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Abstract. Due to unsatisfactory segmentation results when images con-
tain noise by the Otsu’s thresholding method. Two-dimensional (2D)
and three-dimensional (3D) Otsu’s methods thus were proposed. These
methods utilize not only grey levels of pixels but also their spatial in-
formations such as mean and median values. The 3D Otsu’s methods
use both kinds of spatial information while 2D Otsu’s methods use only
one. Consequently the 3D Otsu’s methods more resist to noise, but also
require more computational time than the 2D ones. We thus propose a
method to reduce computational time and still provide satisfactory re-
sults. Unlike the 3D Otsu’s methods, our method selects each threshold
component in the threshold vector independently instead of one thresh-
old vector. The experimental results show that our method is more robust
against noise, and its computational time is very close to that of the 2D
Otsu’s methods.

Keywords: Image segmentation, Thresholding, 3D Otsu’s method,
Three-dimensional histogram.

1 Introduction

Thresholding is considered as one low-level segmentation method since it uses
only pixel information. The method is typically simple and computationally ef-
ficient. Different thresholding methods are described and compared based on
different error measurements in [1]. One popular thresholding method is Otsu’s
[2] due to its fast computation and reasonable results in many applications. How-
ever, it uses only a one-dimensional (1D) histogram of an image, which cannot
express spatial relation between image pixels, it is difficult to obtain accurate
results when images contain noise. Lui et al. [3] thus proposed two-dimensional
(2D) Otsu’s method. This method selects an optimal threshold vector on a 2D
histogram. The 2D histogram consists of the gray levels of the image pixels and
the mean values of their neighborhood. Since the 2D histogram represents the
relation of the original and mean-filtered images, this method gives more sat-
isfactory results. However this method uses an exhaustive search to find the
optimal threshold vector, the time complexity of this method is O(L4), where L
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is the number of gray levels. Gong et al.[4] thus proposed a fast recursive method
of the 2D Otsu’s method which can reduce the time complexity from O(L4) to
O(L2). Ningbo et al. [5] proposed a method, which projects a 2D histogram onto
a diagonal line to compose a new 1D histogram. The method uses a 1D Otsu’s
method to select a point that splits this histogram into object and background
regions, and applies a 2D Otsu’s method to select an optimal threshold vector.
This method can enhance execution time, but it requires a large space for three
look-up tables. Yue et al. [6] proposed a decomposition of the 2D Otsu’s method
that calculates the optimal threshold by using two 1D Otsu’s computations in-
stead of one 2D Otsu’s computation. This method is robust against noise, and
the time complexity is reduced from O(L2) to O(L). Chen et al. [7] pointed out
the weakness of region division by a threshold vector in the 2D Otsu’s method
that some object and background regions are assigned to edge and noise regions,
and vice versa. They proposed the 2D Otsu’s method on a gray level-gradient
histogram, however, an appropriate initialization is required.

In addition to 2D Otsu’s methods, Jing et al. [8] proposed a three-dimensional
(3D) Otsu’s method that selects an optimal threshold vector on a 3D histogram.
This 3D histogram contains the median values of neighborhood pixels as the
third feature. The 3D Otsu’s method provides better results than the 2D Otsu’s
methods, but its time complexity is O(L3). Wang et al. [9] proposed a group
of new recurrence formula of the 3D Otsu’s method. This method thus removes
redundant computation and calculates a look-up table by iteration. The method
has the same thesholding results as the traditional 3D Otsu’s method, however,
its time complexity is still O(L3). Dongju et al. [10] proved that the objective
function of K-means is equivalent to that of the Otsu’s method, K-means thus can
be extended to 2D and 3D thesholding methods. and performs more efficiently
than Otsu’s.

Notice that the time complexity of the 2D’s Otsu methods can be reduced
from O(L4) to O(L) while the time complexity of the 3D Otsu’s methods is
still at O(L3). Even though K-means can be used instead of Otsu’s methods, its
execution time depends on the number of iterations. In this paper, we propose
a fast and robust thresholding method, which selects and uses three optimal
thresholds independently instead of one threshold vector of 3D’s Otsu methods.
Our method can reduce the time complexity from O(L3) to O(L), and it still
provides satisfactory results in noisy conditions.

