PairGen be an algorithm that, on input a security param-
eter 1λ, outputs a tuple Υ = (p, G, GT , e), where G and GT have the same
prime order p, and e : G × G → GT is an efficient non-degenerate bilinear
map such that e(g, g) 
= 1 for any generator g of G, and for all u, v ∈ Z, it
holds that e(gu, gv) = e(g, g)uv. Let Υ = (p, G, GT , e)← PairGen(1λ), and g
be a generator of G, and H : {0, 1}∗ → G be a cryptographic hash function.
The system parameters are π = (Υ, g, H).

– KeyGen(π). Select at random r ∈ Z
∗
p, X ∈ G\ {1}. Compute R = g−r, A =

e(X, g). Output a public key pk = (R, A) and its associating secret key
sk = (r, X).

– Sign(pk, sk, s). Take as inputs public key pk = (R, A), secret key sk = (r, X)
and a string s ∈ {0, 1}∗, and output a signature σ = XH(s)r on s.

– Verify(pk, s, σ). Take as inputs public key pk = (R, A), a message-signature
pair (s, σ), and output 1 if e(σ, g)e(H(s), R) = A holds; else output 0.

– Encryption(pk, ξ). Given public key pk = (R, A), for a plaintext ξ ∈ GT ,
randomly select t ∈ Z

∗
p and compute c1 = gt, c2 = Rt, c3 = ξAt. Output

c = (c1, c2, c3).
– Decryption(pk, s, σ, c). Given public key pk = (R, A) and ciphertext c =

(c1, c2, c3), anyone with a valid message-signature pair (s, σ) can extract
ξ = c3

e(σ,c1)e(H(s),c2) .

In the ASBB scheme, every signature under the public key can be used as a
decryption key to decrypt ciphertexts generated with the same public key. This
feature allows ASBB to be used as static broadcast schemes.
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3.2 An Aggregatable BE Scheme Based on ASBB

We construct a BE scheme from the the ASBB scheme [32] and show the resulting
BE scheme preserves aggregatability as that of the underlying ASBB scheme.
The construction is conceptually simple. Assume that the j-th user holds de-
cryption keys2 corresponding to the indices {0, ..., n} \ {j}. An encrypter knows
which public key he should use. For instance, if the encrypter doesn’t want to
revoke anybody, he encrypts using pk0. If he wants to exclude i from decrypting,
he encrypts using pki. If he wants to exclude i and j from decrypting, he en-
crypts by using an aggregated public key pki⊗ pkj . In the same way, more users
can be excluded from decrypting. With the parameters in the above setting, the
proposal is realized as follows.

– BSetup(n, N): The dealer randomly chooses Xi ∈ G, ri ∈ Z
∗
p and com-

putes Ri = g−ri , Ai = e(Xi, g). The BE public key is PK = ((R0, A0), · · · ,
(Rn, An)) and the BE secret key is sk = ((r0, X0), · · · , (rn, Xn)).

– BKeyGen(j, SK): For j = 1, · · · , n, the private key of the user j is dj =
(σ0,j , · · · , σj−1,j , σj+1,j , · · · , σn,j) : σi,j = XiH(IDj)ri .

– BEncryption(R, PK): Set R = {0, 1, · · · , n} \ R. Randomly pick t in Zp and
compute c = (c1, c2) : c1 = gt, c2 = (

∏
i∈R

Ri)t. Set the session key ξ =
(
∏

i∈R
Ai)t. Output (c, ξ) and send (R, c) to receivers.

– BDecryption(R, j, dj , c, PK): If j ∈ R, the receiver j extracts ξ from c with
private key dj by computing e(

∏
i∈R

σi,j , c1)e(H(IDj), c2) = ξ.

The correctness of the BE scheme above follows from direct verification of the
following equations
e(

∏
i∈R

σi,j , c1)e(H(IDj), c2) = e(
∏

i∈R
XiH(IDj)ri , gt)e(H(IDj),

∏
i∈R

g−rit)
= e(

∏
i∈R

Xi, g)t = (
∏

i∈R
Ai)t = ξ.

