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Abstract. This paper presents a novel approach to tracking articulated
human motion with monocular video. In a conventional tracking system
based on particle filters, it is very challenging to track a complex human
pose with many degrees of freedom. A typical solution to this problem is
to track the pose in a low dimensional latent space by manifold learning
techniques, e.g., the Gaussian process dynamical model (GPDM model).
In this paper, we extend the GPDM model into a graph structure (called
GPDM graph) to better express the diverse dynamics of human motion,
where multiple latent spaces are constructed and dynamically connected
to each other appropriately by an unsupervised learning method. Basi-
cally, the proposed model has both intra-transitions (in each latent space)
and inter-transitions (among latent spaces). Moreover, the probability of
inter-transition is dynamic, depending on the current latent state. Us-
ing the proposed GPDM graph model, we can track human motion with
monocular video, where the average tracking errors are improved from
the state-of-the-art methods in our experiments.

Keywords: motion tracking, monocular video, manifold learning, Gaus-
sian process dynamical model, motion graph.

1 Introduction

In the computer vision community, much effort has been put into inferring the
human pose or 3D articulated human body parts from videos [6/T1]. Basically,
there are two kinds of approaches: on one side, discriminative approaches em-
ploy a parametric model mapping directly from image observation to the pose
space [I/I5]. Although recent techniques are developed with promising perfor-
mance [15], it is generally quite difficult to learn of such mapping because the
mapping itself is generally ambiguous, e.g. two different poses may have almost
the same observation. On the other side, the inverse problem of generating image
observations by a given pose is well defined, leading the generative approaches
to optimize the pose (or pose distribution). As a typical technique of genera-
tive approaches, particle filters are widely adopted to track human motion from
videos [TJ13/16] and are also employed in this paper.
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In most papers [I7T3TAITHIT6], the human pose is represented as articulated
human body parts in a tree structure with many degrees of freedom [6/11]. There-
fore, the human pose is very difficult to track directly in the high dimensional
pose space due to the curse of dimensionality with such techniques as the par-
ticle filters [7]. Fortunately, recent studies demonstrate that human motion can
essentially be described in a much lower dimensional space (called latent space)
[OIT6UT7], given that targeted motion has regular dynamics. In this paper, the
Gaussian process dynamical models (GPDM) proposed by Wang et al. [I7] is
employed because of the good performance as reported by Quirion et al. [12] for
many applications in tracking human motion [7U16]. However, it is unsatisfac-
tory for a single GPDM to express complicated motion that has several motion
patterns [7].

Our basic idea is to separate complicated motion into simple segments, where
a GPDM model (i.e., latent space) is learned for each segment. Naturally, those
latent spaces should be transited with a probability. Moreover, the transition
probability among latent spaces (called inter-transition) should depend on the
current state of the current latent space. For example, the probability of inter-
transitions is much higher at the landing state than that at the flight state from
the jumping space to walking space. Generally speaking, it is very challenging to
learn such a complicated latent model in a reasonable way. For this purpose, we
combine the techniques of the motion graph [3I8/10] and GPDM to construct our
novel model GPDM graph. As far as we know, it is the first latent dynamics model
with a graph structure. In addition, our approach is a completely unsupervised
learning method by the data-driven scheme.

Although monocular approaches are much more challenging than multi-view
approaches due to incomplete information, such as the occlusion problem [6I11],
a single camera is more ubiquitous and cheaper, thus making it suitable for
non-professional users. Moreover, a single camera solution can open up a new
possibility to capture motion from video archives such as past Olympic games.
In both cases, currently, we do not require real time processing, targeting to the
applications for entertainment, coaching, etc.

The rest of this paper is organized as follows. Section [2] presents a brief survey
on related work. Section [3] describes the proposed algorithm in detail. Section [
discusses our experimental results on the HumanEva dataset [13]. The conclu-
sions and future work are addressed in section Bl

2 Related Work

A plethora of literature is reported on video-based human motion tracking. See
the comprehensive reviews in previous surveys [6/11]. In this section, we focus on
dimension reduction and particle filter techniques for human motion tracking,
which are the categories of our core techniques.

