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Abstract. In this paper we describe the first single-key attack which
can recover the full key of the full version of Grain-128 for arbitrary keys
by an algorithm which is significantly faster than exhaustive search (by a
factor of about 238). It is based on a new version of a cube tester, which
uses an improved choice of dynamic variables to eliminate the previously
made assumption that ten particular key bits are zero. In addition, the
new attack is much faster than the previous weak-key attack, and has a
simpler key recovery process. Since it is extremely difficult to mathemat-
ically analyze the expected behavior of such attacks, we implemented it
on RIVYERA, which is a new massively parallel reconfigurable hardware,
and tested its main components for dozens of random keys. These tests
experimentally verified the correctness and expected complexity of the
attack, by finding a very significant bias in our new cube tester for about
7.5% of the keys we tested. This is the first time that the main compo-
nents of a complex analytical attack are successfully realized against a
full-size cipher with a special-purpose machine. Moreover, it is also the
first attack that truly exploits the configurable nature of an FPGA-based
cryptanalytical hardware.

Keywords: Grain-128, stream cipher, cryptanalysis, cube attacks, cube
testers, RIVYERA, experimental verification.

1 Introduction

Grain-128 [3] is a 128-bit variant of the Grain scheme which was selected by the
eSTREAM project in 2008 as one of the three recommended hardware-efficient
stream ciphers. The only single-key attacks published so far on this scheme
which were substantially faster than exhaustive search were either on a reduced
number of rounds or on a specific class of weak keys which contains about one in
a thousand keys. In this paper we describe the first attack which can be applied
to the full scheme with arbitrary keys. It uses an improved cube distinguisher
with new dynamic variables, which makes it possible to attack Grain-128 with
no restriction on the key. Its main components were experimentally verified by
running a 50-dimensional cube tester for 107 random keys and discovering a very
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strong bias (of 50 zeroes out of 51 bits) in about 7.5% of these keys. For these
keys, we expect the running time of our new attack to be about 238 times faster
than exhaustive search, using 263 bits of memory. Our attack is thus both faster
and more general than the best previous attack on Grain-128 [1], which was a
weak-key attack on one in a thousand keys which was only 215 times faster than
exhaustive search. However, our attack does not seem to threaten the security
of the original 80-bit Grain scheme.

In order to develop and experimentally verify the main components of the
attack, we had to run thousands of summations over cubes of dimension 49
and 50 for dozens of randomly chosen keys, where each summation required the
evaluation of 249 or 250 output bits of Grain-128 (running the time-consuming
initialization phase of Grain-128 for about 256 different key and IV values).
This process is hardware-oriented, highly parallelizable, and well beyond the
capabilities of a standard cluster of PC’s. We thus decided to implement the
attack on a new type of special purpose hardware consisting of 128 Spartan-3
FPGAs.

Special-purpose hardware, i. e., computing machines dedicated to cryptanalyt-
ical problems, have a long tradition in code-breaking, including attacks against
the Enigma cipher during WWII [15]. Their use is promising if two conditions
are fulfilled. First, the complexity of the cryptanalytical problem must be in the
range of approximately 250 . . . 264 operations. For problems with a lower com-
plexity conventional computer clusters are typically sufficient, such as the linear
cryptanalysis attack against DES [17] (which required 243 DES evaluations),
and more than 264 operations are difficult to achieve with today’s technology
unless extremely large budgets are available. The second condition is that the
computations involved are suited for customized hardware architectures, which
is often the case in symmetric cryptanalysis. Both conditions are fulfilled for the
building blocks of the Grain-128 attack described in this paper.

Even though it is widely speculated that government organizations have been
using special-purpose hardware for a long time, there are only two confirmed
reports about cryptanalytical machines in the open literature. In 1998, Deep
Crack, an ASIC-based machine dedicated to brute-forcing DES, was introduced
[16]. In 2006, COPACOBANA also allowed exhaustive key searches of DES, and
in addition cryptanalysis of other ciphers [13]. However, in the latter case often
only very small-scale versions of the ciphers are vulnerable. The paper at hand
extends the previous work with respect to cryptanalysis with dedicated hard-
ware in several ways. Our work is the first time that the main components of
a complex analytical attack, i. e., not merely an exhaustive search, are success-
fully realized in a public way against a full-size cipher by using a special-purpose
machine (previous attacks were either a simple exhaustive search sped up by a
special-purpose hardware, or advanced attacks such as linear cryptanalysis which
were realized in software on multiple workstations). Also, this is the first attack
which makes use of the reconfigurable nature of the hardware. Our RIVYERA
computer, consisting of 128 large FPGAs, is the most powerful cryptanalyti-
cal machine available outside government agencies (possessing more than four
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times as many logic resources as the COPACOBANA machine). This makes our
attack an interesting case study about what type of cryptanalysis can be done
with “university budgets” (as opposed to government budgets). As a final re-
mark, it is worth noting that the same attack implemented on GPU clusters
would require an extremely large number of graphic cards, which would not only
require a very high budget but would consume considerably more electric energy
to perform the same computations.

