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Abstract. We revisit the Two-Prover Bit Commitment Scheme of
BenOr, Goldwasser, Kilian and Wigderson [BGKW88]. First, we
introduce Two-Prover Bit Commitment Schemes similar to theirs and
demonstrate that although they are classically secure using their proof
technique, we also show that if the provers are allowed to share quantum
entanglement, they are able to successfully break the binding condition.
Secondly, we translate this result in a purely classical setting and investi-
gate the possibility of using this Bit Commitment scheme in applications.
We observe that the security claim of [BGKW88] based on the assump-
tion that the provers cannot communicate is not a sufficient criteria to
obtain soundness. We develop a set of conditions, called isolation, that
must be satisfied by any third party interacting with the provers to guar-
antee the binding property of the Bit Commitment.

1 Introduction

The notion of Multi-Prover Interactive Proofs was introduced by BenOr, Gold-
wasser, Kilian and Wigderson [BGKW88]. In the Two-Prover scenario, we have
two provers, Peggy and Patty, that are allowed to share arbitrary information
before the proof, but they become physically separated from each other dur-
ing the execution of the proof, in order to prevent them from communicating.
It was demonstrated by Babai, Fortnow, and Lund [BFL91] that Two-Prover
Interactive Proofs (with a polynomial-time verifier) exist for all languages in
NEXP-time. A fully parallel amalog was achieved by Lapidot and Shamir [LS97].

A quantum mechanical version of this scenario was considered by Kobayashi,
Matsumoto, Yamakami and Yao [KM03, KMY03, Yao03]. To this day, it is still
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an open problem to establish the exact power of Multi-Prover Quantum Inter-
active Proofs. A rather vast litterature now exists on this topic (see [BHOP08],
[CSUU07], [DLTW08], [IKM09], [IKPSY08], [KKMV08], [Weh06]). However, it
is still not even clear whether two provers are as powerful as more-than-two
provers.

The Two-Prover Zero-Knowledge Interactive Proofs of [BGKW88] rely on
the construction of a Bit Commitment scheme, information theoretically secure
under the assumption that the provers cannot communicate. We refer the reader
to their paper to understand the application of this Bit Commitment scheme to
the construction of Two-Prover Zero-Knowledge Proofs. We solely focus on their
Bit Commitment scheme for the rest of our work. In this paper, we consider
several important questions regarding Two-Prover Bit Commitment schemes.
We do not limit our interest of Two-Prover Bit Commitment to the context
of Zero-Knowledge proofs; as already discussed in [BGKW88] similar techniques
lead them to a secure Oblivious Transfer under the same assumption. Given that
any two-party computation may be achieved from Oblivious Transfer [Kil88], we
consider the security of such Bit Commitment scheme in a very general context.
We discuss at length the security in a very general composability situation.

In order to argue the security of their Bit Commitment scheme, the authors
of [BGKW88] asserted the following assumption:

"there is no communication between the two provers while
interacting with the verifier".

The current paper is concerned with the sufficiency of this assertion. We show
is Section 3.2 that, although this assumption must be made, it is however con-
siderably too weak, because we exhibit variations of the scheme that are equally
binding classically but that are not at all binding if the provers were allowed
to share entanglement. It is however a very well known fact that entanglement
does not allow communication. Although it is true that they can cheat if they
can communicate, it is also true that they can cheat without communicating.
Therefore the assumption that the provers cannot communicate is too weak.

This observation can be turned into a purely classical argument by exhibiting
a black-box two-party computation, that does not allow them to communicate,
but that allows them to cheat the binding condition of the Bit Commitment
scheme. This peculiar source of randomness may replace the entanglement used
by the attack. Furthermore, the above assertion of BGKW can be interpreted as
a prescription to the verifier that he should make sure not to help the provers to
communicate while interacting with him. Again, this prescription would not pre-
vent him from acting like the black-box we exhibit. Thus, a stronger prescription
is mandatory in order to assert security.

We carefully define a notion of isolation by which the two provers may not
communicate nor perform any non-local sampling beyond what is possible via
quantum mechanics. We finally formalize a set of conditions that any third party
involved in a Two-Prover Bit Commitment scheme may satisfy to make sure he
does not break the assumption that the provers are in isolation. In particular, we
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make sure that if such a Bit Commitment scheme is used in another larger cryp-
tographic protocol, its security properties will carry over to the larger context.

1.1 Related Work

The starting point of this research is clearly the Bit Commitment scheme intro-
duced by BenOr, Goldwasser, Kilian and Wigderson [BGKW88]. The security
of a Two-Prover Bit Commitment scheme against quantum adversaries has been
considered in the past in the work of Brassard, Crépeau, Mayers and Salvail
[BCMS98]. They showed that if such a Bit Commitment scheme is used in com-
bination to the Quantum Oblivious Transfer protocol of [BCMS98] it is not
sufficient to guarantee the security of the resulting QOT if the two provers can
get back together at the end of the protocol. In the current work, we consider
only the situation while the provers are isolated.

The research by Cleve, Høyer, Toner and Watrous [CHTW04] is the main
inspiration of the current paper. They have established some relations between
Two-Prover Interactive Proofs and so called “non-locality games”. More pre-
cisely, they showed that certain languages have a classical Two-Prover Interac-
tive Proof that looses soundness if the provers are allowed to share entanglement.
Some of our results are very similar to this. However, our new contributions are
numerous. While [CHTW04] focuses on languages, we focus on the tool known as
Bit Commitment. This tool is used in many contexts other than proofs of mem-
bership to a language: proofs of knowledge, Oblivious Transfer, Zero-Knowledge
proofs, general two-party computations. Moreover inspired by the observations
of [CHTW04], we analyze the security of such Two-Prover tools in a completely
classical situation. We conclude that proving security of such protocols is very
subtle when used in combination with other such tools. We also argue that the
claim of security of the protocols of [BGKW88] requires a lot more assumptions
than the mere “no communication” assumption (even in the purely classical
situation).

Despite the impossibility theorems of Mayers [May96] and Lo & Chau [LC97],
the possibility of information theoretically secure Bit Commitment schemes in
the Two-Prover model is not excluded in the classical and quantum models.
Indeed, the computations sufficient to cheat the binding condition of a Quantum
Bit Commitment scheme in the above “no-go” theorems cannot, in general, be
performed by the two provers when they are isolated from each other. This is
the reason why these theorems do not apply.