Although principle component analysis (PCA) is widely used for dimension
reduction in human motion [2], linear mapping has poor ability to reduce the di-
mensions because human motion is highly non-linear. As a non-linear approach,
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the Gaussian process latent variable model (GPLVM) can learn the latent space
and the mapping function [9]. GPLVM is an efficient tool for modeling distribu-
tion in a high dimensional space with a compact low dimensional representation.
Wang et al. extend GPLVM to GPDM [I7], which models the dynamics in the
learned latent space. GPDM and its variants, including BGPDM [16], are widely
employed in tracking human motion because it simultaneously models the latent
space, the dynamics in the latent space, and the mapping from latent space to
the pose space. GPDM is an unsupervised method and only needs a minimum
of learning data [I7]. However, Chen et al. [7] have reported that GPDM cannot
model complicated motion. They introduce a switching GPDM model that is
successfully used in human motion tracking [7]. In their model, the transition
probability of switching states is static. Moreover, labels of switching states in the
learning data are usually required, which means that it is a supervised learning
method. The essential difference between our GPDM graph and the switching
GPDM is whether to learn dynamic switching probability with an unsupervised
method, which is very challenging but important in real applications.

On the other hand, particle filters and variants are successfully applied to track
objects in video because of the compatibility of non-linear and non-Gaussian
elements [4]. However, the workable dimensionality for particle filters is small as
pointed out by Chen et al. [7]. With the above dimension reduction methods,
it is possible to track human motion using particle filters in a low dimensional
latent space. In this paper, we employ a particle filter technique similar to Sigal
et al. [I3]. Our experimental results show that performance is further improved
from the state-of-the-art methods [TI4I17]. See the details in Section [l

3 Proposed Method

Our system includes learning the GPDM graph and inference with GPDM graph.
To learn the GPDM graph, training motion data are divided into several short
segments, and a GPDM model is simultaneously learned for each segment. At
the same time, the candidates for inter-transitions among GPDM models are
detected using the short-term principle component analysis, originally proposed
by Xu et al. [19]. With the learned GPDM graph, which includes the mapping
function from latent space to pose space, the human pose is inferred with the
low dimensional latent space by particle filters. In this stage, inter-transitions
are dynamically determined by the similarity of human poses. In Section Bl we
will first describe the concept of the GPDM graph in detail.

3.1 Concept of GPDM Graph

The basic hypothesis is that a complicated motion consists of a sequence of
elemental motions, and each elemental motion, originally in many degrees of
freedom, is essentially controlled by low dimensional latent space as shown in
Eq. @) [7/I7]. At the same time, the first-order Markov dynamics is assumed
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for simplicity in latent spaces as shown in Eq. (). Furthermore, we connect
the latent spaces with a dynamic probability as shown in Fig. [l (called inter-
transitions).

zf = f(zf_1;A) +n., (1)
x; = g(zF; B) + n, (2)

where zF € R? denotes the d-dimensional coordinates at time-t in the k-th latent
space, x; € RP denotes the D-dimensional coordinates at time-¢ in pose space
(D >>d), f and g are non-linear mappings parameterized by A and B, and n, ;
or n, ; denotes zero-mean, isotropic, white Gaussian noise processes. Note that
our model has multiple latent spaces but a single pose space while the original
GPDM has a single latent space and a single pose space. Therefore, our model
is more general and suitable for complex motions.