The security of our BE scheme relies on the decision n-BDHE assumption
which was shown to be sound by Boneh et al. [2] in the generic group model.

Definition 3 (Decision n-BDHE Assumption). Let G be a bilinear group
of prime order p as defined above, g a generator of G, and h = gt for some
unknown t ∈ Zp. Denote −→y g,α,n = (g1, · · · , gn, gn+2, · · · , g2n) ∈ G

2n−1, where
gi = gαi

for some unknown α ∈ Zp. We say that an algorithm B that out-
puts b ∈ {0, 1} has advantage ε in solving the decision n-BDHE assumption if
|Pr[B(g, h,−→y g,α,n, e(gn+1, h)) = 0]− Pr[B(g, h,−→y g,α,n, Z) = 0)]| ≥ ε, where the
probability is over the random choice of g in G, the random choice t, α ∈ Zp,
the random choice of Z ∈ GT , and the random bits consumed by B. We say that
the decision (τ, ε, n)-BDHE assumption holds in G if no τ-time algorithm has
advantage at least ε in solving the decision n-BDHE assumption.

According to the BE security definition in [17], our scheme is fully collusion-
resistant under the Decision BDHE assumption. The proof is given in the full

2 Here, user j’s i-th decryption key corresponding to index i ∈ {0, ..., n} \ {j} is a
signature σi,j = σi(IDj) on user j’s identity IDj verifiable under the public key pki.
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version of the paper [33]. One can further apply the generic Gentry-Waters trans-
formation [17] to convert our semi-adaptive BE schemes into an adaptively secure
one. The cost is to double the size of the public keys and the ciphertexts.

Theorem 1. The proposed BE scheme for dynamic groups has full collusion
resistance against semi-adaptive attacks in the random oracle model if the deci-
sion n-BDHE assumption holds. More formally, if there exists a semi-adaptive
attacker A breaking our scheme with advantage ε in time τ , then there exists
an algorithm B breaking the n-BDHE assumption with advantage ε in time
τ ′ = τ + O((qH + n2)τExp), where qH is the number of queries to the random
oracle from A, and τExp is the time to compute an exponentiation in G or GT .

One may observe that, in the above BE scheme, if we replace H(IDj) with
a random element hj in G, we obtain a semi-adaptive BE scheme with short
ciphertexts in the standard model. In this case, to simulate hj in the security
proof, we just need to set hj = gαj

gvj for a randomly chosen value vj ∈ Zp,
where gαj

is obtained from the decision n-BDHE assumption.

3.3 Useful Properties

Our BE scheme inherits the key-homomorphic property of the underlying ASBB
scheme. Consider the system parameters defined above. Let PK1 = (R0,1, A0,1),
· · · , (Rn,1, An,1)) and PK2 = ((R0,2, A0,2), · · · , (Rn,2, An,2)) be the respective
public keys of two random instances of the above BE scheme, and for j =
1, · · · , n, let dj,1 = (σ0,j,1, · · · , σj−1,j,1, σj+1,j,1, · · · , σn,i,1) ∈ G

n and dj,2 =
(σ0,j,2, · · · , σj−1,j,2, σj+1,j,2, · · · , σn,j,2) ∈ G

n be the respective decryption keys
corresponding to index j under PK1 and PK2. Define PK = PK1 � PK2 =
((R0,1R0,2, A0,1A0,2), · · · , (Rn,1Rn,2, An,1An,2)) and define dkj = dj,1 � dj,2 =
(σ0,j,1σ0,j,2, · · · , σj−1,j,1σj−1,j,2, σj+1,j,1σj+1,j,2, · · · , σn,j,1σn,j,2). Then PK is
the public key of a new instance of the above BE scheme and dkj is the new
decryption key corresponding to the index j. This fact can be directly verified.

Our BE scheme also preserves the aggregatability of the underlying ASBB
scheme. Roughly speaking, a BE scheme is aggregatable if n instances of the
BE scheme can be aggregated into a new BE instance secure against an at-
tacker accessing some decryption keys of each instance, provided that the i-th
decryption key corresponding to the i-th instance is unknown to the attacker for
i = 1, · · · , n. More formally, this property can be defined as follows.