2 3D Otsu’s Method

Given an image f(x, y) represented by L gray levels and the number of pixels
in the image, N . The mean and the median of gray values of pixels in the k × k
neighborhood regions centered at the coordinate (x, y) are denoted as g(x, y)
and h(x, y), respectively, which are defined as

g(x, y) =
1
k2

k/2∑

i=−k/2

k/2∑

j=−k/2

f(x + i, y + j) (1)
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Fig. 1. Three-dimensional histogram

h(x, y) = med

{
f(x + i, y + j) : i = −k

2
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k

2
; j = −k

2
, . . . ,

k

2

}
(2)

In this paper, we use k = 3. For each pixel in the image, we can obtain a triple
(i, j, k), where i is the original gray level appeared in f(x, y), j is the grey level
of the mean value appeared in g(x, y), and k is the gray level of the median value
appeared in h(x, y). All the triples of the image define a 3D histogram within a
cube of L×L×L as shown in Fig.1(a). Let cijk denote the frequency of a triple
(i, j, k). Its joint probability can be expressed as

pijk =
cijk

N
, (3)

where 0 ≤ i, j, k ≤ L − 1 and
∑L−1

i

∑L−1
j

∑L−1
k pijk = 1

Given an arbitrary threshold vector (s, t, q). This threshold vector divides the
3D histogram into eight rectangular volumes as shown in Fig. 1(b)-1(d). Let
C0 and C1 represent the object and the background, respectively, or vice versa;
mx, ωx, and μx represent the summation vector, the probability, and the mean
vector of the rectangular volume x (Rx), respectively, where x is the rectangular
volume number; and μT represent the total mean vector. mx can be expressed
as

mx = ωxμx = (mxi, mxj, mxk)T

=

⎛

⎝
∑

(i,j,k)∈Rx

ipijk,
∑

(i,j,k)∈Rx

jpijk,
∑

(i,j,k)∈Rx

kpijk

⎞

⎠
T

(4)

The three elements in the triple are very close to each other for the interior
pixels of either the object or the background regions while they are very different
for the pixels that are edges and noise. Therefore, the rectangular volumes 2-7
can be considered as noise and edges; and rectangular volumes 0 and 1 can be
considered as object and background regions, respectively, or vice versa. In most
cases, the edge and noise pixels are very small fraction of the overall pixels in an
image, hence the probabilities of the rectangular volumes 2-7 can be negligible.
It can easily verify the relations,

ω0 + ω1 ≈ 1 ω0μ0 + ω1μ1 ≈ μT (5)
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The probabilities of C0 and C1 thus can be denoted as

ω0 =
∑

(i,j,k)∈R0

pijk =
s∑

i=0

t∑

j=0

q∑

k=0

pijk (6)

ω1 =
∑

(i,j,k)∈R1

pijk =
L−1∑

i=s+1

L−1∑

j=t+1

L−1∑

k=q+1

pijk (7)

The mean vectors of C0 and C1 can be expressed as

μ0 = (μ0i, μ0j , μ0k)T =
(

m0i

ω0
,
m0j

ω0
,
m0k

ω0

)T

=

⎛

⎝
∑

(i,j,k)∈R0

ipijk

ω0
,
∑

(i,j,k)∈R0

jpijk

ω0
,
∑

(i,j,k)∈R0

kpijk

ω0

⎞

⎠
T

(8)

μ1 = (μ1i, μ1j , μ1k)T =
(

m1i

ω1
,
m1j

ω1
,
m1k

ω1

)T

=

⎛

⎝
∑

(i,j,k)∈R1

ipijk

ω1
,
∑

(i,j,k)∈R1

jpijk

ω1
,
∑

(i,j,k)∈R1

kpijk

ω1

⎞

⎠
T

(9)