One of the unique characteristics in our model is that the inter-transition
probability depends on the current state of the current latent space, which in-
fers that probability changes dynamically. The example in Fig. [ explains the
reasonableness of our model, where two kinds of elemental motions exist in-
cluding “walking” and “jumping”. As shown in Fig. [[[(b), it is natural that the
transition probability at the landing state is much higher than at the flight state
when transiting from “jumping” to “walking”. Similarly, the transition probabil-
ity must be dynamic when transiting from “walking” to “jumping” as shown in
Fig. [Ml(c). Surely, besides the inter-transitions, we have intra-transitions in each
latent space as the original GPDM did [I7]. Note that our model is designed
for not only the above scenario that clearly has two motions but also the com-
plex motion with multiple short phases that can transit in-between such as the
gesture motion in Table 2
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Fig. 1. Concept of the proposed GPDM graph model (a): multiple latent spaces are
connected in a probability depending on the current state of the current latent space.
Naturally, the probability of inter-transition is much higher at the landing state than
that at the flight state from the jumping space to walking space in (b). Similarly, the
transition probability is dynamic when transiting from walking to jumping in (c).

Specifically, when using GPDM to learn latent space, the above model can
be further represented as Eqs. (@) and (@) through Gaussian process regression,
where the dynamics of the latent space is the former, and the mapping from
latent space to pose space is the latter. Note that both are probability functions,
which are desirable for particle filters. For more details, please refer to [17].
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where ZF = Z} = {z¥,25,...,2%} denotes all the coordinates in the k-th

latent space, X = {x; : t = 1,..., N} denotes all coordinates in the pose space,
a® denotes kernel hyperparameter vector for dynamics in latent space, which is
used in calculating the kernel function (Kzx)i; = kz(zF, zf) in Eq. (@), 5% and
Wk = diag(w¥, ...,wk) are hyperparameters for the mapping function, where
the kernel function (Kx)i; = kxk(x;,X;) is calculated by Eq. ([@). In a word, a
GPDM model is represented as {Z*, a*, 3¥, W*}, which is learned in a segment
of motion data.
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The probability of an inter-transition is intuitively calculated according to the
distance between two poses that are transited as Eq. (), where the principle
in the so-called motion graph technique is adopted [3U8/10]. Basically, the more
similar the poses are, the higher the transition probability is.

—logp(zF — 2F) o dist(xy, x4/ (7)

where zf denotes the departure coordinates in the k-th latent space, where the
mean of the mapping function is x; in the pose space, and zf,, denotes the des-
tination coordinates in the k’-th latent space, where the mean of the mapping
function is x4 in the pose space. The function dist is a distance function be-
tween two poses. See an implementation by Wang et al. [18], where the weighted
difference of joint orientations is calculated as Eq. (&).

m
dist(x¢, Xy ) = Zwk I log(gy 1,qt.m) 117) (8)

n=1
where m denotes the number of joints in the human pose, and g, denotes the
orientation of joint n in the ¢-th frame, expressed as quaternion.

3.2 Learning of GPDM Graph

Given human motion, the proposed GPDM graph will be learned with an unsu-
pervised method.

Inter-transition Candidate Detector: It is necessary to detect the possible
inter-transitions in the training motion data, e.g. the time instants for hitting
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the ground in walking motion, where a short-term principal component analysis
(short-term PCA) method [I9] is employed. The basic idea in short-term PCA
is piece-wise linear approximation for non-linear human motion because motion
data are almost linear in the short term due to strong temporal coherence. Short-
term PCA is executed in a sliding window in the joint position space. And the
peaks and valleys of the coordinates in the first principal component are regarded
as candidates for inter-transitions {b; : i = 1, ..., I'}. The detected candidates for
inter-transitions are stored as potential time instants to transit to other motions.
See the detailed procedure in [19].