In a closely related piece of work, Kent [Ken05] showed how impossibility
of communication, implemented through relativistic assumptions, may be used
to obtain a Bit Commitment scheme similar to BGKW that can be constantly
updated to avoid cheating. Kent proves the classical security of his scheme while
remaining elusive about its quantum security. However, he claims security of one
round (see [Ken05], Lemma 3, p. 329) of his protocol which is more or less the
same as our Lemma 1. Unfortunately, his proof is incomplete as pointed out in
our proof of the Lemma. But we clearly recongnized that he was first to address
this question.
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A very different set of results [BCU+06] relates non-locality boxes and two-
party protocols such as Bit Commitment and Oblivious Transfer. These are only
marginally connected to the current research. They showed how these crypto-
graphic protocols may be securily implemented from those non-locality boxes.
On the cotrary, we show how to break such protocols using non-locality boxes...

2 Preliminaries

2.1 Isolation

First let us define the condition imposed on the two provers: we use the word
isolation to describe the relation between Peggy and Patty during the protocol.
The intuitive meaning of this term is that Peggy and Patty cannot communicate
with each other, since this condition is explicitly imposed by the Two-Prover
model. However, we introduce this new terminology instead of the traditional
“cannot communicate with one another” because we noticed that the meaning
of “no-communication” is too weak and must be very clearly defined to produce
valid security proofs. This isolation will be formally defined in Section 4. For now,
the reader may follow his intuition and picture Peggy and Patty as restricted to
compute their messages using only local variables.

2.2 Bit Commitment

The primitive known as “Bit Commitment” is a protocol in which a player Alice
first sends some information to another player Bob, such that this information
binds her to a particular bit value b. However, the information sent by Alice is
not enough for Bob to learn b (b is concealed). At a later time, Alice sends the
rest of the information to unveil the bit b, and she cannot change her mind to
reveal b̄ and convince Bob that this was the value to which she was committed in
the first step. The following definitions will be used to characterize the security
of a Bit Commitment scheme. Note that the function μ(n) always refers to a
negligible function in n.

Definition 1. A Bit Commitment scheme is statistically concealing if only a
negligible amount of information on the committed bit can leak to the verifier
before the unveiling stage.

Definition 2. A Bit Commitment scheme is statistically binding if, for b ∈
{0, 1}, the probability pb that Alice successfully unveils for b satisfies

p0 + p1 ≤ 1 + μ(n). (1)

This binding condition was first proposed by Dumais, Mayers, and Salvail
[DMS00], as a weaker substitute to the traditional definition pb ≤ μ(n) for
either b = 0 or 1. This definition has been henceforward used to show security of
many Bit Commitment schemes against quantum adversaries in various models,
e.g. [DMS00, CLS01, DFSS05].
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More recent definitions have been introduced since then ([DFRSS07]) that
appear to be better characterization of Bit Commitment security in a quantum
setting. However, we have not been able, so far, to find protocols that satisfy
these definitions. This, we hope, will be part of future work in this area.

3 Two-Prover Bit Commitment scheme

For simplicity reasons, we replace the original scheme of [BGKW88] by a far
simpler and compact version, which we call “simplified-BGKW” (or sBGKW as
a short-hand). Still, we strongly recommend the reader to [BGKW88] for the
details of the original construction. For an n-bit string r and a bit b, we define
the n-bit string b · r := b ∧ r1||b ∧ r2|| . . . ||b ∧ rn. The scheme is as follows:

Peggy and Patty agree on a uniform n-bit string w and a random bit d. They
are then isolated from one another.

Protocol 31 ( sBGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x := (d · r) ⊕ w,

3: Peggy announces z := b⊕ d.

Protocol 32 ( sBGKW - Unveil b )

1: Peggy announces bit b and the n-bit string w,

2: Vic accepts iff w = ((b⊕ z) · r) ⊕ x.

Note that at the unveiling stage, as in the original scheme it is not required
that Peggy be the one announcing b. It is as good to let Vic deduce b: Vic
computes y := w ⊕ x, if y = 0n he sets b := z and if y = r he sets b := z̄, and
otherwise rejects. Indeed, Peggy may not even know b!

3.1 BGKW’s Notion of Isolation

The assumption made in [BGKW88] is that Peggy and Patty are not allowed
to communicate with each other. Based solely on that constraint, the following
seems a “valid” security proof (it is more or less the same proof as in [BGKW88]).

Theorem 1. Constraining the provers as in [BGKW88], the sBGKW protocol
is secure classically.

Proof. Vic does not know w, and w is uniformly distributed among all possible
n-bit strings for both values of z. It follows that the two strings w and r⊕w have
the exact same uniform distribution and are perfectly indistinguishable from one
another. We can say the same for the pairs (z, w) and (z, r⊕w). Hence sBGKW
is concealing.
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Now suppose that Peggy and Patty would like to be able to unveil a certain
instance of b both as 0 and as 1. To do so, Peggy would like to announce ŵb

such that ŵb = (b · r) ⊕ x. We note that this models the two possible dishonest
behaviors for Peggy and Patty: honestly commit to b̄ and try to change to b
afterwards, and commit to nothing by sending some x and decide which b they
want to unveil only at the unveiling stage. It follows that in both scenarios, a
successful cheating strategy would allow to produce the two strings ŵ0 and ŵ1,
such that {ŵ0, ŵ1} = {x, r⊕ x}. However, the string ŵ0 ⊕ ŵ1 = x⊕ r⊕ x = r is
completely unknown to Peggy by the no-communication assumption. Therefore,
even using unlimited computational power, her probability of issuing a valid pair
ŵ0, ŵ1 is at most 1/2n. Hence sBGKW is binding.

Nevertheless, this result is incomplete1! Indeed, we show next how a correlated
random variable can be used to invalidate the result of Theorem 1 while not vio-
lating the “no-communication” assumption. This suggest that the conventional
wording “no-communication” is insufficient as it is not explicit enough to cover
any kind of cheating mechanism Peggy and Patty can employ.

3.2 Cheating sBGKW with an NL-box

An NL-box, short-hand for “Non-Locality box” introduced by Popescu and
Rohrlich [PR94, PR97], is a device with two inputs s and t, and two output
bits u and v such that u and v are individually uniformly distributed and satisfy
the relation f(s, t) = u ⊕ v for some function f . The pair (s, u) is on Peggy’s
side while the pair (t, v) is on Patty’s side. Because u and v are individually
uniformly distributed, no NL-box allow Peggy and Patty to communicate, in
either direction. The NL-boxes are usually assumed as asynchronous devices,
that is, feeding in the input s is sufficient to obtain u even if t has not been
input yet, and likewise for t. Such a particular box, known as the PR-box, is
defined for f(s, t) = s ∧ t, where s and t are binary inputs. It is known that
two classical players can simulate the PR-box with success probability2 at most
75% for all s, t, while quantum players sharing an entangled state can achieve a
success probability of cos2(π/8) ≈ 85% (consult [CHTW04] for details).

s ��
PR

t��

u := v ⊕ (s ∧ t) ���� v

Fig. 1. the cheating PR-box

Let the two provers be given a black-box access to this PR-box. The following
shows how this PR-box allows Peggy and Patty to unveil the bits committed

1 The broad explanation is that we implicitly assumed the provers had only access to
local variable. We’ll see we need to guarantee this restriction for the proof to hold.