In the first part of this paper, we give the necessary background regarding
Grain-128 and dynamic cube attacks and describe our new attack on Grain-128.
In the second part of the paper, we present our FPGA implementation in detail.

2 Preliminaries

In this section we give a short description of Grain-128 [3], of cube testers (which
were introduced in [2]), and of dynamic cube attacks (developed in [1]).

2.1 Description on Grain-128

The state of Grain-128 consists of a 128-bit LFSR and a 128-bit NFSR. The
feedback functions of the LFSR and NFSR are respectively defined to be

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si+bi+bi+26+bi+56+bi+91+bi+96+bi+3bi+67+bi+11bi+13+bi+17bi+18+
bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, andwith
a 96-bit IV that is loaded into the LFSR, while the remaining 32 LFSR bits are
filled with 1’s. The state is then clocked through 256 initialization rounds without
producing an output, feeding the output back into the input of both registers.

2.2 Previous Results on Grain-128

All the previously published single-key attacks ([2], [5], [6], [7] and [8]) on Grain-
128 which are substantially better than exhaustive search can only deal with
simplified versions of the cryptosystem. In [9] a sliding property was used to
speed-up exhaustive search by a factor of two. Related-key attacks on the full
cipher were presented in [10]. However, the relevance of related-key attacks is
disputed, and in this paper we concentrate on attacks in the single key model.
The only significant known attack on the full version of Grain-128 in the single
key model is given in [1], where dynamic cube attacks are used to break a
particular subset of weak keys, which contains the 2−10 fraction of keys in which
ten specific key bits are all zero. The attack is faster than exhaustive search
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in this weak key set by a factor of about 215. For the remaining 0.999 fraction
of keys, there is no known attack which is significantly faster than exhaustive
search.

2.3 Cube Testers

In almost any cryptographic scheme, each output bit can be described by a mul-
tivariate master polynomial p(x1, .., xn, v1, .., vm) over GF(2) of secret variables
xi (key bits), and public variables vj (plaintext bits in block ciphers and MACs,
IV bits in stream ciphers). This polynomial is usually too large to write down
or to manipulate in an explicit way, but its values can be evaluated by run-
ning the cryptographic algorithm as a black box. The cryptanalyst is allowed
to tweak this master polynomial by assigning chosen values to the public vari-
ables (which result in multiple derived polynomials), but in single-key attacks
he cannot modify the secret variables.

To simplify our notation, we ignore in the rest of this subsection the distinction
between public and private variables. Given a multivariate master polynomial
with n variables p(x1, .., xn) over GF(2) in algebraic normal form (ANF), and a
term tI containing variables from an index subset I that are multiplied together,
the polynomial can be written as the sum of terms which are supersets of I and
terms that miss at least one variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Compared to p, the algebraic degree of the
superpoly is reduced by at least the number of variables in tI , and its number
of terms is smaller.

Cube testers [2] are related to high order differential attacks [11]. The basic
idea behind them is that the symbolic sum over GF(2) of all the derived poly-
nomials obtained from the master polynomial by assigning all the possible 0/1
values to the subset of variables in the term tI is exactly pS(I) which is the su-
perpoly of tI in p(x1, .., xn). This simplified polynomial is more likely to exhibit
non-random properties than the original polynomial P .

Cube testers work by evaluating superpolys of carefully selected terms tI
which are products of public variables, and trying to distinguish them from a
random function. One of the natural properties that can be tested is balance:
A random function is expected to contain as many zeroes as ones in its truth
table. A superpoly that has a strongly unbalanced truth table can thus be used
to distinguish the cryptosystem from a random polynomial by testing whether
the sum of output values over an appropriate boolean cube evaluates as often to
one as to zero (as a function of the public bits which are not summed over).