The total mean vector of 3D histogram is

μT = (μiT , μjT , μkT )T

=

⎛

⎝
L−1∑

i=0

L−1∑

j=0

L−1∑

k=0

ipijk,

L−1∑

i=0

L−1∑

j=0

L−1∑

k=0

jpijk,

L−1∑

i=0

L−1∑

j=0

L−1∑

k=0

kpijk

⎞

⎠
T

(10)

The between-class discrete matrix is defined as

SB(s, t, q) = ω0[(μ0 − μT )(μ0 − μT )T ] + ω1[(μ1 − μT )(μ1 − μT )T ] (11)

The trace of discrete matrix can be expressed as

tr(SB(s, t, q)) = ω0[(μ0i − μTi)2 + (μ0j − μTj)2 + (μ0k − μTk)2] +
ω1[(μ1i − μTi)2 + (μ1j − μTj)2 + (μ1k − μTk)2] (12)

The optimal threshold vector (s′, t′, q′) is

(s′, t′, q′) = arg max
0≤s,t,q≤L−1

(tr(SB(s, t, q))) (13)
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3 Proposed Method

From (5), we can see that ωx ≈ 0 and ωxμx = mx ≈ 0, where x = 2, . . . , 7. From
these conditions, we can conclude as follows.

ω0 ≈ ω0i = ω0 + ω3 + ω5 + ω7 =
s∑

i=0

L−1∑

j=0

L−1∑

k=0

pijk =
s∑

i=0

Pi (14)

ω1 ≈ ω1i = ω1 + ω2 + ω4 + ω6 =
L−1∑

i=s+1

L−1∑

j=0

L−1∑

k=0

pijk =
L−1∑

i=s+1

Pi (15)

ω0 ≈ ω0j = ω0 + ω2 + ω3 + ω4 =
L−1∑

i=0

t∑

j=0

L−1∑

k=0

pijk =
t∑

j=0

Pj (16)

ω1 ≈ ω1j = ω1 + ω5 + ω6 + ω7 =
L−1∑

i=0

L−1∑

j=t+1

L−1∑

k=0

pijk =
L−1∑

j=t+1

Pj (17)

ω0 ≈ ω0k = ω0 + ω2 + ω5 + ω6 =
L−1∑

i=0

L−1∑

j=0

q∑

k=0

pijk =
q∑

k=0

Pk (18)

ω1 ≈ ω1k = ω1 + ω3 + ω4 + ω7 =
L−1∑

i=0

L−1∑

j=0

L−1∑

k=q+1

pijk =
L−1∑

k=q+1

Pk (19)

m′
0i = m0i + m3i + m5i + m7i =

s∑

i=0

L−1∑

j=0

L−1∑

k=0

ipijk =
s∑

i=0

iPi (20)

m′
1i = m1i + m2i + m4i + m6i =

L−1∑

i=s+1

L−1∑

j=0

L−1∑

k=0

ipijk =
L−1∑

i=s+1

iPi (21)

m′
0j = m0j + m2j + m3j + m4j =

L−1∑

i=0

t∑

j=0

L−1∑

k=0

jpijk =
t∑

j=0

jPj (22)

m′
1j = m1j + m5j + m6j + m7j =

L−1∑

i=0

L−1∑

j=t+1

L−1∑

k=0

jpijk =
L−1∑

j=t+1

jPj (23)

m′
0k = m0k + m2k + m5k + m6k =

L−1∑

i=0

L−1∑

j=0

q∑

k=0

kpijk =
q∑

k=0

kPk (24)

m′
1k = m1k + m3k + m4k + m7k =

L−1∑

i=0

L−1∑

j=0

L−1∑

k=q+1

kpijk =
L−1∑

k=q+1

kPk (25)

where

m0i ≈ m′
0i, m1i ≈ m′

1i, m0j ≈ m′
0j , m1j ≈ m′

1j , m0k ≈ m′
0k, m1k ≈ m′

1k.
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Thus, we can define the new mean vectors as

μ0 ≈ μ′
0 = (μ′

0i, μ
′
0j , μ

′
0k)T =

(
m′

0i

w0i
,
m′

0j

w0j
,
m′

0k

w0k

)T

=

(∑s
i=0 iPi∑s
i=0 Pi

,

∑t
j=0 jPj

∑t
j=0 Pj

,

∑q
k=0 kPk∑q
k=0 Pk

)T

(26)