2 This result is shown optimal by enumerating every possible classical strategies.
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d ��
PR

ri��

ŵi := xi ⊕ (ri ∧ d) ���� xi

Fig. 2. Using the PR-box

d ��
sBG
KW

r��

w := x⊕ (d · r) ���� x

Fig. 3. The cheating sBGKW-box

through sBGKW in either way, at Peggy’s will. For each position i, 1 ≤ i ≤ n,
Patty inputs in the PR-box the bit s := ri received from Vic and obtains output
xi := u from the PR-box, which corresponds to the i-th bit of the commitment
string. Patty sends x to Vic. Peggy discloses z a random bit to Vic. To unveil bit
b, Peggy inputs t := d := b ⊕ z in the PR-box and obtains the output ŵi := v
from the PR-box, which she sends to Vic together with b.

If d = 0 then d ∧ ri = 0 and thus ŵi = xi which is the right value she must
disclose. If d = 1 then d ∧ ri = ri and thus ŵi ⊕ xi = ri or ŵi = xi ⊕ ri which is
again the right value she must disclose.

Indeed, we can view an arbitrary cheat on the sBGKW as a non-local compu-
tation between the provers as in Fig. 3. Essentially we have just demonstrated
that an sBGKW-box can be emulated perfectly by perfect PR-boxes. However,
a valid cheating strategy might not succeed 100% of the time, so an sBGKW-box
that is correct 80% of the time, for instance, would be enough to break the bind-
ing property. It seems quite obvious, nevertheless, that a PR-box that is correct
80% of the time will not help implementing an sBGKW-box that is correct 80%
of the time. For that matter, any PR-box that is correct a constant fraction
p < 1 of the time will not help either...

It is not obvious that a sBGKW-box with error probability greater than zero
is equivalent to the PR-box, but it would be very interesting to prove either way.

3.3 Quantumly Insecure - Two-Prover Bit Commitments

We exhibit an intermediate scheme to emphasize how shared entanglement can
be used to cheat with probability almost one a classically “secure” Two-Prover
Bit Commitment. The protocol is a weaker version of the sBGKW scheme, called
wBGKW, where the acceptance criteria of the unveiling stage is loosen to tolerate
some errors. A second protocol (available in Sub-Section 3.7) is also a modified
version of the sBGKW scheme where the acceptance criteria is based on a game
described later, called the Magic Square game.

A weaker acceptance criteria: the wBGKW scheme Consider a weaker
acceptance criteria where the string ŵ sent by Peggy can differ in at most n/5
positions from what it should be. Formally the verifier Vic is to accept b if
d(ŵ, ((b ⊕ z) · r) ⊕ x) < n/5, where d(·) is the binary Hamming distance. The
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interest of such a modification is that now a cheating quantum pair Peggy and
Patty can use the non-local property of entanglement to approximate the PR-
box and successfully cheat wBGKW, while, as we show next, the Bit Commitment
is “secure” classically. To facilitate notation we add an index b to the string ŵ,
since ŵ is different whether we unveil zero or one. Also, define as B the random
variable corresponding to the value they unveil.

Theorem 2. For any classical strategy, the probability that it outputs a string
ŵ0 when B = 0 and ŵ1 when B = 1 s.t. E[d(ŵb, ((b⊕ z) · r)⊕x)] < n/5 for both
values of b, is exponentially small in n.

Proof (of Theorem 2).
Wlog, we can assume the provers use a deterministic strategy that may pro-

duce such a ŵ0 when B = 0, and ŵ1 when B = 1, so they can in fact output
both ŵ0 and ŵ1. Hence, Peggy can compute the string ŵ0 ⊕ ŵ1. Recall that
when d(ŵb, ((b ⊕ z) · r) ⊕ x) = 0 then ŵ0 ⊕ ŵ1 = r. We want to determine
the distance between ŵ0 ⊕ ŵ1 and r in our situation. From the theorem’s as-
sumption, there exists a classical strategy that outputs ŵ0 and ŵ1 such that
E[d(ŵb, ((b ⊕ z) · r) ⊕ x)] < n/5, for b = 0, 1. We easily obtain that for such a
strategy, the expected distance from r is

E[d(ŵ0⊕ŵ1, r)] = E[d(ŵ0⊕ŵ1, x⊕(x⊕r))] ≤ E[d(ŵ0, x)]+E[d(ŵ1, x⊕r)] < 2n/5

by the triangular inequality. Using a standard Chernoff bound argument, and
since r is absolutely unknown to Peggy, her probability of outputting a string
y = ŵ0⊕ŵ1 such that E[d(y, r)] < (1/2−ε) ·n is exponentially small in n for any
0 < ε ≤ 1/4. Hence, because 1/4 < 2/5 < 1/2, we conclude that such a strategy
cannot exist except with exponentially small probability, and so unveiling must
fail for one of the two possibilities.

Conversely, this scheme is almost totally insecure against quantum adversaries.

Theorem 3. There exists a quantum strategy that successfully cheats the
wBGKW scheme with probability 1 − μ(n).

Proof (of Theorem 3). We saw in Section 3.2 that the PR-box, taken as a
black box, correctly produces the needed ŵb to unveil as b. Using the well-
known result [e.g. [CHTW04]] that through entanglement, Peggy and Patty can
optimally simulate the PR-box such that for each i taken independently, 1 ≤
i ≤ n, the PR-box produces correlated outputs with probability cos2(π/8) ≈
0.85. Therefore, using the standard Chernoff bound, this independent quantum
strategy yields that for both values of b,

E[d(ŵb, ((b⊕ z) · r) ⊕ x)] = (1 − cos2(π/8)) · n

with probability exponentially close to one. Having that (1 − cos2(π/8)) · n <
0.15 · n < n/5, we conclude that a pair of quantum provers defeats the binding
condition of the scheme with probability 1 − μ(n).
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3.4 Discussion

The limitation of Theorem 1 (and Theorem 2) is that it claims that the following
non-local computation, named sBGKW2-box (see Fig. 4) , is a communication

r ��
sBG
KW2x ���� w0, w1 := x, x⊕ r

Fig. 4. the cheating sBGKW2-box

device (which is obvious) assuming that any implementation of an sBGKW-
box is sufficient to implement it (which is false, since the sBGKW-box is not a
communication device, it is impossible to implement any communication device
from it).

