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Abstract. Oblivious RAM is a useful primitive that allows a client to hide its
data access patterns from an untrusted server in storage outsourcing applications.
Until recently, most prior works on Oblivious RAM aim to optimize its amortized
cost, while suffering from linear or even higher worst-case cost. Such poor worst-
case behavior renders these schemes impractical in realistic settings, since a data
access request can occasionally be blocked waiting for an unreasonably large
number of operations to complete.

This paper proposes novel Oblivious RAM constructions that achieves poly-
logarithmic worst-case cost, while consuming constant client-side storage. To
achieve the desired worst-case asymptotic performance, we propose a novel tech-
nique in which we organize the O-RAM storage into a binary tree over data buck-
ets, while moving data blocks obliviously along tree edges.

1 Introduction

Oblivious RAM (or O-RAM for short) [5–7, 11, 12, 16] is a useful primitive for en-
abling privacy-preserving outsourced storage, where a client stores its data at a remote
untrusted server. While standard encryption techniques allow the client to hide the con-
tents of the data from the server, they do not guard the access patterns. As a result, the
server can still learn sensitive information by examining the access patterns. For exam-
ple, Pinkas and Reinman [12] gave an example in which a sequence of data access oper-
ations to specific locations (u1, u2, u3) can indicate a certain stock trading transaction,
and such financial information is often considered highly sensitive by organizations and
individuals alike.

Oblivious RAM allows the client to completely hide its data access patterns from
the untrusted server. It can be used in conjunction with encryption, to enable stronger
privacy guarantees in outsourced storage applications. Not surprisingly, the client has
to pay a certain cost in order to hide its access patterns from the server. Among all
prior work in this space, the seminal constructions recently proposed by Goodrich and
Mitzenmacher [7] achieve the best asymptotic performance in terms of amortized cost.
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Table 1. Our contributions. The ˜O notation hides poly log log N terms. The bounds for this paper
hold with high probability 1 − 1

poly(N)
, assuming that the total number of data access requests

M = poly(N), and that the block size B ≥ c log N bits, for any constant c > 1. For a more
precise statement of our bounds, please refer to Section 4. The BST bucket construction is due to
an O-RAM construction by Damgård, Meldgaard, and Nielsen [4].

Scheme Amortized Cost Worst-case Cost Client Storage Server Storage

GO [6] O((logN)3) O(N(logN)2) O(1) O(N logN)

WS [16] O((logN)2) O(N logN) O(
√
N) O(N logN)

WSC [17] O(logN log logN) O(N log logN) O(
√
N) O(N)

PR [12] O((logN)2) O(N logN) O(1) O(N)

GM [7]
O((logN)2) O(N logN) O(1) O(N)

O(logN) O(N) O(
√
N) O(N)

BMP [3] O(
√
N) O(

√
N) O(

√
N) O(N)

SSS [15] O((logN)2) O(
√
N) O(

√
N) O(N)

This paper

Trivial Bucket O((logN)3) O((logN)3) O(1) O(N logN)
Square-Root Bucket ˜O((logN)2.5) ˜O((logN)3) O(1) O(N logN)

BST Bucket ˜O((logN)2) ˜O((logN)3) O(1) ˜O(N logN)

Specifically, let N denote the maximum capacity of the O-RAM. Goodrich and Mitzen-
macher show that with O(1) client-side storage, one can achieve O((log N)2) amor-
tized cost, i.e., each oblivious data request translates into O((log N)2) non-oblivious
data access operations on average. Goodrich and Mitzenmacher also show that with
O(
√

N) client-side storage, one can achieve O(log N) amortized cost [7].

O-RAM with sublinear worst-case cost. Until recently, most prior work on O-RAM
optimizes for the amortized cost [6, 7, 12, 16], while not giving much consideration to
the worst-case cost. Specifically, while achieving logarithmic or poly-logarithmic amor-
tized cost, these constructions [6, 7, 12, 16] have a worst-case cost of Ω(N), due to the
occasional reshuffling operations which can take up to Ω(N) time. Such Ω(N) worst-
case behavior renders these schemes impractical in real-world applications; since every
now and then, a data request can be blocked waiting for Ω(N) operations to complete.
When this happens, the perceived waiting time for the user would be unacceptable.

The research community has only recently started to investigate O-RAMs with sub-
linear worst-case cost [3, 15]. Boneh, Mazieres, and Popa [3] proposed an O-RAM
with O(

√
N) worst-case cost, however, at the expense of O(

√
N) (rather than poly-

log) amortized cost. Stefanov, Shi, and Song [15] recently proposed an O-RAM with
O(
√

N) worst-case cost , O((log N)2) amortized cost, and O(
√

N) client-side storage.

1.1 Our Contributions

O-RAM with poly-log worst-case cost, and constant client-side storage. This pa-
per proposes novel O-RAM constructions that achieve both poly-log amortized and
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worst-case cost, while consuming O(1) client-side storage, and O(N log N) server-
side storage. We offer two variants of our construction. The simpler variant (instantiated
with the trivial bucket O-RAM) achieves O((log N)3) amortized and worst-case cost. A
slightly more sophisticated variant (instantiated with the Square-Root bucket O-RAM)
achieves ˜O((log N)2.5) amortized cost, and ˜O((log N)3) worst-case cost. We use the
˜O notation to hide poly log log terms from the asymptotic bounds.

These afore-mentioned bounds hold with very high probability (i.e., at least 1 −
1

poly(N) ), under realistic assumptions that the number of data requests M = poly(N),
and that the block size B ≥ c log N bits for any constant c > 1.