Construction of GPDM Graph: We simultaneously segment training motion
data and learn a sequence of GPDM models. The basic idea is to use the trial
and error approach iteratively with a sliding window as shown in Table [[l The
motion in a window is called a motion clip, which is empirically set as 60 frames
or 0.5 seconds in our implementation. We merge the motion clips when the
reconstruction error, calculated as Eq. (@), is smaller than the threshold as shown
in Table [Il Here, the threshold is set as 1.0. Otherwise, it is divided into two
segments at the boundary of additional motion clip as shown in Fig. Bi(b). In
concept, a segment for a motion pattern is desired. In practice, the real concern
in the inference is the reconstruction error.

error(t) = dist(xs, X¢) (9)

¢ = g(2¢) (10)

where %, is the t-th reconstructed pose from the t-th coordinates ZF of a so
called mean prediction sequence in the current latent space, generated from z¥
by simulating the dynamical process one frame at a time [I7].

Now, our GPDM graph is composed of the GPDM models {Z*, a*, gk, W* :
k =1,2,..,K} and all the candidates for inter-transitions {b; : i = 1,...,I},
which will be used in the next section. An example is shown in Fig. 2 where a
walking motion in Section []is used.

Table 1. Procedure for learning a sequence of GPDM models

while training data are not finished
do add a motion clip

merge the current clip

learn the GPDM for merged motion

if error(t) < TH for any ¢
then continue

else learn the GPDM without the added clip
output the learned GPDM
reset the start point as the head of current clip
break
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Fig. 2. An example of the proposed GPDM graph model for a walking motion in Table
[l where the circles denote the learned coordinates in latent space and the crosses denote
the predicted coordinates in latent space.

3.3 Inference with GPDM Graph

As mentioned before, particle filters are used to infer the human pose from the
input video, where the main difference from conventional particle filters [I3] is
that the particles are generated in the latent spaces instead of the pose space,
reducing the space dimension greatly. Later, the particles in the latent space are
called latent particles z¥(1 : P¥), which denotes the P* coordinates in the k-th
latent space for time ¢. The corresponding particles in the pose space are called
pose particles x;(1 : P), which denotes the P(= 5" P¥) coordinates in the pose
space for time ¢t and is calculated by the mean of GP regression in Eq. (@) as
Wang et al. [17] reported.

Similar to conventional particle filters [I3], the initialization is specially pro-
cessed. In detail, the ground truth of the first frame is used to generate particles.
First, we search the human poses in the training motion data to find pose can-
didates, which are required to be similar to the first frame (i.e. satisfied by Eq.
(). The corresponding coordinates in the learned latent space are the seeds
for latent particles z¥ (1 : P¢) with P particles. P¢ is determined by Eqs. (I2)-
() given P particles in total. With the seeds and particle number, the latent
particles z¥(1 : P¢) for the first frame are generated by a Gaussian distribu-
tion. Those latent particles are further mapped to the pose particles x;(1 : P)
(P = >_ P¢ is the total particle number). The importance weights w;(1 : P) are
equally set as 1/P.
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d(dzst(x1 ,X7))

dist(x9",x}) < dist and h <0 (11)
—logq(c) = dist(x9",x} (c /Z dist(x9", x7 (1)) (12)
(¢) /Zq i) (13)

P¢=p(c)x P (14)

where x{t denotes the ground truth of the first frame, x;(c) denotes a pose
candidate, and dist denotes the average distance for all the pose candidates.

Then, the human pose is inferred by the following steps iteratively. Note that

this scheme can easily be extended to variants of the particle filters, such as the
annealed particle filter [13].

1.

4

Likelihood calculation: With the pose particles x;(1 : P) and video frame
¥, the importance weights @ (1 : P) are updated by the same likelihood
functions as [I3], which includes the edge and silhouette features in the
video frame.

Resampling: According to the updated importance weights, resample the
latent particles 25 (1 : P¥), which is similar to [13].

Prediction by 1nter-transiti0n: This step is unique for our GPDM graph
model. The above latent particles are checked whether they should be tran-
sited to other latent spaces. By this step, the particles are adaptively dis-
tributed among the latent spaces. Since all possible inter-transitions are
learned in section B.2] the distances are calculated between {b; : i =1, ..., I'}
and each pose particle x;(p), which is mapped from a latent particle 2F(p).
If the distance with b; and x;(p) is smaller than the threshold, the latent
particle 2F (p) will be transited to the k’-th latent space corresponding to the
human pose b;. The transited particle number is determined by the distances
and the original particle number, which is similar to Eq. (I4).