However, these proofs are not wrong either since it is impossible to accomplish
the sBGKW-box without some sort of communication, which also works for
the sBGKW2-box. In particular, it means that this proof is seriously context-
dependent. In a context where Patty and Peggy have access to a third party
that scrupulously monitors that they are not communicating with each other,
the proof does not hold anymore because using the third party as a sBGKW-
box is not excluded.

The bottom line here is that this proof is valid solely in a stand-alone security
model. As soon as one starts composing such protocols, one has to, not only,
monitor that the actions of the third party do not allow communication but also
do not constitute any form of correlation between Patty and Peggy.

This demonstrates that certain non-local correlations are enough to cheat
Two-Prover Bit Commitment schemes while they are not enough to communi-
cate. Thus we have to define the prover’s isolation in terms of these non-local
correlations and not only in terms of communication. This is the purpose of
Section 4.

3.5 A Non-Local Box to Cheat the Original BGKW Scheme

Similarly to the sBGKW scheme, we can define an analogous cheating box for the
original BGKW scheme with two binary inputs s, t, and two uniformly generated
ternary outputs x, y.

The original protocol goes as follows:
Peggy and Patty agree on a uniform n-trit string w. They are then isolated from
one another.

Protocol 33 ( BGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x such that for all k, xk := σrk(wk) − b mod 3.
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Protocol 34 ( BGKW - Unveil b )

1: Peggy announces bit b and the string w,

2: Vic accepts iff w is such that for all k, b = σrk(wk) − xk mod 3.

Where the σ function of [BGKW88] can be re-written as the single expression:
∀ r ∈ {0, 1}, w ∈ {0, 1, 2}

σr(w) = (1 + r)w mod 3. (2)

So using (2), we want from the cheating NL-box that u := (s+1)v− t mod 3
for each s, t, and uniformly chosen v. Because for any binary s, t we can easily
define the inverse permutation over trits to be v := (t + u)(s + 1) mod 3, the
following PR3-box does not allow to communicate since individually u and v
are uniformly distributed.

s ��
PR3

t��

u ���� v := (t+ u)(s+ 1) mod 3

Fig. 5. A non-local box to cheat BGKW

It is not hard to verify that the PR3-box that implements this non-local
computation from s, t is exactly the one needed to cheat the original BGKW
scheme. As with the PR-box, for each round i, Peggy inputs in the box s := ri
and obtains the trit xi := u, which she sends to Vic. If Patty wants to unveil for
b, she inputs t := b in the PR3-box, which correctly outputs ŵi := v. Clearly,
they successfully cheat since

∀ i (1 + ri)ŵi − xi mod 3 = (1 + ri)(b + xi)(1 + ri) − xi mod 3
= (1 + ri)2(b + xi) − xi mod 3
= (b+ xi) − xi mod 3
= b.

We can also demonstrate that the PR3-box is as powerful as the PR-box. It
is straightforward to check that the outputs x′ and y′ depicted in Figure 6 are
indeed the correct outputs to cheat the sBGKW scheme.

3.6 Magic Square Non-locality Game

A square is a 3 × 3 matrix whose entries are in {0, 1}. A row is said to be correct if
its parity is even, and a column is said to be correct if its parity is odd. We use the
following definition of the Magic Square game (from [CHTW04]), which slightly
differs from the original game due to Aravind [Ara02]. The verifier Vic picks at
random a row or column, say column ci, and a position xi

j on ci, i, j ∈ {1, 2, 3}.
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PR
s ��

PR3
�� t

x ���� y

�� ��
x′ := (s+ 1)x mod 3 mod 2 y′ := y + 2t mod 3 mod 2

Fig. 6. Reduction from the PR-box to the PR3-box.

He then asks the entries of column ci to Peggy, and the value in position xi
j to

Patty. The two provers win if the parity of ci is odd (more generally, if the row
or column asked for is correct), and if the value returned by Patty matches the
value at position xi

j in Peggy’s answer. The following defines the validity of a
square.

Definition 3. A (3 × 3) matrix S is valid for zero if all rows of S xor to 0, and
S is valid for one when all columns of S xor to 1.

For instance the following matrix S0 is valid for zero while S1 is valid for one:

S0 =
[

0 0 0
0 1 1
1 0 1

]

, S1 =
[

1 0 1
1 1 0
1 0 0

]

. (3)

Any classical strategy successfully wins this Magic Square game with prob-
ability at most

(

17
18

)

. Remarkably, there exists a quantum strategy that allows
Peggy and Patty to successfully win this game every time, see [CHTW04, Ara02]
for details.

3.7 Magic Square Bit Commitment

It is not hard to exploit the Magic Square game to build another Bit Commitment
scheme. This scheme is particularly relevant in our study of Bit Commitments
in the Two-Prover model as it is perfectly secure classically but can easily be
cheated with probability one using a quantum strategy. The scheme is as follows:

Peggy and Patty agree on a random bit v and n random squares Si such that
Si is valid for v. They are then isolated.

Protocol 35 ( MSBC - Commit to b )

1: Peggy computes x := v ⊕ b and sends x to Vic.

2: Vic picks a pair of random trits ri and ci and asks Peggy for Si(ri, ci).

Protocol 36 ( MSBC - Unveil b )

1: Peggy sends b to Vic,

2: Vic asks Patty for row number ri of Si if b = x, or column number ci of Si

if b = x̄.

3: Vic accepts b if, for each i, the row or column that should xor to b does,

and if the entry returned by Peggy matches with Patty’s answer. Vic rejects

otherwise.
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Theorem 4. Any classical strategy successfully cheats the binding property of
the MSBC scheme with probability at most

(

8
9

)n/6, except with exponentially
small probability.

Proof (of Theorem 4).
Wlog, it is sufficient to consider deterministic strategies. Consider the strategy

where only the entry (2, 2) is used to make the square Si correct for ŵi. When
ti = 0 or 1, Peggy answers the line or column of Si as is. However, when ti = 2,
she sets the entry (2, 2) to the correct value such that a line xores to 0 or
a column xores to 1. On query (yi, zi), Patty answers the entry (yi, zi) of Si if
(yi, zi) �= (2, 2), otherwise she answers 0. It is not hard to show that this strategy
is optimal, since Peggy knows all the information (the Si’s, x, and r), and Patty
knows nothing about x and r.