μ1 ≈ μ′
1 = (μ′

1i, μ
′
1j , μ

′
1k)T =

(
m′

1i

w1i
,
m′

1j

w1j
,
m′

1k

w1k

)T

=

(∑L−1
i=s+1 iPi

∑L−1
i=s+1 Pi

,

∑L−1
j=t+1 jPj

∑L−1
j=t+1 Pj

,

∑L−1
k=q+1 kPk
∑L−1

k=q+1 Pk

)T

(27)

where Pi =
∑L−1

j=0

∑L−1
k=0 pijk, Pj =

∑L−1
i=0

∑L−1
k=0 pijk, and Pk =

∑L−1
i=0

∑L−1
j=0 pijk.

Notice that Pi, Pj , and Pk are equivalent with the 1D histogram of of original,
mean-filtered, and median-filtered images, respectively. From (14)-(19) and (26)-
(27), we can rewritten (12) as

tr(SB(s, t, q)) ≈
A︷ ︸︸ ︷

[ω0i(μ′
0i − μTi)2 + ω1i(μ′

1i − μTi)2] +
B︷ ︸︸ ︷

[ω0j(μ′
0j − μTj)2 + ω1j(μ′

1j − μTj)2] + (28)
C︷ ︸︸ ︷

[ω0k(μ′
0k − μTk)2 + ω1k(μ′

1k − μTk)2]

The values of terms A, B, and C depend on the values of s, t, and q, respectively.
We can define each term as

σBi(s) = ω0i(μ′
0i − μTi)2 + ω1i(μ′

1i − μTi)2 (29)
σBj(t) = ω0j(μ′

0j − μTj)2 + ω1j(μ′
1j − μTj)2 (30)

σBk(q) = ω0k(μ′
0k − μTk)2 + ω1k(μ′

1k − μTk)2 (31)

The optimal threshold (s′, t′, q′) is

(s′, t′, q′) = arg max
0≤s,t,q≤L−1

(tr(SB(s, t, q)))

≈ arg max
0≤s,t,q≤L−1

(σBi(s) + σBj(t) + σBk(q)) (32)

which can be splited into

s′ = arg max
0≤s≤L−1

σBi(s) (33)

t′ = arg max
0≤t≤L−1

σBj(t) (34)

q′ = arg max
0≤q≤L−1

σBk(q) (35)
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Equations (33), (34), and (35) are 1D Otsu’s methods that select the optimal
threshold of the original, mean-filtered, and median-filtered images, respectively.
Notice that we select the optimal threshold from three 1D histograms instead of
one 3D histogram. Therefore, the time complexity of this method is only O(L)
instead of O(L3). We then apply each threshold element as a classifier to classify
each image pixel into either the object or the background independently. A pixel
(x, y) is assigned to the class, which is mostly selected by the thresholds s′, t′,
and q′ in the original, mean-filtered, and median-filtered images, respectively.

4 Experimental Results

We performed all experiments on a personal computer with 2.0 GHz Intel(R)
Core(TM)2 Duo CPU and 4 GB DDR II memory. We implemented the pro-
posed method in Visual C++ with OpenCV. Scilab was used to generate noised
added images for noise tolerant tests. We tested on two kinds of noise including
Salt&Pepper noise and Gaussian noise. Salt&Pepper noise is represented by noise
density (δ), the probability of swapping a pixel. Gaussian noise is represented
by mean (μ) and variance (σ2). In our experiments, we used only μ = 0.