Definition 4 (Aggregatability). Consider the following game between an ad-
versary A and a challenger CH:

– Setup: A initializes the game with an integer n. CH replies with (π, PK1, · · · ,
PKn) which are the system parameters and the n independent public keys of
the BE scheme.

– Corruption: For 1 ≤ i, j ≤ n, where i 
= j, the adversary A is allowed to
know the decryption keys dkj,i corresponding to index j with respect to the
public key PKi.
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– Challenge: CH and A run a standard Ind-CPA game under the aggregated
public key PK = PK1 � · · ·�PKn. A wins if A outputs a correct guess bit.
Denote A’s advantage by AdvA = |Pr[win]− 1

2 |.
A BE scheme is said to be (τ, ε, n)-aggregatable if no τ-time algorithm A has
advantage AdvA ≥ ε in the above aggregatability game.

Theorem 2. If there exists an attacker A who wins the aggregatability game
with advantage ε in time τ , then there exists an algorithm B breaking the n-
BDHE assumption with advantage ε in time τ ′ = τ +O((n3)τExp).

For the proof of the previous theorem, we refer to Theorem 3 where we prove
a stronger property in the sense that the attacker is additionally allowed to
know the internal randomness used to compute dkj,i corresponding some PKi

for 1 ≤ i, j ≤ n where i 
= j.

4 Proposed CBE Scheme

In this section, we propose a CBE based on the above aggregatable BE scheme.
The basic construction has short ciphertexts and long protocol transcripts. Then
we show an efficient trade-off between ciphertexts and protocol transcripts.

4.1 High-Level Description

Our basic idea is to introduce the revocation mechanism of a regular BE scheme
into the asymmetric GKA scheme [32]. To this end, each member acts as the
dealer of the aggregatable BE scheme above. The k-th user publishes PKk and
dj,k, where dj,k is the decryption key of PKk corresponding to the index j ∈
{1, · · · , n} \ {k}. Then the negotiated public key is PK = PK0 � · · · � PKn.
Each member j can compute the decryption key dkj = dkj,j �n

k=1,k �=j dkj,k.
Observe that dkj,j has never been published. Due to the key homomorphism
of the BE scheme above, dkj is a valid decryption key corresponding to PK.
Hence, anyone knowing PK can encrypt to any subset of the members and the
intended receivers can decrypt.

To guarantee the security of the resulting CBE scheme, we also need to show
that only the intended receivers can decrypt. This is ensured by the fact that the
underlying BE scheme is aggregatable. Indeed, although the Gentry-Waters BE
scheme [17] is key-homomorphic, an analog of our CBE scheme using the Gentry-
Waters BE scheme as a building block is shown to be insecure in [33], because
the Gentry-Waters BE scheme is not aggregatable. We note that a static PKBE
scheme without a dealer can be trivially obtained from the ASGKA protocol
in [32]. This is realized by letting each member to register his/her published
string as her public key. Then anyone knowing the public keys of all members
can send encrypted messages to the group and only the group members can
decrypt the message. However, no revocation mechanism is provided. To exclude
some members, one may be motivated to modify the above trivial construction
by using the aggregation of the public keys of the intended receivers as the
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sub-group public key. Clearly, this will allow the intended receivers to decrypt
ciphertexts generated with this sub-group public key. Unfortunately, anyone (not
necessary to be a revoked member) knowing the receivers’ public keys can also
decrypt, as shown in [33].

4.2 The Proposal

Based on our aggregatable BE scheme, we implement a CBE scheme with short
ciphertexts. Assume that the group size is at most n. Let Υ = (p, G, GT , e) ←
PairGen(1λ), and g, h1, · · · , hn be independent generators of G. The system
parameters are π = (λ, n, Υ, g, h1, · · · , hn).