Novel binary-tree based technique. Most existing constructions [6, 7, 12, 16] are
based on hierarchical solution initially proposed by Goldreich and Ostrovsky [6], and
they suffer from Ω(N) worst-case cost due to the occasional reshuffling operation that
can take up to Ω(N) time. Therefore, to reduce the worst-case cost, we wish to some-
how spread the cost of reshuffling over time, so the worst-case cost can be amortized
towards each O-RAM operation.

Unfortunately, due to certain technical constraints imposed by these constructions [6,
7, 12, 16], it does not seem possible to directly spread the cost of reshuffling over time.
As a result, we propose a novel technique called the binary-tree based construction
(Section 3). Basically, the server-side O-RAM storage is organized into a binary tree
over small data buckets. Data blocks are evicted in an oblivious fashion along tree
edges from the root bucket to the leaf buckets. While in spirit, the binary-tree based
construction is trying to spread the reshuffling cost over time; in reality, its operational
mechanisms bear little resemblance to prior schemes [7, 12, 16] based on Goldreich
and Ostrovsky’s original hierarchical solution [6]. Therefore, this represents an entirely
new technique which has not been previously studied in the O-RAM literature.

While the basic binary-tree based construction achieves poly-logarithmic amortized
and worst-case cost, it requires N

c blocks of client-side storage for some constant c >
1. To reduce the client-side storage, we recursively apply our O-RAM construction
over the index structure. Instead of storing the index structure on the client side, we
store it in a separate and smaller O-RAM on the server side. We achieve O(1) client-
side storage through recursive application of our O-RAM construction over the index
structure (Section 4).

Conceptual simplicity. Another notable characteristic of our constructions is their rel-
ative conceptual simplicity in comparison with most other existing constructions [6, 7,
12, 16]. In particular, the simpler variant of our construction (based on the trivial bucket
O-RAM as described in Section 3) achieves O((log N)3) amortized and worst-case cost
while requiring no oblivious sorting or reshuffling, no hashing or Cuckoo hashing (or
its oblivious simulation such as in the Goodrich-Mitzenmacher construction [7]). All
O-RAM read and write operation behave uniformly in this simpler variant, and cost the
same asymptotically.

1.2 Related Work

Oblivious RAM was first investigated by Goldreich and Ostrovsky [5, 6, 11] in the
context of protecting software from piracy, and efficient simulation of programs on



200 E. Shi et al.

oblivious RAMs. Apart from proposing a seminal hierarchical solution with O((log N)3)
amortized cost, Goldreich and Ostrovsky [6] also demonstrate the following lower-
bound: for an O-RAM of capacity N , the client has to pay an amortized cost of at
least Ω(log N). Recently, Beame and Machmouchi [2] improved the lower bound to
Ω(log N log log N).

Since the first investigation of Oblivious RAM by Goldreich and Ostrovsky [5, 6,
11], several constructions have been proposed subsequently [3, 7, 12, 15, 16]. Among
these, the seminal constructions recently proposed by Goodrich and Mitzenmacher [7]
achieve the best asymptotic performance in terms of amortized cost: with O(1) client-
side storage, their construction achieves O((log N)2) amortized cost; and with O(

√
N)

client-side storage, their construction achieves O(log N) amortized cost [7]. Pinkas
and Reinman [12] also showed a similar result for the O(1) client-side storage case;
however, some researchers have pointed out a security flaw in their construction [7],
which the authors of [12] have promised to fix in a future journal version.

For a fairly long time, almost all research in this space aimed to optimize the amor-
tized cost, while neglecting the worst-case cost. Only very recently did the research
community start to investigate O-RAM constructions with sublinear worst-case cost. As
mentioned earlier, there have been two recent works [3, 15] aimed at achieving sublinear
worst-case cost and making O-RAM practical. Boneh,Mazieres, and Popa [3] achieve
O(
√

N) worst-case cost, however, at the expense of O(
√

N) amortized cost. Stefanov,
Shi, and Song [15] recently proposed a novel O-RAM construction with O(

√
N) worst-

case cost, O((log N)2) amortized cost, and O(
√

N) client-side storage. Apart from
this, Stefanov, Shi, and Song also offered another construction geared towards practi-
cal performance rather than asymptotics. This practical construction uses linear amount
of client storage (with a very small constant), and achieves O(log N) amortized cost
and O(

√
N) worst-case cost. Under realistic settings, it achieves 20 − 30X amortized

cost, while storing 0.01%− 0.3% amount of total data at the client. To the best of our
knowledge, this is the most practical scheme known to date.

We note that the hierarchical aspect of our binary-tree technique is partially inspired
by the hierarchical solution originally proposed by Goldreich and Ostrovsky [6], and
later adopted in many constructions [7, 12, 16]; while the eviction aspect is partially
inspired by the background eviction idea originally proposed by Stefanov, Shi, and
Song [15].

Our binary tree technique may also be superficially reminiscent of a construction by
Damgård, Meldgaar, and Nielsen [4]. However, apart from that fact that both schemes
rely on a binary tree, the internal mechanisms of our construction and the Damgård-
Meldgaar-Nielsen construction are fundamentally different. Specifically, Damgård et
al. primarily aim to avoid the need of random oracle or pseudo-random function, rather
than improve worst-case cost. Their construction uses a binary search tree, and requires
periodic reshuffling operations that can take O(N log N) time. In contrast, we use a bi-
nary tree (instead of a binary search tree), and we use a background eviction mechanism
to circumvent the need for reshuffling.