2.4 Dynamic Cube Attacks

Dynamic Cube Attacks exploit distinguishers obtained from cube testers to re-
cover some secret key bits. This is reminiscent of the way that distinguishers
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are used in differential attacks to recover the last subkey in an iterated cryp-
tosystem. In static cube testers (and other related attacks such as the original
cube attack [18], and AIDA [19]), the values of all the public variables that are
not summed over are fixed to a constant (usually zero), and thus they are called
static variables. However, in dynamic cube attacks the values of some of the
public variables that are not part of the cube are not fixed. Instead, each one
of these variables (called dynamic variables) is assigned a function that depends
on some of the cube public variables and on some private variables. Each such
function is carefully chosen in order to simplify the resultant superpoly and thus
to amplify the expected bias (or the non-randomness in general) of the cube
tester.

The basic steps of the attack are briefly summarized below (for more details
refer to [1], where the notion of dynamic cube attacks was introduced).

A preprocessing stage: We first choose some polynomials that we want to set
to zero at all the vertices of the cube, and show how to nullify them by setting
certain dynamic variables to appropriate expressions in terms of the other public
and secret variables. To minimize the number of evaluations of the cryptosystem,
we choose a big cube of dimension d and a set of subcubes to sum over during the
online phase. We usually choose the subcubes of the highest dimension (namely
d and d− 1), which are the most likely to give a biased sum. We then determine
a set of e expressions in the private variables that need to be guessed by the
attacker in order to calculate the values of the dynamic variables during the
cube summations.

Note that these steps have to be done only once for each cryptosystem, and
the chosen parameters determine the running time and success probabilities of
the actual attack, in the same way that finding a good differential property can
improve the complexity of differential attacks on a cryptosystem.

The online phase of the attack has two parts:

Online Step 1

1. For each possible vector of values for the e secret expressions, sum modulo
2 the output bits over the subcubes chosen during preprocessing with the
dynamic variables set accordingly, and obtain a list of sums (one bit per
subcube).

2. Given the list of sums, calculate its score by measuring the non-randomness
in the subcube sums. The output of this step is a sequence of lists sorted
from the lowest score to the highest (in our notation the list with the lowest
score has the largest bias, and is thus the most likely to be correct in our
attack).

Given that the dimension of our big cube is d, the complexity of summing over
all its subcubes is bounded by d2d (using the Moebius transform [12]). Assuming
that we have to guess the values of e secret expressions in order to determine
the values of the dynamic variables, the complexity of this step is bounded by
d2d+e bit operations. Assuming that we have y dynamic variables, both the data
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and memory complexities are bounded by 2d+y (since it is sufficient to obtain
an output bit for every possible vertex of the cube and for every possible value
of the dynamic variables).

Online Step 2. Given the sorted guess score list, we determine the most likely
values for the secret expressions, for a subset of the secret expressions, or for the
entire key. The specific details of this step vary according to the attack.

2.5 A Partial Simulation Phase

The complexity of executing online step 1 of the attack for a single key is d2d+e

bit operations and 2d+y cipher executions. In the case of Grain-128, these com-
plexities are too high and thus we have to experimentally verify our attack with
a simpler procedure. Our solution is to calculate the cube summations in online
step 1 only for the correct guess of the e secret expressions. We then calculate the
score of the correct guess and estimate its expected position g in the sorted list
of score values by assuming that incorrect guesses will make the scheme behave
as a random function. Consequently, if the cube sums for the correct guess detect
a property that is satisfied by a random cipher with probability p, we estimate
that the location of the correct guess in the sorted list will be g ≈ max{p×2e, 1}
(as justified in [1]).