– Setup. The set-up of a CBE system consists of the following three proce-
dures:
• Group Key Agreement Execution: For 1 ≤ k ≤ n, member k does the

following:
Randomly choose Xi,k ∈ G, ri,k ∈ Z

∗
p;

Compute Ri,k = g−ri,k , Ai,k = e(Xi,k, g);
Set PKk = ((R0,k, A0,k), · · · , (Rn,k, An,k));
For 1 ≤ j ≤ n, j 
= k, compute σi,j,k = Xi,kh

ri,k

j for 0 ≤ i ≤ n, i 
= j;
Set dj,k = (σ0,j,k, · · · , σj−1,j,k, σj+1,j,k, · · · , σn,j,k);
Publish (PKk, d1,k, · · · , dk−1,k, dk+1,k, · · · , dn,k) and keep dk,k secret.
• Group Encryption Key Derivation: The group encryption key is PK =

PK0 � · · · � PKn = ((R0, A0), · · · , (Rn, An)), where Ri =
∏n

k=1 Ri,k,
Ai =

∏n
k=1 Ai,k for i = 0, · · · , n. The group encryption key PK is pub-

licly computable.
• Member Decryption Key Derivation: For 0 ≤ i ≤ n, 1 ≤ j ≤ n and i 
= j,

member j can compute decryption key dj = (σ0,j , · · · , σj−1,j , σj+1,j , · · · ,
σn,j), where σi,j = σi,j,j

∏n
k=1,k �=j σi,j,k =

∏n
k=1 σi,j,k =

∏n
k=1 Xi,kh

ri,k

j .
– CBEncrypt. Assume that a sender (not necessarily a group member) wants

to send to receivers in R ⊆ {1, · · · , n} a session key ξ. Set R = {0, 1, · · · , n}\
R. Randomly pick t in Zp and compute the ciphertext c = (c1, c2) where
c1 = gt, c2 = (

∏
i∈R

Ri)t. Output (c, ξ) where ξ = (
∏

i∈R
Ai)t. Send (R, c) to

the receivers.
– CBDecrypt. If j ∈ R, receiver j can extract ξ from the ciphertext c with

decryption key dj by computing e(
∏

i∈R
σi,j , c1)e(hj , c2) = ξ.

The correctness of the proposed CBE scheme is correct directly follows from
the fact that the underlying BE scheme is correct and key-homomorphic. As to
security, we have the following theorem, whose proof is given in [33].

Theorem 3. The proposed CBE scheme has fully collusion-resistant secrecy
against semi-adaptive attacks in the standard model if the decision n-BDHE as-
sumption holds. More formally, if there exists a semi-adaptive attacker A break-
ing our scheme with advantage ε in time τ , then there exists an algorithm B
breaking the n-BDHE assumption with advantage ε in time τ ′ = τ +O((n3)τExp).
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4.3 Discussion

We first examine the online complexity our scheme which is critical for the
practicality of a CBE scheme. We use the widely-adopted metrics [3, 4, 6, 26, 17]
for regular BE schemes. After the CBSetup procedure, a sender needs to retrieve
and store the group public key PK consisting of n elements in G and n elements
in GT . This requires about 150n bytes to achieve the security level of an RSA-
1024 cryptosystem. Note that in the motivated applications, the group size is
usually not very large. Consider an initial group of 100 users. The group public
key is about 15K bytes long and acceptable in practice. Moreover, for encryption,
the sender needs only two exponentiations and the ciphertext merely contains
two elements in G. This is about n times more efficient than the trivial solution.
At the receiver’s side, in addition to the description of the bilinear pair which
may be shared by many other security applications, a receiver needs to store n
elements in G for decryption. The storage cost of a receiver is about 22n bytes.
For decryption, a receiver needs to compute two single-base bilinear pairings (or
one two-base bilinear pairing). The online costs on the sides of both the sender
and the receivers are really low.