Table 1 illustrates the asymptotic performance characteristics of various existing
schemes, and positions our work in perspective of related work.
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Concurrent/subsequent work. In concurrent/subsequent work, Goodrich et al. [8] and
Kushilevitz et al. [10] also came up novel O-RAM constructions with poly-logarithmic
overhead. Specifically, the construction by Goodrich et al. achieves O((log N)2) worst-

case cost with O(1) memory; and and Kushilevitz et al. achieve O( (log N)2

log log N ). Due to a
larger constant in their asymptotic notations, in realistic scenarios, our scheme with the
trivial bucket O-RAM is likely the most practical when the client-side storage is O(1).

2 Preliminaries

Let N denote the O-RAM capacity, i.e., the maximum number of data blocks that an
O-RAM can store. We assume that data is fetched and stored in atomic units called
blocks. Let B denote the block size in terms of the number of bits. We assume that the
block size B ≥ c log N , for some c > 1. Notice that this is true in almost all practical
scenarios. We assume that each block has a global identifier u ∈ U , where U denotes
the universe of identifiers.

Throughout the paper, we use the asymptotic notation ˜O(f(N)) meaning
O(f(N)poly log log N) as a short-hand for hiding poly log log N terms.

2.1 Defining O-RAM with Enriched Operations

The standard O-RAM adopted in prior work [5, 7, 12, 16] exports a Read and a Write
interfaces. To hide whether the operation is a read or a write, either operation will
generate both a read and a write to the O-RAM.

In this paper, we consider O-RAMs that support a few enriched operations. There-
fore, we propose a modified O-RAM definition, exporting a ReadAndRemove primi-
tive, and an Add primitive. We later show that given these two primitives, we can easily
implement the standard O-RAM Read and Write operations. Moreover, given these two
primitives, we can also support an enriched operation called Pop, which will be later
needed in our constructions. Therefore, our modified O-RAM definition is more general
than the standard O-RAM notion. The same modified O-RAM notion was adopted in
the work by Stefanov, Shi, and Song [15].

Definition 1. An Oblivious RAM (with enriched operations) is a suite of interactive
protocols between a client and a server, comprising the following:

ReadAndRemove(u): Given a private input u ∈ U which is a block identifier, the client
performs an interactive protocol with the server to retrieve a block identified by u,
and then remove it from the O-RAM. If u exists in the O-RAM, the content of the
block data is returned to the client. Otherwise,⊥ is returned.

Add(u, data): The client is given private inputs u ∈ U and data ∈ {0, 1}B, represent-
ing a block identifier and some data content respectively. This operation must be
immediately preceded by ReadAndRemove(u) such that block u no longer resides
in the O-RAM. The client then performs an interactive protocol with the server to
write content data to the block identified by u, which is added to the O-RAM.
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Definition 2 (Security definition). Let y := ((op1, arg1), (op2, arg2), . . . , (opM , argM ))

denote a data request sequence of length M . Each opi denotes a ReadAndRemove or
an Add operation. Moreover, if opi is a ReadAndRemove operation, then argi = ui,
else if opi is an Add operation, then argi = (ui, datai), where ui denotes the identifier
of the block being read or added, and datai denotes the data content being written in
the second case. Recall that if opi is an Add operation with argument (ui, datai), then
opi−1 must be a ReadAndRemove operation with argument ui−1 = ui.

We use the notation ops(y) to denote the sequence of operations associated with y,
i.e., ops(y) := (op1, op2, . . . , opM ).

Let A(y) denote the (possibly randomized) sequence of accesses to the remote stor-
age given the sequence of data requests y. An O-RAM construction is said to be secure if
for any two data request sequences y and z such that |y| = |z|, and ops(y) = ops(z),
their access patterns A(y) and A(z) are computationally indistinguishable by anyone
but the client.

2.2 Relationship with the Standard O-RAM Definition

As mentioned earlier, our modified O-RAM notion is more general than the standard
O-RAM notion, in the sense that given a modified O-RAM exporting ReadAndRemove
and Add primitives, we can easily implement a standard O-RAM supporting Read and
Write operations, as stated in the following observation.

Observation 1. Given a modified O-RAM as defined above, we can construct a stan-
dard O-RAM, where a standard Read(u) operation is implemented by the operation
data← ReadAndRemove(u) followed by Add(u, data), and a standard Write(u, data)
operation is implemented by the operation data0 ← ReadAndRemove(u) followed by
Add(u, data) operation.

Most existing constructions [6, 7, 16] based on Goldreich and Ostrovsky’s hierar-
chical solution [6] can be easily modified to support the ReadAndRemove and Add
primitives.

2.3 Implementing Enriched Semantics

Implementing the Pop operation from the ReadAndRemove and Add primitives.
As mentioned earlier, our O-RAM storage is organized into a binary tree over buckets,
where each bucket is a fully functional O-RAM by itself, referred to as a bucket O-RAM.
For technical reasons which will become clear in Section 3, each bucket O-RAM needs
to support not only the ReadAndRemove and Add operations (and hence the standard
O-RAM Read and Write operations), but also a special-purpose operation called Pop().

The Pop() operation looks up a real data block and removes it from the O-RAM if
one exists. Otherwise, it returns a dummy block ⊥.

In our online full technical report [14], we present a constructive proof demonstrating
that any O-RAM supporting the ReadAndRemove and Add primitives can be modified
to support the Pop primitive as well; and the Pop operation costs asymptotically the
same as the basic ReadAndRemove and Add primitives. We state this fact in the fol-
lowing lemma.
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Lemma 1 (Additional Pop() operation). Given any O-RAM construction of capacity
3N satisfying Definition 1, one can construct a new O-RAM of capacity N that not
only provides a ReadAndRemove(u) and an Add(u, data) primitives (and hence, the
standard Read(u) and Write(u, data) operations), but also provides a Pop() opera-
tion, where all operation preserve the asymptotic performance of the original O-RAM.
Specifically, the Pop() operation selects an arbitrary block that currently exists in the
O-RAM, reads it back and removes it from the O-RAM. If the O-RAM does not contain
any real blocks, the Pop operation returns ⊥.