3 A New Approach for Attacking Grain-128

The starting point of our new attack on Grain-128 is the weak-key attack de-
scribed in [1] and we repeat it here for the sake of completeness. Both our new
attack and the attack described in [1] use only the first output bit of Grain-128
(with index i = 257). The output function of the cipher is a multivariate poly-
nomial of degree 3 in the state, and its only term of degree 3 is bi+12bi+95si+95.
Since this term is likely to contribute the most to the high degree terms in the
output polynomial, we try to nullify it. Since bi+12 is the state bit that is cal-
culated at the earliest stage of the initialization steps (compared to bi+95 and
si+95), it should be the least complicated to nullify. However, after many ini-
tialization steps, the ANF of bi+12 becomes very complicated and it does not
seem possible to nullify it in a direct way. Instead, the idea in [1] is to simplify
(and not nullify) bi+12bi+95si+95, by nullifying bi−21 (which participated in the
most significant terms of bi+12, bi+95 and si+95). The ANF of the earlier bi−21 is
much easier to analyze compared to the one of bi+12, but it is still very complex.
The solution adopted in [1] was to assume that 10 specific key bits are set to 0.
This leads to a weak-key attack on Grain-128 which can only attack a particular
fraction of 0.001 of the keys.

In order to attack a significant portion of all the possible keys, we use a
different approach which nullifies state bits that are produced at an earlier stage
of the encryption process. This approach weakens the resistance of the output
of Grain-128 to cube testers, but in a more indirect way. In fact, the output



An Experimentally Verified Attack on Full Grain-128 333

function is a higher degree polynomial which can be more resistant to cube testers
compared to [1]. This forces us to slightly increase the dimension d from 46 to 50.
On the other hand, since we choose to nullify state bits that are produced at an
earlier stage of the encryption process, their ANF is relatively simple and thus
the number of secret expressions e that we need to guess is reduced from 61 to
39. Since the complexity of the attack is proportional to d2d+e, the smaller value
of e more than compensates for the slightly larger value of d. Our new strategy
thus yields not only an attack which has a significant probability of success for
all the keys rather than an attack on a particular subset of weak keys, but also
a better improvement factor over exhaustive search (details are given at the end
of this section).

In the new attack we decided to nullify bi−54. This simplifies the ANF of the
output function in two ways: It nullifies the ANF of the most significant term
of bi−21 (the only term of degree 3), which has a large influence on the ANF of
the output. In addition, setting bi−54 to zero nullifies the most significant terms
of bi+62 and si+62, simplifying their ANF. This simplifies the ANF of the most
significant terms of bi+95 and si+95, both participating in the most significant
term of the output function. In addition to nullifying bi−54, we nullify the most
significant term of bi+12 (which has a large influence on the ANF of the output,
as described in the first paragraph of this section), bi−104bi−21si−21, by nullifying
bi−104.

The parameter set we used for the new attack is given in table 1. Most of the
dynamic variables are used in order to simplify the ANF of bi−54 = b203 so that
we can nullify it using one more dynamic variable with acceptable complexity.
We now describe in detail how to perform the online phase of the attack, given
this parameter set. Before executing these steps, one should take the following
preparation steps in order to determine the list of e secret expressions in the key
variables we have to guess during the actual attack.

1. Assign values to the dynamic variables given in table 1. This is a very simple
process which is described in Appendix B of [1] (since the symbolic values of
the dynamic variables contain hundreds of terms, we do not list them here,
but rather refer to the process that calculates their values).

2. Given the symbolic form of a dynamic variable, look for all the terms which
are combinations of variables from the big cube.

3. Rewrite the symbolic form as a sum of these terms, each one multiplied by
an expression containing only secret variables.

4. Add the expressions of secret variables to the set of expressions that need
to be guessed. Do not add expressions whose value can be deduced from the
values of the expressions which are already in the set.

When we prepare the attack, we initially get 50 secret expressions. However,
after removing 11 expressions which are dependent on the rest, the number of
expressions that need to be guessed is reduced to 39. We are now ready to execute
the online phase of the attack:
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1. Obtain the first output bit produced by Grain-128 (after the full 256 ini-
tialization steps) with the fixed secret key and all the possible values of the
variables of the big cube and the dynamic variables given in table 1 (the
remaining public variables are set to zero). The dimension of the big cube
is 50 and we have 13 dynamic variables and thus the total amount of data
and memory required is 250+13 = 263 bits.

2. We have 239 possible guesses for the secret expressions. Allocate a guess score
array of 239 entries (an entry per guess). For each possible value (guess) of
the secret expressions:
(a) Plug the values of these expressions into the dynamic variables (which

thus become a function of the cube variables, but not the secret vari-
ables).