The problem for the provers is that whenever b · ri = 1, they succeed for at
most only one of b ∈ {0, 1}. This is because the square Si they share cannot
be correct for both xi and xi. Since r is uniformly distributed, by a Chernoff
argument, r contains at least n/3 1’s. Thus, there is at least one of b ∈ {0, 1} for
which in at least n/6 challenges the provers will answer correctly with probability
at most 8/9 (the sum of the challenges where she succeeds with probability at
most 8/9 for 0, and those where she succeeds with probability at most 8/9 for 1,
adds up to n/3). Therefore, their probability of successfully cheating is at most
(

8
9

)n/6 for any classical strategy, except with exponentially small probability.

However, there exists a quantum strategy that allows Peggy and Patty to
successfully break the binding condition with probability 1 by winning the Magic
Square game every time.

Theorem 5. There exists a quantum strategy that successfully cheats MSBC
with probability 1.

4 Defining and Checking Isolation

The existence of such an inputs-correlated3 random variable, which does not
allow communication but allows cheating of the sBGKW Two-Prover Bit Com-
mitment scheme sheds some light on the limitations of the original assumption
of [BGKW88].

Indeed, the assumption of [BGKW88] is necessary but not sufficient to guar-
antee the binding property of the Bit Commitment scheme. Among its weakness,
we note that it does not explicitly force any cheating strategy to be repeatable.
The PR-box not being a repeatable process4 gives a first understanding why

3 We emphasize that at least one of the “inputs” to the random variable needs to
be obtained once the provers are isolated, otherwise such a random variable can
be shared while the provers are together, and is thus useless to cheat the sBGKW
scheme.

4 The PR-box cannot be repeated to generate two valid strings ŵ0 and ŵ1.
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we can still cheat the sBGKW scheme despite the result of Theorem 1, which
implicitly assumed repeatability of the cheating strategy.

Clearly, to achieve the binding condition, a stronger assumption is needed. One
could require that once the provers are isolated, there exists no mechanism by
which they may sample a joint random variable which is dependent on the inputs
they provide. We note that, among other things, this new condition excludes
communication between the two provers, as desired. However, it excludes a lot
more, such as shared entanglement! This is simply too strong; we need to be
more subtle in the way we define this “mechanism to sample a joint random
variable”.

It seems reasonable to believe that nature does not allow the existence of a
PR-box (consult [CHTW04]). So why even ask for a stronger assumption than
the no-communication assumption of [BGKW88]? Part of the answer is that Vic
can play the role of the PR-box, or any other third party. In no circumstances
can we ignore the fact that both Peggy and Patty individually talk to Vic.
Definitely, we need to consider this aspect of the protocol with great care. For
instance, consider the scenario where r is sent to Peggy but unveiling is not done
immediately after committing, but rather once Vic and the two provers have been
involved in other, unrelated, interactive protocols. It is perfectly conceivable that
within those protocols, for each i, Peggy and Patty succeed in sending ri and b
to Vic, and then in a completely different context (or a moment of unawareness)
Vic performs the required computation and output xi and ŵi, which are then
sent respectively to Peggy and Patty. It is obvious that if such a computation, or
any alike, can take place with enough probability then Peggy and Patty would
succeed in cheating the sBGKW protocol!

More generally, we must not only consider Vic but any other third party,
call it Ted, to which Peggy and Patty might have access to obtain correlated
information. The previous situation highlights the fact that there is a whole class
of functions with inputs coming from Peggy and Patty for which Ted must not
send the outputs. Intuitively, each time Ted sends a message to either Peggy or
Patty, he must ensure that the message does not outperform what Peggy and
Patty can achieve using local variables in the sense of quantum mechanics. We
propose two different approaches to formulate that statement as a criteria. The
first considers the practical flavor of the problem, when Ted is working with
instances of variables. The second approach is based on an information theoretic
argument. At this point, we will not consider the scenario where the players can
share quantum resources.

Let Peggy be identified by P0 and Patty by P1. The variable D ∈ {0, 1} is a
reference to player PD, and T ∈ {∅, {0}, {1}, {0, 1}} is a tag appended to each
message that indicates to Ted the player(s) that is (are) eligible for receiving
this message, where T = {0, 1} means by both players and T = ∅ means by none
of them. The message about to be sent from Ted to prover PD is represented by
(m,T )D. We formalize Ted’s behavior as follows.

Definition 4 (Practical criteria). Ted is said to be a “secure third party” if
∀D ∈ {0, 1}, Ted follows these points.
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1. A message received from player PD is tagged with T := {D}.
2. A message generated without involving any of the previous messages, e.g.

picking a random string, is tagged with T := {0, 1}.
3. A message obtained from a computation involving previous messages is tagged

with the intersection of the tags of all the messages involved in that compu-
tation.

4. A message (m,T )D is sent to player PD only if D ∈ T .

Note: It is important that the communication pattern between Ted and the
isolated provers be specified ahead of time, otherwise the traffic pattern (not
only the message contents) may leak information.

We now explain why Ted will not send a message that allows P0 and P1 to com-
municate or establish non-local correlations. Let (m,T )D be the message Ted is
about to send to player PD. From the fourth point of Definition 4, Ted will send
(m,T )D only if it is tagged T = {D} or {0, 1}. Looking at the message’s tag as-
signment rule number 3, this happens only if there is absolutely no message tagged
{1 −D} or ∅ used in the computation of (m,T )D. Using an induction argument,
it is not hard to see that this happens only when all the variables involved in the
computation of (m,T )D are independent of the information of P1−D, that is, they
have been themselves generated using variables tagged {D} or {0, 1}. Thus, such
a message (m,T )D is also independent of the information known only to P1−D.
Therefore, the messages sent by Ted do not let the two players communicate.

The case of non-locality is slightly more subtle, yet pretty straightforward.
Recall that in a general non-local process, both players use a message each and
receive a message uniformly distributed, from their point of view, such that the
four messages satisfy a certain relation. The received message does not allow
to communicate with the other player. Suppose P1−D receives his message first.
Since from his point of view, this message is uniformly distributed, Ted can in fact
generate a uniformly distributed message, tag it with T := {0, 1} and send it to
P1−D. At this point, this behavior does not violate anything because non-locality
has not been created yet. Then, Ted computes the message for PD. Because this
message needs to satisfy the relation that binds together the four messages, at
least a message tagged with T �= {D} and one tagged with T �= {1 − D} are
used in its computation (it can be the same message), so the resulting message
(m,T )D will be assigned a tag T := ∅ because the intersection does not contain
{D} nor {1−D}. This message (m, ∅)D is the one creating the non-local relation.
However, from point 4 of Definition 4, since D /∈ ∅, Ted will never send (m, ∅)D.