2.4 Encryption and Authentication

Similar to prior work in O-RAM [6, 7, 12, 16], we assume that all data blocks are
encrypted using a semantically secure encryption scheme, so that two encryptions of
the same plaintext cannot be linked. Furthermore, every time a data block is written
back it is encrypted again using fresh randomness.

We also assume that the server does not tamper with or modify the data, since au-
thentication and freshness can be achieved using standard techniques such as Message
Authentication Codes (MAC), digital signatures, or authenticated data structures.

2.5 Two Simple O-RAM Constructions with Deterministic Guarantees

As mentioned earlier, our O-RAM storage is organized into a binary tree over small
data buckets, where each bucket is a fully functional O-RAM by itself, referred to as a
bucket O-RAM.

For technical reasons which will become clear in Section 3, we would like each
bucket O-RAM to provide deterministic (as opposed to high probability) guarantees.
Moreover, each bucket O-RAM needs to support non-contiguous block identifier space.
We consider each block identifier u ∈ {0, 1}≤B, i.e., u can be an arbitrary string, as
long as u can be described within one block. Furthermore, the set of block identifiers is
unknown in advanced, but rather, determined dynamically during live operations of the
bucket O-RAM. As long as the load of the bucket O-RAM never exceeds its capacity,
the correct functioning of the bucket O-RAM should be guaranteed.

Below, we present the two candidate bucket O-RAMs constructions, called the trivial
O-RAM and the Square-Root O-RAM respectively. They are modifications of the trivial
O-RAM and the Square-Root O-RAM constructions originally proposed by Goldreich
and Ostrovsky [6].

Trivial O-RAM. We can build a trivial O-RAM supporting non-contiguous block iden-
tifier space in the following way. Let N denote the O-RAM capacity. In the trivial
O-RAM, the server side has a buffer storing N blocks, where each block is either a real
block denoted (u, data), or a dummy block denoted ⊥.

To perform a ReadAndRemove(u) operation, a client sequentially scans positions 0
through N − 1 in the server array: if the current block matches identifier u, the client
remembers its content, and overwrites it with ⊥; if the current block does not match
identifier u, the client writes back the original block read.
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Fig. 1. Server-side storage hierarchy. The server-side O-RAM storage is organized into a binary
tree over data buckets, where each bucket can hold up to O(log N) data blocks. A data block
enters from the root bucket when written to the O-RAM, and then obliviously percolates down
towards a random leaf over time, until the same block is accessed again.

To perform an Add(u, data) operation, a client sequentially scans positions 0 through
N − 1 in the server buffer: the first time the client sees a dummy block, the client
overwrites it with (u, data); otherwise, the client writes back the original block read.

As mentioned earlier, whenever blocks are written back to the server, they are re-
encrypted in order to hide its contents from the server.

Clearly, the trivial O-RAM is secure, requires O(N) amortized and worst-case cost,
O(N) server-side storage, and O(1) client-side storage (since the client never down-
loads the entire array all at once, but performs the reads and updates in a streaming
fashion).

Square-Root O-RAM [6]. Goldreich and Ostrovsky present a Square-Root O-RAM [6]
which achieves O(

√
N log N) amortized cost, O(N log N) worst-case cost, O(N)

server-side storage, and O(1) client-side storage. When using the deterministic AKS
sorting network [1] to implement the reshuffling operation, the Square-Root O-RAM
achieves deterministic (as opposed to high probability) guarantees. Although the origi-
nal Square-Root O-RAM construction supports only contiguous block identifier space,
it is not too difficult to modify it to support non-contiguous block identifier space, while
preserving the same asymptotic performance. We defer the detailed description of this
modified Square-Root O-RAM construction to our online full version [14].

3 Basic Construction

3.1 Overview of the Binary Tree Construction

We first describe a binary-tree based construction, which has two variants. The first
variant makes use of the trivial bucket O-RAM and has amortized and worst case cost
O((log N)2); the second variant makes use of the Square-Root bucket O-RAM and has
˜O((log N)1.5) amortized cost, and ˜O((log N)2) worst-case cost. Both variants require
N
c client-side storage, where c > 1 and we assume that the failure probability is 1

poly(N)

and the number of operations is M = poly(N), which is reasonable in practice (for
instance N = 106 and M = N3 = 1018). Later, in Section 4, we describe how to apply
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our O-RAM construction recursively for the client-side storage, to achieve O(1) client-
side memory, while incurring a multiplicative factor of O(log N) to the amortized and
worst-case costs.

As mentioned in Section 1, the motivation for the binary tree construction is to “in
spirit” spread across time the reshuffling operations that commonly appear in existing
constructions [5, 7, 12, 16]. However, since there is no trivial way to modify existing
schemes to spread the reshuffling operation, we introduce a completely new technique
based on the binary tree idea.

Server-side storage organization. In our construction, the server-side storage is orga-
nized into a binary tree of depth D := �log2 N�. For ease of explanation, let us assume
that N is a power of 2 for the time being. In this way, there are exactly N leaf nodes in
the tree.

