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Abstract. Depth from defocus (DFD) is a technique to recover the scene depth
from defocusing in images. DFD usually involves two differently focused images
(near-focused and far-focused) and calculates the size of the depth blur in the
captured images. In recent years, the coded aperture technique, which uses a spe-
cial pattern for the aperture to engineer the point spread function (PSF), has been
used to improve the accuracy of DFD estimation. However, coded aperture sac-
rifices an incident light and loses a SNR of captured images which is needed for
the accurate estimation. In this paper, we propose a new computational imaging,
called half-sweep imaging. Half-sweep imaging engineers PSFs for improving
DFD and maintaining the SNR of captured images. We confirmed the advantage
of the imaging in comparison with conventional DFD and coded aperture in ex-
periments.

Keywords: computational photography, depth from defocus, image deblurring.

1 Introduction

There are many methods, referred to as depth from defocus (DFD) techniques [9], [11],
for estimating scene depths using a single camera. The methods use depth blurs (i.e.,
blurring that depends on the scene depth) that appear in captured images. DFD usually
employs a pair of images one being near-focused and the other being far-focused to de-
termine differences in sizes of depth blurs resulting from depth differences in a scene.
However, the circular shape of the aperture of a regular camera is not beneficial for
DFD estimation, since the aperture moderately affects depth blurring. For more robust
DFD estimation, many researchers have investigated coded aperture techniques [3], [5],
[13]. Such techniques use special patterns for the camera aperture to control the shape
of the point spread function (PSF). Additionally, it is well known that the shape of the
PSF directly affects the frequency response of an imaging system, which is described
by the optical transfer function in the field of optics. We can select aperture patterns
that drastically change the PSF shape in the image domain or its frequency response
in the Fourier domain according to scale changes of the PSF due to object depth dif-
ferences, thus achieving more accurate DFD estimation in discriminating scene depths.
However, the use of a coded aperture attenuates the intensity of captured images, since
incident light from the scene is blocked in engineering the PSFs. The attenuation de-
creases the signal-to-noise ratio (SNR) of the images and limits the improvement of
DFD estimation.
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In this paper, we propose a new imaging operation called half-sweep imaging for
DFD estimation. DFD has sometimes ignored the quality of the recovering image. We
focus to realize high quality of all-in-focus image reconstruction as well as robust DFD
estimation for considering to visualization in computational photography. The tech-
nique is inspired by focus sweeping [7], [4] and is extended to DFD applications. Half-
sweep imaging obtains two images by sweeping the focus during the image exposure
time. It has the advantage of a higher SNR for captured images, since we can engineer
the image PSFs even if a camera aperture is open. The operation requires the continuous
changing of the lens focus or sweeping of an image sensor, which is easy to implement
since we can utilize an auto-focusing mechanism or an actuator for image stabilization
that current commercial cameras already possess. Moreover, the method has complete
compatibility with regular imaging and adaptivity to scene depth when we stop the
sweeping motion or freely adjust the sweeping length and positions. Employing the
proposed method, we integrate multiple PSFs with different focus settings obtained by
focal sweeping to control the frequency responses of imaging PSFs. We split a sweep
into half regions to capture images. The two obtained images are captured for the same
scene, but using different PSFs (i.e., transfer functions of imaging). As a result, one of
the PSFs and captured images has zero-crossing in its frequency response, which helps
with depth estimation, and the sum of PSFs has a broadband spectrum, which allows
recovery of a better all-in-focus image.

2 Related Work

Many researchers have proposed PSF engineering methods to improve DFD estimation.
As an early work on coded apertures, Hiura and Matsuyama [3] used three or four pin
holes as the aperture of a multiple-focus camera. They used three differently focused
images captured by the camera and realized robust depth estimation. However, this
aperture coding was far from optimal.

Levin et al. [5] proposed using an aperture with a pattern more distinguishable than
that of a conventional circular aperture. They defined K-L divergence as a metric of the
PSF scale difference due to depth difference and found an optimal pattern for DFD es-
timation by maximizing the metric. The Fourier spectrum of the pattern contains many
zero-crossings and their positions are displaced when the blur size changes owing to
the depth difference. If we use a different size of the PSF for deconvolution, the re-
covered image has severe artifacts from the disagreement with the true PSF spectrum.
The artifacts increase the penalty for misrecognizing the depth and improve the stabil-
ity of DFD estimation. As a result, they allow DFD estimation from a single image,
while common DFD methods require at least two differently focused images to solve
ambiguity in the blurred image due to texture. However, the aperture is not suited to
recovering an all-in-focus image through deconvolution, since the frequency response
of a zero-crossing point is such that we have zero information at that frequency.