As mentioned before the previous definition, we can alternatively formalize
Ted’s behavior in terms of entropy. The advantage of doing so is to enable anal-
ysis of existing protocols. To satisfy the above practical criteria, the wrapping
protocol must be designed in a rather restricted way. To consider general proto-
cols, we offer this alternate definition.

Let the message about to be sent from Ted to prover PD be represented
by the variable (M,T )D. The set of variables SD,T represents all the variables
(messages) with tag T sent by prover PD to Ted, and the set of variables RD,T

all the variables (messages) with tag T sent by Ted to prover PD before (M,T )D.
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Definition 5 (Information based criteria). Ted is said to be a “secure third
party” if ∀D ∈ {0, 1}, Ted follows these points.

1. An information received from player PD is tagged with T := {D}5.
2. A variable M to be sent to PD is tagged with the less restrictive tag T ∈

{∅, {D}, {0, 1}} that satisfies the following relation6. Note that the calli-
graphic tag T ′ stands for the tag {0, 1}/

(

T ∩ {D}
)

and the calligraphic tag
T ′′ stands for the tag {D} ∪

(

T ∩ {1 −D}
)

.

H((M,T )D|SD,{D}, RD,{D}, RD,{0,1}, S1−D,T ′ , R1−D,T ′ , R1−D,{0,1})
= H((M,T )D|SD,T ′′ , RD,T ′′ , RD,{0,1}, R1−D,{0,1}) (4)

3. A variable (M,T )D is sent to player PD only if D ∈ T .

We warn the reader that the tags and players’ variables D and 1−D do not play
any role in the computation of the entropies; they are only present to discriminate
the variables and determine which ones to include in the conditional part of the
entropies. Notice also that, contrary to Definition 4, a variable’s tag is set only
when Ted considers sending it to a player, except for incoming variables. This
relaxation will turn out to be the key point to explain why this generalized
definition is not stronger than local variables on the players’ side.

The process of determining which tag to assign can be broken into two steps.
We start with the empty tag ∅. The first step is to decide whether we can add
{D} to the tag, or not. Notice that the right-hand side of equation (4) is the same
for T ∈ {∅, {D}}. This results from the calligraphic tag T ′′, which is equivalent
to {D} in this case. On the other hand, the calligraphic tag T ′ introduces the
terms S1−D,{1−D} and R1−D,{1−D} in the left-hand side of equation (4) when
T = {D}. Thus, if the result of this first step is that the tag is at least {D}, then
it means that the message to be sent is independent of the private information
held by P1−D. However, if we find that the tag is not even {D}, then it means
that the message to be sent has some dependencies with the private information
of P1−D, and therefore the message should not be sent.

If the first step terminates with a tag containing {D}, then we can move on
to determine whether we can add {1 −D} to the tag, or not. We note that T ′

won’t change for T ∈ {{D}, {0, 1}}, so the left-hand side is invariant. However,
the calligraphic tag T ′′ will remove the terms SD,{D} and RD,{D} from the
right-hand side if we consider the tag T = {0, 1}. Hence, if equation (4) is
satisfied with T = {0, 1}, it means that the message to be sent is not only
independent of the private information of P1−D (from the first step), but also of
the private information of PD. It follows naturally that this message be eligible
for distribution to both players.
5 This implies that the sets SD,{0,1} and S1−D,{0,1} are always empty. Therefore we

do not include them in equation (4), but a formal expression should include them in
the conditional part on both sides of the equality.

6 In order to write a clear equation, we had to specify to which player the message is
intended. As a result, we did not include {1−D} in the set of possible tags. It turns
out that the empty set tag is sufficient to cover both communication and correlation.
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The interest of Definition 5 is that it is more flexible in the tag assignation
than the practical Definition 4 (and thus more general). Indeed, whenever Ted
deliberately randomizes a message with new [uniformly distributed] information,
the information-based criteria concludes that there is no problem to send to PD

a message that would have been tagged with T = {1 − D} or ∅ by the prac-
tical definition. The reason is that by randomizing completely all the [private]
variables related to P1−D, Ted is reducing the message he sends to PD to what
PD can exactly achieve using local variables. That is to say, PD already has
(using local variables) a random view of P1−D’s variables (and so of the global
message), so there is no problem for Ted to first randomize P1−D’s variables and
then send this message to PD. Note however that the variables used to random-
ize will never be sent to PD since they now carry the sensible information. We
give two examples of these particular cases in the Appendix A.

Henceforth, the Two-Prover model’s assumption is based on this refined def-
inition of isolation.

Definition 6. We say that Peggy and Patty are isolated from one another if
they cannot communicate with one another, and if they only have access as
external resource to secure third parties.

Using this new definition of isolation, we are now guaranteed that any strategy
that Peggy and Patty try to perform through a third party can be achieved
using only local variables on each side. Using this fact together with the general
assumption that the cheating strategy is deterministic7, it is straightforward to
fix the proof of Theorem 1 by arguing that their classical strategy can be run
on each copy of the information to output both ŵ0 and ŵ1.

5 Quantum Secure Bit Commitment in the Two-Prover
Model

We now present the modified version of the sBGKW scheme, called the mBGKW
scheme, and prove its security against quantum adversaries. Although the two
schemes are almost identical, it turns out the proof against quantum provers is
easier with the latter. The security of the sBGKW and BGKW schemes will follow
as corollaries of mBGKW’s security. The scheme is as follows:

Peggy and Patty agree on an n-bit string w. They are then isolated as in
Definition 6.

Protocol 51 ( mBGKW - Commit to b )

1: Vic sends two random n-bit strings r0, r1 to Peggy.

2: Peggy replies with x := rb ⊕ w.

7 A probabilistic strategy can be made deterministic by fixing the randomness to the
best sequence.
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Protocol 52 ( mBGKW - Unveil b )

1: Patty announces an n-bit string ŵ

2: Vic computes r := ŵ ⊕ x. He accepts iff r ∈ {r0, r1} and deduces b from

r = rb.

We want to show that the mBGKW scheme is secure against a quantum ad-
versary. Clearly the commitment is concealing because Vic does not know w.
This means that there exists w and w′ such that x = r0 ⊕w = r1 ⊕w′, and Vic
cannot determine which one has been used.

To prove that the binding property holds according to Definition 2, we again
use the crucial observation that if Patty could simultaneously compute (ŵ0, ŵ1),
then she would learn r0 ⊕ r1 = ŵ0 ⊕ ŵ1. Let p⊕ := Pr[Patty determines r0 ⊕ r1].
The next lemma relates p⊕ to p0 + p1 in the desired way. Notice however that
because quantum information is involved this statement is much less straightfor-
ward than the classical analog: p0 and p1 still correspond to running the attack
twice on the same data but an attacker cannot do both.