Each node in the tree is a data bucket, which is a self-contained O-RAM of ca-
pacity O(log N), henceforth referred to as a bucket O-RAM. For technical reasons de-
scribed later, each bucket O-RAM must have the following properties: (a) support non-
contiguous identifier space, (b) support ReadAndRemove and Add primitives – from
which we can also implement Read, Write, and Pop primitives as mentioned in Sec-
tion 2, (c) has zero failure probability.1

There are two possible candidates for the bucket O-RAM, both of which are mod-
ifications of simple O-RAM constructions initially proposed by Goldreich and Ostro-
vsky [6], and described in more detail in Section 2.5.

1. Trivial O-RAM. Every operation is implemented by a sequential scan of all blocks
in the server-side storage. For capacity L, the server-side storage is O(L) and the
cost of each operation (both amortized and worst-case) is O(L).

2. Square-Root O-RAM [6]. For capacity L, the Square-Root O-RAM achieves O(L)
server-side storage, O(1) client-side storage, O(

√
L log L) amortized cost, and

O(L log L) worst-case cost.

O-RAM operations. When data blocks are being written to the O-RAM, they are first
added to the bucket at the root of the tree. As more data blocks are being added to a
bucket, the bucket’s load will increase. To avoid overflowing the capacity of a bucket O-
RAM, data blocks residing in any non-leaf bucket are periodically evicted to its children
buckets. More specifically, eviction is an oblivious protocol between the client and the
server in which the client reads data blocks from selected buckets and writes each block
to a child bucket.

Over time, each block will gradually percolate down a path in the tree towards a
leaf bucket, until the block is read or written again. Whenever a block is being added
to the root bucket, it will be logically assigned to a random leaf bucket, indexed by a
string in {0, 1}D. Henceforth, this data block will gradually percolate down towards the
designated leaf bucket, until the same data block is read or written again.

Suppose that at some point, a data block is currently logically assigned to leaf node
� ∈ {0, 1}D. This means that a fresh copy of the data block exists somewhere along
the path from the leaf node � to the root. To find that data block, it suffices to search

1 It would also be acceptable if a failure probability δ per operation would only incur a multi-
plicative factor of O(log log 1

δ
) in the cost.
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Fig. 2. Searching for a data block. A block u is logically associated with a leaf node � at a given
point time. To look up the block u, it suffices to search every bucket on the path from the leaf
bucket � to the root bucket (denoted by the shaded buckets in this figure). Every time a block is
accessed, it will be logically assigned to a fresh random leaf node.

Fig. 3. Background evictions with eviction rate ν = 2. Upon every data access operation, for each
depth in the hierarchy, ν number of buckets are chosen randomly for eviction during which one
data block (real or dummy) will be evicted to each of its children. If the bucket is loaded, then
one real block and one dummy block are evicted. If the bucket is not loaded, two dummy blocks
are evicted. In this figure, D denotes the eviction of a dummy block, and R denotes the eviction
of a real block.

the data block in all buckets on the path from the designated leaf node to the root. We
assume that when the data block is stored in a bucket, we store the tag � along as well
and we denote the block’s contents by (data||�).
Ensuring security. For security reasons, it is important to ensure the following:

• Every time a block is accessed, its designated leaf node must be chosen indepen-
dently at random. This is necessary to ensure that two operations on the same data
block are completely unlinkable.
• The bucket sequence accessed during eviction process must reveal no information

about the load of each bucket, or the data access sequence. In our construction,
the choice of which buckets to evict from is randomly selected, and independent
from the load of the bucket, or the data access sequence. Furthermore, whenever a
bucket is selected for eviction, we always write to both of its children – depending
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on whether there are real blocks to evict, we would write a real or a dummy block
to each of its children.

Client-side index. As each data block will be logically assigned to a random leaf node
every time it is operated on, we need some data structure to remember where each block
might be at any point of time. For this reason, the client stores a data structure of size
N log N

B blocks, in which it records which leaf node is currently associated with each
block. When B ≥ c log N , this index structure’s size is a linear fraction of the capacity
of the O-RAM. Therefore, in the basic scheme, we require N

c client-side storage, where
c > 1.

However, later in the recursive construction described in Section 4, we show how
to apply our O-RAM construction recursively over the index structure to achieve O(1)
client-side storage.

A note about dummy blocks and dummy operations. To ensure the security of the
O-RAM, in our construction, we often rely on dummy blocks and dummy operations to
hide certain information from the untrusted server, such as whether a bucket is loaded,
and where in the tree a block is headed.

For the purpose of this section, we adopt the following notion of dummy blocks
and dummy operations. We will think of the dummy block as a regular but useless
data block. We can dedicate a certain block identifier, e.g., u = 0 to serve as the dummy
block. In this way, we simply deduct 1 from the O-RAM capacity, which does not affect
the asymptotics. In our construction, every bucket may have a dummy block; while each
real data block exists in at most one bucket.

Given the above notion of the dummy block, we can define a dummy O-RAM op-
eration as a regular operation on the dedicated dummy block with u = 0. A dummy
O-RAM operation serves no purpose other than ensuring the security of the O-RAM.
Henceforth, with a slight abuse of notation, we use the symbol ⊥ to denote a dummy
data block or its identifier. We use the notations ReadAndRemove(⊥), Add(⊥),
Read(⊥) and Write(⊥) to denote dummy O-RAM operations.

3.2 Detailed Construction

We define some notations in Table 2 which will be useful in the formal algorithm de-
scriptions.

ReadAndRemove operation. The algorithm for performing a ReadAndRemove(u) op-
eration is described in Figure 4. First, the client looks up its local index structure index
to find out which leaf node � the requested block u is associated with. We then generate
a fresh random �∗ from {0, 1}D and overwrite index[u]← �∗, i.e., block u is henceforth
associated with a fresh random leaf node �∗. Notice that this ensures no linkability be-
tween two operations on the same data block. In order to avoid extra index lookup for
any following Add operation, �∗ is also stored in a global variable state.