(b) Our big cube in table 1 is of dimension 50. Allocate an array of 250 bit
entries. For each possible assignment to the cube variables:
i. Calculate the values of the dynamic variables and obtain the corre-

sponding output bit of Grain-128 from the data.
ii. Copy the value of the output bit to the array entry whose index

corresponds to the assignment of the cube variables.
(c) Given the 250-bit array, sum over all the entry values that correspond to

the 51 subcubes of the big cube which are of dimension 49 and 50. When
summing over 49-dimensional cubes, keep the cube variable that is not
summed over to zero. This step gives a list of 51 bits (subcube sums).

(d) Given the 51 sums, calculate the score of the guess by measuring the
fraction of bits which are equal to 1. Copy the score to the appropriate
entry in the guess score array and continue to the next guess (item 2).
If no more guesses remain go to the next step.

3. Sort the 239 guess scores from the lowest score to the highest.

To justify item 2.c, we note that the largest biases are likely to be created by
the largest cubes, and thus we only use cubes of dimension 50 and 49. To justify
item 2.d, we note that the cube summations tend to yield sparse superpolys,
which are all biased towards 0, and thus we can use the number of zeroes as a
measure of non-randomness. The big cube in the parameter set is of dimension
50, which has 16 times more vertices than the cube used in [1] to attack the weak
key set. The total complexity of algorithm above is about 50 × 250+39 < 295 bit
operations (it is dominated by item 2.c, which is performed once for each of the
239 possible secret expression guesses).

Given the sorted guess array which is the output of online step 1, we are
now ready to perform online step 2 of the attack (which recovers the secret key
without going through the difficult step of solving the large system of polynomial
equations). In order to optimize this step, we analyze the symbolic form of
the secret expressions: Out of the 39 expressions (denoted by s1, s2, ..., s39), 20
contain only a single key bit (denoted by s1, s2, ..., s20). Moreover, 18 out of
the remaining 39 − 20 = 19 expressions (denoted by s21, s22, ..., s38) are linear
combinations of key bits, or can be made linear by fixing the values of 45 more key
bits. Thus, we define the following few sets of linear expressions: Set 1 contains
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the 20 secret key bits s1, s2, ..., s20. Set 2 contains the 45 key bits whose choice
simplifies s21, s22, ..., s38 into linear expressions. Set 3 contains the 18 linear
expressions of s21, s22, ..., s38 after plugging in the values of the 20+45 = 65 key
bits of the first two sets (note that the set itself depends on the values of the key
bits in the first two sets). Altogether, the first three sets contain 20+45+18 = 85
singletons or linear expressions. Set 4 contains 128−85 = 45 linearly independent
expressions which form a basis to the complementary subspace spanned by the
first three sets. Note that given the 128 values of all the expressions contained
in the 4 sets, it is easy to calculate the 128-bit key.

Our attack exploits the relatively simple form of 38 out of the 39 secret ex-
pressions in order to recover the key using basic linear algebra:

1. Consider the guesses from the lowest score to the highest. For each guess:
(a) Obtain the value of the key bits of set 1, s1, s2, ..., s20.
(b) For each possible possible values of the 45 key bits of set 2:

i. Plug in the (current) values of the key bits from sets 1 and 2 to the
expressions of s21, s22, ..., s38 and obtain set 3.

ii. Obtain the values of the linear expressions of set 3 from the guess.
iii. From the first 3 sets, obtain the 45 linear expressions of set 4 using

Gaussian Elimination.
iv. For all possible values of the 45 linear expressions of set 4 (iterated

using Gray Coding to simplify the transitions between values):
A. Given the values of the expressions of the 4 sets, derive the secret

key.
B. Run Grain-128 with the derived key and compare the result to

a given (known) key stream. If there is equality, return the full
key.