Lemma 1. Assume Patty has probability pb to unveil bit b successfully, for both
values of b, and such that p0+p1 ≥ 1+ε for ε > 0. Then, Patty can guess r0⊕r1
with probability p⊕ ≥ ε2/4.

Proof (of Lemma 1).
Assume without loss of generality that when the unveiling phase of mBGKW

starts, Patty holds the pure state |ψ〉 ∈ HN of dimension N ≥ 2n. Note that we
do not need to consider the whole bipartite state between Peggy and Patty since
when the unveiling phase starts, Peggy does no longer play an active role in the
protocol and no communication is allowed between the two; hence her system
can be traced-out of the global Hilbert space. Moreover, by linearity, the proof
also holds if |ψ〉 is replaced by a mixed state. Notice also that, from the new
model’s assumption, Peggy and Patty cannot do better using a third party than
what they can achieve with entanglement.

Generally speaking, Patty has two possible strategies depending upon the
bit b she wants to unveil. When B = 0, she applies a unitary transform U0

to |ψ〉 in order to get the state |ψ0〉 := U0|ψ〉 that she measures in the com-
putational basis {|w〉〈w|}w∈{0,1}n applied to the first n qubits of |ψ0〉. When
B = 1, she proceeds similarly with unitary transform U1 allowing to prepare
the state |ψ1〉 := U1|ψ〉. She then measures |ψ1〉 using the same measurement
as for B = 0. All general measurement can be realized in this fashion, this is
thus a general strategy for Patty. Notice that in the proof of Kent [Ken05], the
use of unitary transformations U0 and U1 is obscured by the fact that he works
with projective measurements. Notice also that the measurement on the first
n qubits of |ψb〉 can alternatively be expressed by the measurement operators
{|w〉〈w| ⊗ IM}w∈{0,1}n on the whole state |ψb〉, where IM is the identity matrix
on the system of dimension M = N/2n.
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From the values r0, r1, x ∈ {0, 1}n announced by Vic and Peggy during the
committing phase, we define ŵb := rb ⊕ x as the string Patty has to announce
in order to open b with success. We have,

pb = 〈ψb|ŵb〉〈ŵb|ψb〉, (5)

which by assumption satisfies

p0 + p1 ≥ 1 + ε, ε > 0. (6)

Notice that 〈ψb|ŵb〉 is a generalized inner product8 since |ŵb〉 lives in a subspace
of dimension 2n in HN . Therefore when ŵb is obtained, there is some state left in
HN of dimension N/2n which we label as |v̂b〉 (i.e. |ψb〉 has not been completely
collapsed by the measurement). Thus, using (5) we can write |ψb〉 as

|ψb〉 =
√
pb|ŵb〉|v̂b〉 +

√

1 − pb|ŵ⊥
b 〉, (7)

where ‖〈v̂b|〈ŵb|ŵ⊥
b 〉‖2 = 0. Note that the “state” |ŵ⊥

b 〉 has not necessarily a
physical signification. It is simply a mathematical tool that allows us to conve-
niently carry the statistics.

We want to determine a lower bound for the probability p⊕. One possible way
for Patty to compute r0 ⊕ r1 is to obtain ŵ0 and ŵ1 individually. Again, one
possible way to do this is to use the following strategy:

1. Patty applies the strategy allowing to open B = 0 from |ψ0〉 = U0|ψ〉 re-
sulting in the state |ψ̃0〉 after the measurement in the computational basis
{|w〉〈w|}w∈{0,1}n has been performed on the first n qubits, and

2. Patty prepares |ψ̃1〉 := U1U
†
0 |ψ̃0〉 before applying again the measurement in

the computational basis {|w〉〈w|}w∈{0,1}n on the first n qubits.

Note that when preparing |ψ̃1〉, we applied U †
0 before U1. This is to put back

the state |ψ̃0〉 as close as possible as the original state |ψ〉. From (6) and for N
big enough, the probability to measure ŵ0 in the first step is not too small and
so, by applying the inverse of all the unitary transformations generated by U0,
the state |ψ̃〉 we get before applying U1 is a good enough approximation of the
original |ψ〉. Similarly we can say that the fidelity F (|ψ̃〉, |ψ〉) is large enough.
By invariance under unitary transformation, it follows that |ψ̃1〉 approximates
|ψ1〉 with the same fidelity F (|ψ̃〉, |ψ〉).

In the strategy described above, the probability to determine r0 ⊕ r1 is

p0 · pŵ1|ŵ0 .

As we said earlier, this is only one of the possible strategies to determine r0⊕r1,
thus

p⊕ ≥ p0 · pŵ1|ŵ0 .

8 If |w〉 ∈ HM and |ψ〉 ∈ HN then for |ψ〉N =
∑

i αi|ai〉M ⊗ |bi〉N/M we define
〈w|ψ〉 =

∑

i αi〈w|ai〉|bi〉.
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Let us first find a lower bound on the probability pŵ1|ŵ0 to produce ŵ1 given
that ŵ0 has already been produced after step 1. Since ŵ0 was obtained, the state
|ψ̃0〉 is equal to |ŵ0〉|v̂0〉. We have,

|ψ̃1〉 = U1U
†
0 |ψ̃0〉

= U1U
†
0 |ŵ0〉|v̂0〉

= U1

(

U †
0

|ψ0〉√
p0

− U †
0

√

1 − p0

p0
|ŵ⊥

0 〉
)

(8)

= U1
|ψ〉
√
p0

− U1U
†
0

√

1 − p0

p0
|ŵ⊥

0 〉 (9)

=
|ψ1〉√
p0

− U1U
†
0

√

1 − p0

p0
|ŵ⊥

0 〉 (10)

=
1

√
p0

(√
p1|ŵ1〉|v̂1〉 +

√

1 − p1|ŵ⊥
1 〉 − U1U

†
0

√

1 − p0|ŵ⊥
0 〉

)

, (11)

where (8) follows from isolating |ŵ0〉|v̂0〉 in (7), (9) and (10) are obtained by
definition of U0 and U1 respectively, and (11) also follows from (7). At this
point, Patty applies the measurement in the computational basis in order to
obtain ŵ1. Since we are interested only in finding a lower bound, the probability
to obtain ŵ1 is minimized when U1U

†
0 |ŵ⊥

0 〉 = |ŵ1〉|v̂1〉. It easily follows that,

pŵ1|ŵ0 = 〈ψ̃1|ŵ1〉〈ŵ1|ψ̃1〉

≥ 1
p0

(√
p1 −

√

1 − p0

)2

(12)

≥ 1
p0

(√
p1 −

√
p1 − ε

)2 (13)

≥ ε2

4p0
, (14)

where (12) follows from (11), (13) is obtained from (6), and (14) follows from a
Taylor expansion. Finally, (14) gives the desired result since

p⊕ ≥ p0 · pŵ1|ŵ0 ≥ ε2

4
.