Now, given that u is currently associated with leaf node �, it means that a fresh copy
of block u must reside in some bucket along the along the path from leaf � to the root,
denoted by P(�). If u is found in some bucket, we remove u from that bucket, and
remember its the data content. Regardless of whether u has been found, we always
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Table 2. Notations

D �log2 N�
u ∈ {0, 1, . . . , N − 1} global identifier of a block

index client’s index structure
index[u] ∈ {0, 1}D id of leaf node associated with block u, initially random

state global variable to avoid unnecessary index lookup
root root bucket of the binary tree
P(�) path from the leaf node � to the root

Childb(bucket), for b ∈ {0, 1} the left or right child of a bucket
ν eviction rate

UniformRandom(S) Samples an element uniformly at random from the set S

UniformRandomν(S) Samples a subset of size ν uniformly at random from the set S

⊥ a dummy block or the identifier of a dummy block

continue our search all the way to the root. Note that to ensure obliviousness, it is
important that the search does not abort prematurely even after finding block u. Finally,
if the requested block u has been found, the ReadAndRemove algorithm returns its data
contents; otherwise, the ReadAndRemove algorithm returns⊥.

Add operation. Also shown in Figure 4, the Add(u, data) operation reads the tag � from
state, which was just generated by the preceding ReadAndRemove(u) operation. The
client writes the intended block (u, data||�) to the root bucket.

Notice that here the client tags the data with �, i.e., the id of the leaf node that block
u would be logically associated with until the next operation on block u. The designated
leaf node tag will become important when we recursively apply our O-RAM over the
client’s index structure, as described in Section 4. Specifically, the eviction algorithm
will examine this designated leaf node tag to determine to which child node to evict this
block. Observe that to preserve the desired asymptotics in the recursive construction,
the eviction algorithm cannot afford to (recursively) look up the index structure to find
the designated leaf node for a block. By tagging the data with its designated leaf, the
eviction algorithm need not perform recursive lookups to the index structure.

Finally, at the end of every Add operation, the client invokes the background eviction
process once. We now describe the background eviction algorithm.

Background evictions. Let ν denote the eviction rate. For the purpose of our asymp-
totic analysis, it suffices to let ν = 2.

Whenever the background eviction algorithm is invoked, the client randomly selects
ν buckets to evict at every depth of the tree.

If a bucket is selected for eviction, the client pops a block from the bucket O-RAM
by calling the Pop operation (see Section 2.3 for how to implement the Pop operation
given an O-RAM that supports ReadAndRemove and Write operations). If the bucket
selected for eviction is loaded, then the Pop operation returns a real block and removes
that block from the bucket O-RAM; otherwise, if the bucket is not loaded, the Pop
operation returns a dummy block ⊥.

Regardless of whether a real block or a dummy block is returned by the Pop opera-
tion, the client always performs a write to both children of the selected bucket:
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ReadAndRemove(u):

1: �∗ ← UniformRandom({0, 1}D)
2: �← index[u], index[u]← �∗

3: state← �∗ //If an Add operation follows, �∗ will be used by Add
4: data← ⊥
5: for each bucket on P(�) do //path from leaf � to root
6: if ((data0||�0)← bucket.ReadAndRemove(u)) �= ⊥ then
7: data← data0 //Notice that � = �0
8: end if
9: end for

10: return data

Add(u, data):

1: �← state
2: root.Write(u, data||�) // Root bucket’s O-RAM Write operation
3: Call Evict(ν)
4: return data

Fig. 4. Algorithms for data access

1. If a dummy block is returned by Pop, the client simply performs a dummy write to
both children buckets.

2. If a real block is returned, the client examines its designated leaf node tag to figure
out the correct child node to evict this block to. Recall that this designated leaf node
tag is added when the block is first written to the root bucket. (Note that although
in the basic construction, the client can alternatively find out this information by
looking up its local index structure; later in the recursive construction, the client
will have to obtain this information through the designated leaf node tag.)
Now, suppose that the block should be evicted to child b ∈ {0, 1} of the selected
bucket, the client then writes the block to child b, and writes a dummy block to
child 1− b.

Regardless of which case, to ensure obliviousness, the two writes to the children nodes
must proceed in a predetermined order, e.g., first write a real or dummy block to child
0, and then write a real or dummy block to child 1.

3.3 Security Analysis

Theorem 1 (Security of Basic Construction). Our Basic O-RAM Construction is se-
cure in the sense of Definition 2, assuming that each bucket O-RAM is also secure.

Proof. Observe that each bucket is itself a secure O-RAM. Hence, it suffices to show
that each type of operation induces independently the same distribution on the access
patterns of the buckets in the binary tree, regardless of the arguments.

For the ReadAndRemove(u) operation, the buckets along the path P(�) from the
root to the leaf indexed by � = index(u) are accessed. Observe that � is generated
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Evict(ν):

1: for d = 0 to D − 1 do
2: Let S denote the set of all buckets at depth d.
3: A← UniformRandomν(S)
4: for each bucket ∈ A do
5: (u, data||�)← bucket.Pop()
6: b← (d+1)-st bit of �
7: blockb ← (u, data||�), block1−b ← ⊥
8: ∀b ∈ {0, 1} : Childb(bucket).Write(blockb)
9: end for

10: end for

Fig. 5. Background eviction algorithm with eviction rate ν

uniformly at random from {0, 1}D. Hence, the distribution of buckets accessed is the
buckets along the path to a random leaf. Moreover, each time ReadAndRemove(u) is
called, a fresh random �∗ is generated to be stored in index(u) so that the next invocation
of ReadAndRemove(u) will induce an independent random path of buckets.