This algorithm contains 3 nested loops. The loop of item 1 is performed g times,
where g is the expected position of the correct guess in the sorted guess array.
The loop of item 1.b is performed 245 times per guess. The loop of item 1.b.iv is
performed 245 per iteration of the previous loop. The loop of item 1.b contains
linear algebra in item 1.b.iii whose complexity is clearly negligible compared
to the inner loop of item 1.b.iv, which contains 245 cipher evaluations. In the
inner loop of step 1.b.iv (in item 1.b.iv.A) we need to derive the 128-bit key. In
general, this is done by multiplying a 128×128 matrix with a 128-bit vector that
corresponds to the values of the linear expressions. However, note that 65 key bits
(of sets 1 and 2) are already known. Moreover, since we iterate the values of set
4 using Gray Coding (i. e., we flip the value of a single expression per iteration),
we only need to perform the multiplication once and then calculate the difference
from the previous iteration by adding a single vector to the previous value of the
key. This optimization requires a few dozen bit operations, which is negligible
compared to running Grain-128 in item 1.b.iv.B (which requires at least 1000
bit operation). Thus, the complexity of the exhaustive search per guess is about
245+45 = 290 cipher executions, which implies that the total complexity the
algorithm is about g × 290.
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The attack is worse than exhaustive search if we have to try all the 239 possible
values of g, and thus it is crucial to provide strong experimental evidence that
g is relatively small for a large fraction of keys. In order to estimate g, we
executed the online part of the attack by calculating the score for the correct
guess of the 39 expression values, and estimating how likely it is to get such a
bias for incorrect guesses if we assume that they behave as random functions.
We performed this simulation for 107 randomly chosen keys, out of which 8 gave
a very significant bias in which at least 50 of the 51 cubes sums were zero. This
is expected to occur in a random function with probability p < 2−45, and thus
we estimate that for about 7.5% of the keys, g ≈ max{2−45 × 239, 1} = 1 and
thus the correct guess of the 39 secret expressions will be the first in the sorted
score list (additional keys among those we tested had smaller biases, and thus
a larger g). The complexity of online step 2 of the attack is thus expected to
be about 290 cipher executions, which dominates the complexity of the attack
(the complexity of online step 1 is about 295 bit operations, which we estimate
as 295−10 = 285 cipher executions). This gives an improvement factor of 238 over
the 2128 complexity of exhaustive search for a non-negligible fraction of keys,
which is significantly better than the improvement factor of 215 announced in
[1] for the small subset of weak keys considered in that attack. We note that for
most additional keys there is a continuous tradeoff between the fraction of keys
that we can attack and the complexity of the attack on these keys.

Table 1. Parameter set for the attack on the full Grain-128, given output bit 257

Cube Indexes {0,2,4,11,12,13,16,19,21,23,24,27,29,33,35,37,38,41,43,44,46, 47,49,52,53,54,55,
57,58,59,61,63,65,66,67,69,72,75,76,78,79,81,82,84,85,87,89,90,92,93}

Dynamic Variables {31,3,5,6,8,9,10,15,7,25,42,83,1}
State Bits Nullified {b159, b131, b133, b134, b136, b137, b138, b145, s135, b153, b170, b176, b203}

4 Description of the Dedicated Hardware Used to Attack
Grain-128

Cube attacks and testers are notoriously difficult to analyze mathematically. To
test our attack experimentally and to verify its complexity, we had to try dozens
of random keys, and thus to run thousands of cube summations of dimension
49 and 50 for multiple random keys. This is only marginally feasible on a large
cluster of PCs, which are ill-suited for performing computations relying heav-
ily on bit-permutations as needed for this kind of attack. We thus decided to
experimentally verify our attack on dedicated reconfigurable hardware.

4.1 Architectural Considerations

We start with an evaluation of the online phase of the attack (for the cor-
rect guess of the 39 secret expression values) regarding possible optimizations in
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hardware. To get a better understanding of our implementation, we describe the
basic work-flow in Figure 1: The software implementation of the attack uses a
parameter set as input, e. g., the cube dimension, the cube itself, a base IV and
the number of keys to attack. It selects a random key to attack and divides
the big cube into smaller worker cubes and distributes them to worker threads
running in parallel. Please note that for simplicity the figure shows only one
worker. If 2w workers are used, the iterations per worker are reduced from 2d to
2d−w.

Fig. 1. Cube Attack — Program flow for cube dimension d

The darker nodes and the bold path show the steps of each independent
thread: As each worker iterates over a distinct subset of the cube, it evaluates
polynomials on the worker cube (dynamic variables) and updates the IV input to
Grain-128. Using the generated IV and the random key, it computes the output
of Grain-128 after the initialization phase. With this output, the thread updates
an intermediate value — the worker sum — and starts the next iteration. In the
end, the software combines all worker sums, evaluates the result and can chose
a new random key to start again.