Theorem 6. If there exists an algorithm A that can cheat the mBGKW Bit
Commitment scheme with probabilities p0 + p1 > 1+ 2/

√
2n then there exists an

algorithm A′ that can predict an unknown n-bit string (r0⊕r1) with probabilities
better than 1/2n, which is impossible.

Proof (of Theorem 6). From the isolation assumption, we have

p⊕ =
1
2n

.

Using the result from Lemma 1,

1
2n

≥ ε2

4
=⇒ ε ≤ 1√

2n−2
. (15)
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It follows that the binding condition is satisfied: plugging (15) in Lemma 1, we
get for any cheating strategies

p0 + p1 ≤ 1 +
1√

2n−2
.

Notice that the proof presented in Lemma 1 can easily be generalized to a
whole class of Bit Commitment schemes with the properties that information
unknown to Patty is sent to Peggy to commit, and an exact answer is needed
from Patty to unveil successfully the committed bit. Theorem 6 therefore holds
for a whole class of Bit Commitment schemes in the Two-Prover model.

Note that sBGKW is the same as mBGKW where r0 := 000...0 is the all-zero
string all the time. The statement and proof of Lemma 1 is equally valid for any
fixed choice of either (but not both)r0orr1because the probability to predict r0 ⊕ r1
remains exponentially small. Hence using only the model’s assumption we get:

Corollary 1. If there exists an algorithm A that can cheat the sBGKW Bit Com-
mitment scheme with probabilities p0 + p1 > 1 + 2/

√
2n then there exists an

algorithm A′ that can predict an unknown n-bit string r with probabilities better
than 1/2n, which is impossible.

However, as previously, this proof is valid solely in a stand-alone security model.
As soon as one starts composing such protocols, this proof is not necessarily
valid anymore.

6 Conclusion and Open Problems

This paper contained several results. It showed that Two-Prover Bit Commit-
ment schemes may or not be secure quantumly when they are classically. It also
considered for the first time ever the exact conditions that the provers and veri-
fier must satisfy to obtain security proofs of such Bit Commitment schemes both
classically and quantumly.

A natural question would be to determine if the binding condition of ALL Two-
Prover Quantum Bit Commitment schemes can be broken by a non-local compu-
tation that does not allow to communicate. This would imply that the
no-communication assumption is NEVER sufficient to asses security of such
schemes. A hierarchy of non-local correlations may be imagined with higher up
correlations simulating lower down correlations, but not the opposite. What is the
Bit Commitment scheme that can be broken only by a very highest correlation ?

In our definition of Bit Commitment, we assessed that cheating meant p0 +
p1 > 1+ε for non-negligible ε. However, recently more precise binding conditions
have been introduced [DFRSS07]. The results of this paper should be extended
to suit this newer definition.

The last natural question that results from our work is to find the complexity
class corresponding to Quantum Two-Prover Zero-Knowledge Interactive Proofs
(and similarly for k > 2 provers). Remember that these questions are not even
settled for Quantum Two-Prover Interactive Proofs alone. As soon as the verifier
is also quantum it is not clear how Bit Commitments may be used to “encrypt”
the verifier’s computations, thus the classical methodologies fall apart.
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A Isolation Examples

Example 1:
Let P0 send to Ted a message represented by (X, {0})0 (the variable X is tagged
with {0} and comes from P0). Then Ted generates a uniform random variable
(W,T )D (its tag and receiver have not been set yet) and produces the message
M = X ⊕W for P1. Checking with equation (4) we see there is no problem
setting M’s tag to {1}, as

H((M, {1})1|(X, {0})0) = H((W,T )D) = H((M, {1})1).

This is satisfied since (W,T )D is uniform and has never been sent. However, the
practical definition would have assigned the tag T := {0} since W ’s tag would
have been {0, 1} (by the second rule) and {0} = {0} ∩ {0, 1}. Let Ted send
(M, {1})1. We now get that for both D = 0 and 1, if T = {D} or {0, 1} then the
left-hand side of equation (4) for W is

H((W,T )D|(X, {0})0, (M, {1})1) = 0,

and the right-hand side is respectively

H((W, {0})0|(X, {0})0) = H((W, {0})0) = 1,
H((W, {1})1|(M, {1})1) = H((X, {0})0) = 1,

H((W, {0, 1})D) = 1.

Because equation (4) is not satisfied for both T = {D} and {0, 1}, W ’s tag is
set to T := ∅, and Ted should not send (W, ∅)D to neither of PD, for D = 0, 1.

Example 2:
Similarly, we can send to P1 a message M that would have been tagged ∅ by the
practical definition. We take the PR-box relation as example. Suppose the vari-
ables (X, {0})0 and (Y, {1})1 have already been sent to Ted by the players (and
tagged accordingly), and (U, {0, 1})0 9 has been sent by Ted to P0. Let (W,T )D

be a uniformly distributed random variable chosen by Ted, with D ∈ {0, 1}.
Consider the following variable for P1,

V = U ⊕
(

W ⊕X
)

∧ T,

that is, we randomized the variable tagged {0} (i.e. X) in the PR-box relation.
In the practical definition, because W is chosen uniformly and independently of
previous variables, the second rule would have assigned a tag {0, 1} to it, and so
V ’s tag would have been set to ∅ = {0, 1}∩{0, 1}∩{0}∩{1}. However, checking
with equation (4), because W has not been sent yet, we get that there is no
problem setting V ’s tag to {1}, as

H((V, {1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0)=
1

2
=H((V, {1})1|(Y, {1})1, (U, {0, 1})0).

9 It is straightforward to verify that this is the less restrictive tag.
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So Ted would send this message (V, {1})1 to P1. Is this a problem? No, because
the classical limitations of non-locality have not been violated yet! The reason is
simple: by randomizing completely all the [private] variables related to P0, Ted
is reducing the message he sends to P1 to what P1 can exactly achieve using
local variables. That is to say, P1 already has a random view of P0’s variables, so
there is no problem for Ted to first randomize P0’s variables and then send this
message to P1. If we make the calculations, we see that indeed, for the variable
V sent, the relation

V = U ⊕X ∧ Y

holds with probability 75%, just as in the classical scenario, and no W will never
let us beat that. Of course, as in the previous example, the variable (W,T )D used
to randomize can never be disclosed to any of the two players, and equation (4)
agrees with that (W ’s tag will be set to T := ∅ for both D).
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