For the Add(u, data) operation, the root bucket is always accessed. More buckets are
accessed in the Evict subroutine. However, observe that the access pattern of the buckets
are independent of the configuration of the data structure, namely two random buckets
at each depth (other than the leaves) are chosen for eviction, followed by accesses to
both child buckets.

3.4 Asymptotic Performance of the Basic Construction

We next analyze the server-side storage and the cost of each operation. If the capacity
of each bucket is L, the server-side storage is O(NL), because there are O(N) buckets.
If we use the trivial bucket O-RAM, each operation has cost O(L log N). If we use the
Square-Root bucket O-RAM, each operation has amortized cost O(

√
L log L log N)

and worst case cost O(L log L log N).
We prove the following lemma in Appendix A.

Lemma 2 (Each Bucket Has Small Load). Let 0 < δ < 1
22e . For a fixed time and a

fixed bucket, the probability that the bucket has load more than log2
1
δ is at most δ.

Applying Union Bound on Lemma 2 over all buckets and over all time steps, we
have the following result.

Lemma 3 (Bucket Overflow). Suppose 0 < δ < 1 and N, M ≥ 10. Then, one can
use bucket O-RAM with capacity O(log MN

δ ) such that with probability at least 1 − δ,
the Basic O-RAM Construction can support M operations without any bucket overflow.

Lemma 3 gives an upper bound on the capacity of each bucket and from the above
discussion, we have the following result.

Corollary 1. The Basic O-RAM Construction can support M operations with failure
probability at most δ using O(N log MN

δ ) server-side storage and O(N log N
B ) client-

side storage. The cost of each operation is as follows:
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Bucket O-RAM Amortized Worst-case

Trivial O(log N log MN
δ ) O(log N log MN

δ )

Square-Root O(log N
√

log MN
δ log log MN

δ ) O(log N log MN
δ log log MN

δ )

Specifically, if the number of data access requests M = poly(N), then the basic con-
struction with the trivial bucket O-RAM achieves O((log N)2) amortized and worst-
case cost; and the basic construction with the Square-Root bucket O-RAM achieves
˜O((log N))1.5 amortized cost, and ˜O((log N)2) worst-case cost. Furthermore, no buck-
ets will overflow with probability 1− 1

poly(N) .

4 Recursive Construction and How to Achieve the Desired
Asymptotics

The basic construction described in Section 3 achieves poly-logarithmic amortized and
worst-case cost, but requires N

c client-side storage, where c = B
log N > 1.

In this section, we demonstrate how to recursively apply our O-RAM construction
to the client’s index structure to achieve O(1) client-side storage, while incurring an
O(log N) multiplicative factor in terms of the amortized and worst-case cost.

4.1 Recursive O-RAM Construction: O(1) Client-Side Storage

Storing the index through recursion. In the basic construction, the client’s index
structure takes up at most N log N

B ≤ N
c space, where B ≥ c logN . To achieve O(1)

client-side storage, we recursively apply our O-RAM over the index structure. Instead
of storing the index structure on the client, we store the index structure in a separate
O-RAM on the server side. At each step of the recursion, we effectively compress the
O-RAM capacity by a factor of c > 1. Therefore, after logc N levels of recursion, the
index structure will be reduced to constant size.

To see how the recursion can be achieved, notice that Line 2 of the ReadAndRemove
algorithm in Figure 4 can be replaced with a recursive O-RAM operation:

O-RAM.Write(block id(index[u]), �∗)

Here we have a slight abuse of notation, because in reality, the entry index[u] (stored
sequentially according to u) resides in a larger block identified by block id(index[u]),
and one would have to first read that block, update the corresponding entry with �∗, and
then write the updated block back.

Theorem 2 (Recursive O-RAM Construction). The Recursive O-RAM Construction
can support M operations with failure probability at most δ using O(N log MN

δ ) server-
side storage and O(1) client-side storage, and the cost of each operation is as follows:
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Bucket ORAM Amortized Worst-case

Trivial O(logc N log N log MN
δ ) O(logc N log N log MN

δ )

Square-Root O(logc N log N
√

log MN
δ

log log MN
δ

) O(logc N log N log MN
δ

log log MN
δ

)

Specifically, if the number of data access requests M = poly(N), then the recur-
sive construction with the trivial bucket O-RAM achieves O((log N)3) amortized and
worst-case cost; and the recursive construction with the Square-Root bucket O-RAM
achieves ˜O((log N))2.5 amortized cost, and ˜O((log N)3) worst-case cost. Further-
more, no buckets will overflow with probability 1− 1

poly(N) .

Proof. The O(1) client-side storage is immediate, due to the fact that all client-side
storage (including the state variable in Figure 4, and the shuffling buffer for the Square-
Root bucket O-RAM) is transient state rather than persistent state, and therefore, all
levels of recursion can share the same O(1) client-side storage.

Observe that for each j = 0, 1, . . . , �logc N�, the jth recursion produces a binary
tree with O(N

cj ) buckets. Hence, there are totally O(
∑

j≥0
N
cj ) = O(N) buckets.

Recall that by Theorem 3, for each bucket and at the end of each operation, with
probability at least η, the load of the bucket is at most log2

1
η . Since there are O(N)

buckets and M operations, we need to set η = Θ( δ
NM ) to apply the Union Bound such

that the overall failure probability (due to bucket overflow) is at most δ. It follows that
the capacity of each bucket is L = O(log MN

δ ). and hence the server-side storage is
O(NL) = O(N log MN

δ ).
Moreover, each operation on the Recursive O-RAM induces O(log N

cj ) operations on
the bucket O-RAMs in the jth binary tree. Hence, the total number of bucket O-RAM
accesses is Z = O(

∑

j≥0 log N
cj ) = O(logc N log N).