We compared our method with the 1D Otsu’s method [2], Gong’s method
[4] as the 2D Otsu’s method, Wang’s method [9] as the 3D Otsu’s method, K-
means [10] based methods for both 2D and 3D ones, Ningbo’s method [5], and
Yue’s method [6] because they are based on Otsu’s. For each experiment that
the ground truth is available, we use misclassification error (ME) to present the
number of background pixels wrongly assigned to the foreground, and vice versa;
and we use modified Hausdorff distance (MHD) to measure the shape distortion
of each result image compared with its corresponding ground truth. ME and
MHD are defined as [1]

ME = 1 − |BO ∩ BT | + |FO ∩ FT |
|BO| + |FO| , (36)

MHD = max(dMHD(FO, FT ), dMHD(FT , FO)), (37)

where

dMHD(FO, FT ) =
1

|FO|
∑

fO∈FO

min
fT ∈FT

‖fO − fT ‖,

dMHD(FT , FO) =
1

|FT |
∑

fT ∈FT

min
fO∈FO

‖fT − fO‖.

Fi and Bi denote the foreground and background pixels, respectively, of an
image i, which includes the ground truth (O) and thresholded (T ) images. |.| is
the cardinality of the set. ‖fO − fT ‖ is the Euclidean distance between the two
corresponding pixels of the ground truth and thresholded images. Notice that
ME varies from 0 (a perfectly classified image) to 1 (a totally incorrect binarized
image).
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(a) Original (b) Gaussian (c) Salt&Pepper

Fig. 2. Lena images w/o noise added

Table 1. Optimal thresholds of Lena images w/o noise added

Methods
Fig.

2(a) 2(b) 2(c)

1D Otsu’s 117 119 117

2D Otsu’s (123,117) (123,126) (117,192)

3D Otsu’s (130,125,117) (132,122,121) (130,126,117)

2D K-means (117,117) (118,118) (117,117)

3D K-means (117,117,117) (118,118,118) (117,117,117)

Ningbo’s (117,117) (117,119) (117,117)

Yue’s (117,117) (119,118) (117,117)

Proposed (117,117,117) (117,117,117) (117,117,117)

In the first experiment, we compared the optimal threshold selected by each
method. We segmented Lena images consisting of the original one, and two noise
added images. The first noise added image was generated by adding Salt&Pepper
noise with δ = 0.01 to the original image, and the other one was generated
by adding Gaussian noise with σ2 = 0.005 to the original image as shown in
Fig. 2. Optimal thresholds are shown in Table 1. It can be seen that the optimal
threshold of the proposed method is close to the optimal threshold of the other
methods.

In the second experiment, we tested the robustness of each method in the
presence of noise. We selected two images as our test images from Segmentation
evaluation database[11]. Fig. 3(a) and 3(b) show the first test image and its
ground truth, respectively. Fig. 4(a) and 4(b) show the second test image and
its ground truth, respectively. We added noise to each test image to generate
new 51 images with Salt&Pepper noise using δ that are vary from 0 to 0.1,
and the other 51 images with Gaussian noise using σ2 that are vary from 0
to 0.01. Fig. 3(c) and 3(d) show example noise added images of the first test
image. Fig. 4(c) and 4(d) show example noise added images of the second test
image. Both test images show difficulties for thresholding when some amount of
noise is added. Fig. 5(a) shows the histogram of the first test image that clearly
presents bimodal, while Fig. 5(c) shows the histogram of the second test image
that does not clearly presents bimodal. Fig. 5(b) and 5(d) show histograms of
two images with Gaussian noise added. Both of them present a single modal
with a jagged curve. The second test image itself can be challenged to segment
such that some background pixels present similar gray levels as the object. We
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(a) Original (b) Ground
truth

(c) Gaussian
(σ2 = 0.01)

(d) Salt&Pepper
(δ = 0.1)

Fig. 3. The first image set with sample noise added images in the second experiment

(a) Original (b) Ground
truth

(c) Gaussian
(σ2 = 0.01)

(d) Salt&Pepper
(δ = 0.1)

Fig. 4. The second image set with sample noise added images in the second experiment
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of Fig.3(a)
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(c) Histogram
of Fig.4(a)
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(d) Histogram
of Fig.4(c)