. Prediction by intra-transition: Although this step exists in conventional

particle filters, much more advanced dynamics is available in the latent space
using GPDM models [7I16]. The purpose of this step is to generate latent
particles at the next time instant zf (1 : P*), which is calculated by the
learned dynamics in Eq. (@).

Mapping to pose particles: With the above latent particles z}, (1 : P*),
the pose particles x;41(1 : P) are obtained by the mapping function in Eq.
[6). Now go to Step (1) for tracking human pose in the next frame.

Experimental Results

Experimental Conditions: In Section @l we evaluate our algorithm in both
the learning and inference stages using the HumanEva dataset [13], where the
training and test data from S1 subject are used as shown in Table Bl
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Fig. 3. Comparison of reconstruction error

Evaluation of GPDM Graph Learning: We compare our GPDM graph with
the original GPDM model [I7] for the three motions in Table[2l The reconstruc-
tion errors are shown in Fig. Bl where the average errors are reduced to 9.7%,
61.5%, and 2.5% in the three motions, respectively. As expected, the model pre-
cision is much improved. Basically, the more complex the motion is, e.g. gesture
motion, the more benefit the proposed method provides.

Figure M shows the inter-transition candidates for training data. The frame
distance, which means the probability of inter-transition in our method, changes
a lot in Fig. @ requiring that the transition probability should dynamically
depend on the current state. Similar results were reported in motion graph tech-
nique [BU8IT0]. At the same time, the inter-transition candidates should locate
the similar poses with short distances in those cyclic motions. The experiments
show our inter-transition candidate detector works well, which detects the local
extreme values by short-term PCA [I9] as shown by the crosses in Fig. @

Table 2. Experimental data used in the learning and inference stages

motion description  training data test data (C1 camera)
walking cyclic motion 1~480 481~600
jogging  cyclic motion 1~180 531~650
gesture multiple patterns 1~420 421~570
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Fig. 4. Frame distances and detected candidates for inter-transitions from a walking
motion (a), a jogging motion (b), and a gesture motion (c). Blue color denotes the
low distance and deep red color denotes the high distance. Crosses denote the detected
candidates for inter-transitions.

An interesting observation from Figs. 2l and [l is that there are multiple pat-
terns in a semantically simple walking motion. This is due to the following fact
that the signals in two cycles are rather different. Figure[Hl (a) shows the learned
latent space from the first two cycles (frame #1~#150) of the walking motion
in Table 2 It is clear that the predicted latent coordinates (crosses, generated
by the GPDM model) are almost the same in two cycles while the learned latent
coordinates (circles, learned directly from the training data) are quite different,
which infers that the learned GPDM model cannot confidently generate correct
latent coordinates and leads to the reconstruction errors become rather large
in the second cycle as shown in Fig. Blb). By segmenting into two models, the
reconstruction ability is greatly improved as shown in Fig. 2
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Fig. 5. Learned latent space from frame #1~#150 of the walking motion (about two
cycles), where the circles denote the learned coordinates in latent space and the crosses
denote the predicted coordinates in latent space. A single GPDM model may fail to
model a semantically simple motion.

Evaluation of Pose Inference: We compare the GPDM graph model with
the original GPDM model [17] and the switching GPDM model [7] where the
probability of inter-transitions is constant (i.e. independent of the latent state
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Table 3. Average errors of tracking human motion by different methods

motion original GPDM switching GPDM GPDM graph

walking 44.16 mm 56.09 mm 40.88 mm
jogging 57.21 mm 57.55 mm 53.26 mm
gesture 17.80 mm 16.33 mm 13.23 mm

in GPDMs). In all the methods, the total particle number is set as 1000. For
evaluation, the tracking error is calculated by the inferred pose and the ground
truth as described by Sigal et al. [13].