If we use the trivial bucket O-RAM, each operation has cost O(ZL).
If we use the Square-Root bucket O-RAM, the amortized cost is O(Z

√
L log L) and

the worst-case cost is O(ZL log L), as required.

Remark 1. Observe that the BST O-RAM construction by Damgård, Meldgaard, and
Nielsen [4] for capacity L has client storage O(1), server storage O(L log L), amortized
cost O((log L)a) and worst-case cost O((log L)b), where a and b are small integers.
Hence, if we use the BST construction for out bucket O-RAM, the amortized cost of
our binary scheme can be improved to O(logc N log N(log MN

δ )a) = ˜O((log N)2) and

the worst-case cost to O(logc N log N log MN
δ (log log MN

δ )b) = ˜O((log N)3), where

M = poly(N) and δ = 1
poly(N) , while the server storage cost is ˜O(N log N).
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Appendices

A Bounding the Load of Each Bucket

In this section, we prove the following high probability statement for bounding the load
in each bucket.

Theorem 3 (Each Bucket Has Small Load). Let 0 < δ < 1
22e . For a fixed time and a

fixed bucket, the probability that the bucket has load more than log2
1
δ is at most δ.

Recall that the number of levels is L := �log2 N�. We analyze the load according to
the depth i of the bucket.

A.1 Bounding the Load for Levels 0 to L − 1 with Markov Process

Observe that in our scheme, when a block inside some bucket is accessed, the block is
removed from the bucket. However, for the purpose of analysis, we assume that a block
stays inside its bucket when it is accessed, i.e., a block can leave a bucket only when the
bucket is chosen for eviction; moreover, since we are only concerned about the load of a
bucket, for simplicity we also assume that the blocks arriving at a bucket are all distinct.

http://eprint.iacr.org/2011/327.pdf
http://eprint.iacr.org/2011/407.pdf
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The load of a bucket in our scheme is always bounded above by the corresponding load
in the modified process, which we analyze using a Markov process. If we assume that
a bucket is initially empty, then its load will be stochastically dominated by the load
under the stationary distribution.

Defining Markov ProcessQ(α, β). Given 0 < α ≤ β ≤ 1, we describe a Markov pro-
cess Q(α, β) with non-negative integral states as follows. In order to illustrate the rela-
tionship between the Markov process and the load of a bucket, we defineQ(α, β) using
the terminology related to the bucket. The state of the Markov process corresponds to
the current load of a bucket. At any time step, the following happens independently of
any past events in the specified order:
(a) With probability α, a block arrives at the bucket.
(b) If the load of the bucket is non-zero (maybe because a block has just arrived), then

with probability β a block departs from the bucket.
Recall that when a block departs from a depth-i bucket, it arrives at one of the two

depth-(i + 1) child buckets uniformly at random.

Example. We immediately see that the root bucket is modeled by Q(1, 1) and a depth-
1 bucket is modeled by Q(1

2 , 1). Both cases are trivial because the load at the end of
every time step is zero. One can see that at every time step a block arrives at one of the
four depth-2 buckets uniformly at random and two out of the four buckets are chosen
for eviction every step. Hence, each of the depth-2 buckets can be modeled byQ(1

4 , 1
2 ).

Using a classic queuing theory result by Hsu and Burke [9] we can show that at further
depths, a block leaves a bucket with some fixed probability at every time step, so that
independent arrivals are satisfied at the child buckets.

Corollary 2 (Load of an Internal Bucket). For 2 ≤ i < L, under the stationary
distribution, the probability that a depth-i bucket has load at least s is at most ρs

i ≤ 1
2s ;

in particular, for 0 < δ < 1, with probability at least 1− δ, its load is at most log2
1
δ .

Proof. The proof builds on top of a classic queuing theory result by Hsu and Burke [9].
Full proof is provide in our online technical report [14].

A.2 Bounding the Load of Level L with “Balls into Bins”

Observe that a block residing at a depth-L bucket traversed a random path from the root
bucket to a random leaf bucket. Hence, given that a block is at depth L, the block is
in one of the leaf buckets uniformly at random. Hence, to give an upper bound on the
load of a leaf bucket at any single time step, we can imagine that each of the N blocks
is placed independently in one of the leaf buckets uniformly at random. This can be
analyzed by the well-known “Balls into Bins” process.

Corollary 3 (Load of a Leaf Bucket). For each time step, for 0 < δ < 1
22e , with

probability at least 1− δ, a leaf bucket has load at most log2
1
δ .

Proof. Using standard balls and bins analysis [13]. Full proof will be supplied in online
technical report [14].


	Oblivious RAM with O((logN)3
) Worst-Case Cost
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Defining O-RAM with Enriched Operations
	Relationship with the Standard O-RAM Definition
	Implementing Enriched Semantics
	Encryption and Authentication
	Two Simple O-RAM Constructions with Deterministic Guarantees

	Basic Construction
	Overview of the Binary Tree Construction
	Detailed Construction
	Security Analysis
	Asymptotic Performance of the Basic Construction

	Recursive Construction and How to Achieve the Desired Asymptotics
	Recursive O-RAM Construction: O(1) Client-Side Storage

	References
	Bounding the Load of Each Bucket
	Bounding the Load for Levels 0 to L-1 with Markov Process
	Bounding the Load of Level L with ``Balls into Bins''