Fig. 5. Histograms of the test images in the second experiment

segmented these 204 noise added images. We evaluated the performance of each
method based on ME and MHD. Fig. 6 and 7 show the evaluation results of
the first test images. Fig. 8 and 9 show the evaluation results of the second test
images. From the evaluation results in the presence of Salt&Pepper noise shown
in Fig. 6 and 8, both ME and MHD values of our method are lower than those of
the other methods except MHD values on the first test images, MHD values of
our method are higher than the 3D K-means method. The thresholding results
of the 3D K-means and our methods are shown in Fig. 10. The 3D K-means
method gives higher number of mistaken pixels in the object region, and lower
number of mistaken pixels in the background region, however, our method gives
lower number of mistaken pixels in the object region, and higher number of pixels
in the background region. MHD of our method is thus higher than of the 3D K-
means. From the evaluation results in the presence of Gaussian noise shown in
Fig. 7 and 9, both ME and MHD values of our method on the second test images
are lower than those of the other methods. ME values of our method on the
first test images are very close to that of the 3D Otsu’s method and lower than
those of the other methods. MHD values of our method on the first test images
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Fig. 6. Comparison of ME and MHD for thresholding of the first test images with
Salt&Pepper noise added at various δ in the second experiment
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Fig. 7. Comparison of ME and MHD for thresholding of the first test images with
Gaussian noise added at various σ2 in the second experiment
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Fig. 8. Comparison of ME and MHD for thresholding of the second test images with
Salt&Pepper noise added at various δ in the second experiment

are a little higher than those of the other methods except the 1D Otsu’s and
2D Otsu’s methods. The average computational time on all noise added images
are 0.08, 12.05, 1891.63, 27.21, 1259.54, 11.39, 6.29, and 13.19 ms, for the 1D
Otsu’s, 2D Otsu’s, 3D Otsu’s, 2D K-means, 3D K-means, Ningbo’s, Yue’s, and
our proposed methods, respectively. It can be seen that our method performs
faster than the other 3D methods. Our average execution time is nearly the same
as that of the other 2D methods except Yue’s method. Our method always gives
low error measurements in both classification and shape evaluations.
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Fig. 9. Comparison of ME and MHD for thresholding of the second test images with
Gaussian noise added at various σ2 in the second experiment

(a) Original (b) 3D K-means (c) proposed

Fig. 10. The original image and thresholded images of 3D K-means and proposed
methods when σ2=0.01

In the last experiment, we tested our method and the others with 200 real im-
ages from the Segmentation evaluation database [11], where the ground truth of
each image is provided. The average error measurements (ME and MHD) and the
average compuational time (T) over 200 test images of each method are shown
in Table 2. Segmentation results can be seen at http://give.cpe.ku.ac.th/
thresholding/equivalent-3D-thresholding.php. From the results, it can be
seen that the average computational time of our method is lower than that of
the other 3D methods and is almost the same as that of the other 2D methods
except the Yue’s method. The average ME and MHD values of our method is
lower than that of the other methods. It indicates that our method shows the
best matching of the object and the background, and also gives the smallest
amount of shape distortion.

Table 2. ME, MHD, and T over 200 real images

Method ME MHD T (ms)

1D Otsu’s 0.217102 19.545244 0.32

2D Otsu’s 0.214391 19.580417 11.99

3D Otsu’s 0.213022 19.569091 2151.03

2D K-means 0.228411 19.603090 20.60

3D K-means 0.228340 19.616353 1027.13

Ningbo’s 0.214194 19.627783 12.92

Yue’s 0.214962 19.408089 6.66

Proposed 0.211341 19.199144 12.59

http://give.cpe.ku.ac.th/thresholding/equivalent-3D-thresholding.php
http://give.cpe.ku.ac.th/ thresholding/equivalent-3D-thresholding.php


An Equivalent 3D Otsu’s Thresholding Method 369

5 Conclusions

We presented an improved thresholding method to overcome the shortcoming of
the 1D, 2D, and 3D Otsu’s method. The method calculates each optimal thresh-
old from the original, mean-filtered, and median-filtered images independently;
and uses the most selected class by each threshold on the corresponding images
as the thresholding results. We tested our method on real images and images
with noise added. The results show that our method gives satisfactory results,
and it is robust against noise. Moreover, it requires less computational time than
the other 3D methods, and also gives better or comparable results.
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