With a cube of dimension d, the attack on one key (for the correct guess
of the 39 secret expression values) computes the first output bit of Grain-128
2d times. Thus, in order to speed-up the attack, it is necessary to implement
Grain-128 as efficiently as possible. The design of the stream cipher is highly
suitable for hardware implementations: It consists mainly of two shift registers
and some logic cells. As already proposed for cube testers on Grain-128 in [4], a
fast and small FPGA implementation is a very good choice in comparison to a
(bit-sliced) software implementation.

To create an independent worker on the FPGA, it is also required to im-
plement the IV generation. To estimate the effort of building a full worker in
hardware, we need to know how many dynamic inputs we have to consider: While
dynamic modifications, e. g., iterating over arrays with dynamic step sizes, pose
no problems in software, they can be very inefficient in hardware.

In order to compute the cipher, we need a key and an IV. The value of the key
varies, as it is chosen at random. The IV is a 128 bit value, where each bit utilizes
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one of three functions: it is either a value given by the base IV provided by the
parameter set, part of the (worker) cube or a dynamic variable. As the function of
each bit is modified not only per parameter set, but also when assigning partial
cubes to different workers, this input also varies. The first two functionalities
are both restricted and can be realized by simple multiplexers in hardware.
The dynamic variable on the other hand stores the result of a polynomial. As
we have no set of pre-defined polynomials and they are derived at runtime,
every possible combination of boolean functions over the worker cube (and thus
over the complete 128 bits) must be realized. Even with tight restrictions like a
maximum of terms per monomial and monomials per polynomial, it is impossible
to provide the reconfigurable structure in hardware.

As a consequence, a fully dynamic approach leads to extremely large multi-
plexers and thus to very high area consumption on the FPGA, which is
prohibitively slow. The completely opposite approach would be to utilize the
complete area of an FPGA for massive parallel Grain-128 computations with-
out additional logic. In this case, the communication between the host and the
FPGA will be the bottleneck of the system and the parallel cores on the FPGA
will idle.

For our attack, we use the RIVYERA special-purpose hardware cluster de-
scribed in greater detail in Appendix A. For the following design decisions we re-
mark that RIVYERA provides 128 powerful Spartan-3 FPGAs, which are tightly
connected to an integrated server system powered by an Intel Core i7 920 with
8 logical CPU cores. This allows us to utilize dedicated hardware and use a
multi-core architecture for the software part.

In order to implement the attack on the RIVYERA and benefit from its
massive computing power, we propose the following implementation. Figure 2
shows the design of the modified attack. The software design is split into two
parts: We use all but one core of the CPU to generate attack specific bitstreams,
i. e., configuration files for the FPGAs, in parallel to prepare the computation on
the FPGA cluster. Each of these generated designs configures the RIVYERA for
a complete attack on one random key provided by the host PC. As soon as one
bitstream was generated and waits in the queue, the remaining core programs
all 128 FPGAs with it, starts the attack, waits for the computation to finish and
stores the results.

In contrast to the first approach, which uses the generic structure realizable in
software, we generate custom VHDL code containing constant settings and fixed
boolean functions of the polynomials derived from the parameter set and the
provided key. Building specific configuration files for each attack setup allows us
to implement as many fully functional, independent, parallel workers as possible
without the area consumption of complex control structures. In addition, only a
single 7-bit parameter is necessary at runtime - to split the workspace between
all 128 FPGAs - to start the computation and receive a d-bit return value. This
efficiently circumvents all of the problems and overhead of a generic hardware
design at the cost of rerunning the FPGA design flow for each parameter/key
pair.
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Fig. 2. Cube Attack using RIVYERA

Please note that in this approach the host software modifies a basic design
by hard-coding conditions and adjusting internal bus and memory sizes for each
attack. We optimized the basic layout as much as possible, but the different
choices of polynomial functions lead to different combinatorial logic paths and
routing decisions, which can change the critical path in hardware. As the clock
frequency is linked to the critical path, we implemented different design strategies
as well as multiple fall-back options to modify the clock frequency constraints
in order to prevent parameter/key pairs from resulting in an invalid hardware
configurations.

4.2 Hardware Implementation Results

In this section, we give a brief overview of the implementation and present results.
As the total number of iterations for one attack (for the correct guess of the 39
secret expression values) is 2d, the number of workers for an optimal setup has
to be a power of two. Considering the area of a Spartan-3 5000 FPGA, we chose
to implement a set of 24 independent workers per FPGA.