We next discuss the complexity of the CBSetup procedure to set up a CBE sys-
tem. The overhead incurred by this procedure is O(n2). However, in most cases,
this procedure needs to be run only once and this can be done offline before
online transmission of secret session keys. For instance, in the social networks
example, a number of friends exchange their CBSetup transcripts and establish a
CBE system to secure their subsequent sharing of private picture/videos. Since
CBE allows revoking members, the members do not need to reassemble for a
new run of the CBSetup procedure until some new friends join. From our per-
sonal experience, the group lifetime usually lasts from weeks to months. These
observations imply that our protocol is practical in the real world.

Furthermore, if the initial group is too large, an efficient trade-off can be
employed [3] to balance the online and offline costs. Suppose that n is a cube,
i.e., n = n3

1, and the initial group has n members. We divide the full group
into n2

1 subgroups, each of which has n1 members. By applying our basic CBE
to each subgroup, we obtain a CBE scheme with O(n2

1)-size transcripts per
member during the offline stage of group key establishment; a sender needs to
do O(n2

1) encryption operations of the basic CBE scheme, which produces O(n2
1)-

size ciphertexts. Consequently, we obtain a CBE scheme with O(n
2
3 ) complexity.

This is comparable to up-to-date public-key BE systems whose complexity is
O(n

1
2 ). For a group of 1000 users, our dealer-free BE scheme is about 10 times

more efficient than the trivial solution. It is about 3 times less efficient than a
public-key BE scheme, but our CBE does not require a trusted key dealer. The
cost of versatileness is acceptable.

One may notice a subtlety in the above trade-off. When the basic CBE scheme
is applied to each subgroup, members in each subgroup will extract the same
session key, but members in different subgroups will have different session keys.
This is inconsistent with the CBE definition in which all members should extract
the same session key, even if the members are in different subgroups. This can
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be trivially addressed as follows. The sender additionally selects a string from
the session key space and encrypts it for each subgroup with the session keys
shared by each subgroup. Then all members can extract the same resulting
session key. This introduces an additional O(n

2
3 )-size ciphertext if there are

O(n
2
3 ) subgroups, but it does not affect the asymptotical complexity of the

scheme after a trade-off.
Finally, we assume that the communication channels between members are

authenticated during the CBSetup stage to establish the group encryption key.
In practice, these authenticated channels can be the pre-existing ones between
members (e.g., in instant-messaging system and cooperative scientific compu-
tation) or be established by personal interaction (e.g., some ad hoc network
applications). This is plausible since CBE is usually deployed for cooperative
members who may be friends. Note that the CBSetup sub-protocol requires only
one round. An alternative option to achieve authentication is to let a partially
trusted third party certify each member’s protocol transcript. The third party
plays a role similar to a certification authority in the popular PKI setting, and
cannot read the plaintexts encrypted to the members. This is different from regu-
lar BE systems where the fully trusted dealer can decrypt all communications to
the members. For instance, in a social network application, the service provider
can serve as the partially trusted third party. This is also plausible since this
kind of applications usually require users to register for service. In this case, the
CBSetup transcript of each member can be viewed as her public key.

5 Conclusions

In this paper, we formalized the CBE primitive, which bridges the GKA and BE
notions. In CBE, anyone can send secret messages to any subset of the group
members, and the system does not require a trusted key server. Neither the
change of the sender nor the dynamic choice of the intended receivers require
extra rounds to negotiate group encryption/decryption keys. Following the CBE
model, we instantiated an efficient CBE scheme that is secure in the standard
model. As a versatile cryptographic primitive, our novel CBE notion opens a
new avenue to establish secure broadcast channels and can be expected to secure
numerous emerging distributed computation applications.
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8. Boyd, C., González-Nieto, J.M.: Round-Optimal Contributory Conference Key
Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174.
Springer, Heidelberg (2002)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

10. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

11. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authen-
ticated Group Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255–264.
ACM Press (2001)

12. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

13. Cheon, J.H., Jho, N.S., Kim, M.H., Yoo, E.S.: Skipping, Cascade, and Combined
Chain Schemes for Broadcast Encryption. IEEE Transactions Information The-
ory 54(11), 5155–5171 (2008)

14. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

15. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)



160 Q. Wu et al.

16. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

17. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with
Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)
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