Figure [ shows the tracking errors of the above three methods respectively,
whose average error is listed in Table[Bl In the above experiments, the proposed
GPDM method achieves the best performance by combining the merits of orig-
inal GPDM and switching GPDMY. As Fig. [ shows, the GPDM graph method
basically has the errors similar to the lower ones of the original GPDM and the
switching GPDM. When the motion is in a single pattern, the particles in parti-
cle filter are preferred to stay in a GPDM model. On the other hand, when the
motion transits to a new pattern, the particles are preferred to transit to another
GPDM model. Our experimental results infer that neither the original GPDM
nor the switching GPDM deals with the situations well. In this meaning, by the
adaptive probability of inter-transitions, the efficiency of using particles in the
particle filter is improved in the proposed GPDM graph model, leading to better
performance. Figure[7] shows the particles are transited among different GPDM
models by GPDM graph and switching GPDM respectively. As the dashed line
in Fig.[7 (a) shows, the particles are transited properly with the motion patterns
in GPDM graph while they are equally transited in switching GPDM as Fig. [
(b) shows. Basically, in the proposed GPDM graph, the particles can automati-
cally follow the changes of motion patterns by the adaptive transition probability
among different GPDM models, which is the essential advantage of our method.

Distance error over all particles — optimisticError Distance error over all particles — optimisticError Distance error over all particles — optimisticError
11 4

—— GPDM graph
—— original GPDM
—— switching GPDM

—— GPDM graph

b o
8 &
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(a) Tracking error of a walking motion (b) Tracking error of a jogging motion (c) Tracking error of a gesture motion

Fig. 6. Tracking errors by the proposed GPDM graph (red dotted curves), the original
GPDM (black solid curves), and the switching GPDM (blue dashed curves) in a walking
video (a), a jogging video (b), and gesture video (c) of the S1 subject from the C1
camera

1 As a latest result on walking motion of S1 subject in HumanEva dataset, Taylor et
al. reported an average error of 47.29 mm by a sixth-order model of Implicit Mixture
of Conditional Restricted Boltzmann Machines in a similar condition [14].
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Fig. 7. Particle transitions among different GPDM models by GPDM graph (a) and
switching GPDM (b) from the gesture motion. The dashed line shows the transition
trace of most particles in GPDM graph. The particles are transited properly with the
motion patterns in GPDM graph (a) while they are equally transited in switching
GPDM (b). The color of points denotes the particle ID.

Finally, we show two samples in Fig. [8] where the proposed method tracks the
pose correctly while other methods may fail to track the legs.

Frame 56 Frame 56 Frame 56

GPDM graph |

(a) GPDM graph (b) Original GPDM (c) Switching GPDM
Frame 98 Frame 98 Frame 98

GPDM graph

(a) GPDM graph (b) Original GPDM (c) Switching GPDM

Fig. 8. Tracking result of frame #56 and #98 by GPDM graph (a), original GPDM
(b), and switching GPDM (c) in the test video of walking motion. The colored cylinders
show the tracking results and the black cylinders denote the ground truth.
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5 Conclusions and Future Work

In this paper, our main contribution is to propose a novel model for tracking
human motion from a monocular video, where the novelties are as follows.

— It is the first latent dynamics model with graph structure. With inter-
transitions in the graph, the long-term correlation is possible to be used.
We simultaneously segment the training motion and learn the GPDM mod-
els by the trial and error approach.

— Our data-driven approach is a completely unsupervised learning method.
For this purpose, we employ the short-term PCA method to search the can-
didates for inter-transitions. In the inference stage, the connections (inter-
transitions) are dynamically determined by the similarity of human poses,
which is inspired by the motion graph technique [3I8I10].

In the future, we plan to improve the likelihood function in the tracking stage us-
ing more advanced features, such as robust local and global appearance features
[BUT6].
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