Figure 3 shows the top level overview. As mentioned before, creating an attack
specific implementation allows us to strip down the communication interface and
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Fig. 3. FPGA Implementation of the online phase for cube dimension d

data paths to a minimum. This is very important as we cannot predict the impact
of the (unknown) parameters and need to relax the design as much as possible.

Each of the workers consists of its own IV generator and controls three Grain-
128 instances. The IV generator needs three clock cycles per IV and we need a
corresponding number of Grain instances to process the output directly. As it is
possible to run more than one initialization step per clock cycle in parallel, we
had to find the most suitable time/area trade-off for the cipher implementation.
Table 2 shows the synthesis results of our Grain implementation. In comparison,
Aumasson et al. used 25 parallel steps, which is the maximum number of sup-
ported parallel steps without additional overhead, on the large Virtex-5 LX330
FPGA used in [4].

Table 2. Synthesis results of Grain-128 implementation on the Spartan-3 5000 FPGA
with different numbers of parallel steps per clock cycle

Parallel Steps 20 21 22 23 24 25

Clock Cycles (Init) 256 128 64 32 16 8
Max. Frequency (MHz) 227 226 236 234 178 159
FPGA Resources (Slices) 165 170 197 239 311 418

The resulting attack system for the online phase — consisting of the software
and the RIVYERA cluster — uses 16 workers per FPGA and 128 FPGAs on
the cluster in parallel. This means that the number of Grain computations per
worker is reduced to 2d−11. The design ensures that each key can be attacked at
the highest possible clock frequency, while it tries to keep the building time per
configuration moderate.

Table 3 reflects the results of the generation process and the distribution of
the configurations with respect to the different clock frequencies. It shows that
the impact of the unknown parameters is predictable and that fallback strategies
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Table 3. Results of the generation process for cubes of dimension 46, 47 and 50.
The Duration is the time required for the RIVYERA cluster to complete the online
phase. The Percentage row gives the percentage of configurations built with the given
clock frequency out of the total number of configurations built with cubes of the same
dimension.

Cube Dimension d 46 47 50
Clock Frequency (MHz) 100 110 120 120 110 120
Configurations Built 1 7 8 6 60 93
Percentage 6.25 43.75 50 100 39.2 60.8
Online Phase Duration 17.2 min 15.6 min 14.3 min 28.6 min 4h 10 min 3h 49 min

are necessary. Please note that the new attack tries to generate configurations
for multiple keys in parallel. This process — if several strategies are tried —
may require more than 6 hours before the first configuration becomes available.
Smaller cube dimensions, i. e., all cube dimensions lower than 48, result in very
fast attacks and should be neglected, as the building time will exceed the du-
ration of the attack in hardware. Further note that the duration of the attack
increases exponentially in d, e. g., assuming 100 MHz as achievable for larger
cube dimensions, d = 53 needs 1.5 days and d = 54 needs 3 days.

5 Conclusions

We presented the first attack on Grain-128 which is considerably faster than
exhaustive search, and unlike previous attacks makes no assumptions on the
secret key. While the full attack is infeasible, we can convincingly estimate its
results by running a partial version in which all the e unknown secret expressions
are set to their correct value. Due to its high complexity and hardware-oriented
nature, the attack was developed and verified using a new type of dedicated
hardware. Our experimental results show that for about 7.5% of the keys we get
a huge improvement factor of 238 over exhaustive search.

Acknowledgements. The authors thank Martin Ågren and the anonymous
referees for their very helpful comments on this paper.

A Design and Architecture of the RIVYERA Cluster

In this work we employ an enhanced version of the COPACOBANA special-
purpose hardware cluster that was specifically designed for the task of crypt-
analysis [13]. This enhanced cluster (also known as RIVYERA [14]) is populated
with 128 Spartan-3 XC3S5000 FPGAs, each tightly coupled with 32MB memory.
Each Spartan-3 XC3S5000 FPGA provides a sea of logic resources consisting of
33,280 slices and 104 BRAMs enabling the implementation even of complex func-
tions in reconfigurable hardware. Eight FPGAs are soldered on individual card
modules that are plugged into a backplane which implements a global systolic
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ring bus for high-performance communication. The internal ring bus is further
connected via PCI Express to a host PC which is also installed in the same 19"
housing of the cluster. Figure 4 provides an overview of the architecture of the
RIVYERA special purpose cluster.
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Fig. 4. Architecture of the RIVYERA cluster system
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