Zhou et al. [13] proposed a coded aperture pair to recover a high-quality focused
image and estimate depth. It is well known that a broadband PSF in the Fourier do-
main is favorable for blurred-image recovery through deconvolution, since it provides
image information through the entire frequency range even though the captured image
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is blurred [12], [14]. However, as mentioned for Levin et al.’s work [5], zero-crossings
are favorable for depth estimation. These properties are not compatible with each other
when only using a single aperture pattern. There is a dilemma in practical DFD appli-
cations that it is necessary to recover the true texture for accurate depth estimation, but
recovering the texture requires knowledge of the correct depth information. Therefore,
Zhou et al. [13] proposed the use of a pair of coded apertures that optimize image re-
construction and depth estimation simultaneously. In the case of their proposed aperture
pair, the frequency response of a single PSF has zero-crossings, but the sum of PSFs
has a broadband since the PSFs have complementary responses. The need to replace
two lenses with the coded aperture pair remains a difficult problem in image capturing.

A programmable-aperture camera that can quickly switch aperture patterns has been
developed [8]. Green et al. [2] proposed a multiple-aperture camera that uses special
mode mirrors. There are examples of implementations that have realized easy capturing
and increasing flexibility for multiple coded apertures. However, PSF engineering using
a coded aperture has an intuitive problem that the SNR of the image is lower than
that of the conventional DFD measurement, since the aperture blocks incident light in
controlling the PSF shape. Therefore, there is the limitation that noise in the image
destabilizes depth estimation and contaminates the recovered image.

Wavefront coding engineers the PSF without blocking incident light unlike the case
for a coded aperture. Employing this method, a special optical element called a phase
plate is placed at the position of the camera aperture. The phase plate controls the wave-
front of rays according to the positions in aperture open. Dowski et al. [1] proposed a
phase plate for DFD estimation whose PSF spectrum has many zero-crossings. Levin et
al. [6] theoretically analyzed the upper bound of the PSF response for image deblurring
and designed optics called a lattice focus lens to realize the PSF. The lens can be used to
estimate the scene depth and achieve optimal defocus deblurring, since the PSF of the
lattice focus lens is depth-variant. Wavefront coding engineers the PSF with an open
aperture and realizes image acquisition with a higher SNR. However, the cost of the
phase plate is expensive and its property is not adaptive to a scene.

Nagahara et al. [7], [4] proposed focus sweep imaging that moves focus points during
the image integration time to capture a single image. This method integrates different
scales of PSFs to realize PSFs that have broadband frequency response and invariant
shapes through the entire scene depth. They proposed applying this imaging operation
to an extended depth of field by deblurring without any depth estimation or knowledge.
The advantages of the focal sweep are a higher SNR of captured image, compatibility of
regular photograph and flexibility for scene. Hasinoff et al. [10] discussed the optimal
number of focal stack images across a scene depth for various imaging systems. They
applied focal sweep imaging to acquire focal stack (multiple) images to obtain a best all-
in-focused image. They showed it in simulation and did not compaired DFD accuracy
in the paper.

3 Half-Sweep Imaging

Focus sweep imaging [7], [4] sweeps the focal plane through a scene during the im-
age exposure time. It is achieved by moving the lens or image sensor position along
the optical axis. We can manipulate the PSF by controlling the range or speed of the
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sweeping. In this paper, we propose an extension of focal sweep imaging called half-
sweep imaging for DFD application. Full-sweep imaging [7], [4] sweeps the focal plane
through the entire depth of the target scene in the exposure time to realize the extended
depth of field. Our half-sweep imaging splits the sweep range into two regions and cap-
tures two images corresponding to the front half and back half of the sweeping regions.
Consequently, we capture two images that have depth-variant blurs (PSFs) for DFD es-
timation, while the original full sweep obtains depth-invariant blurs for deblurring. In
this section, we present the properties and advantages of PSFs in half-sweep imaging.

Figure 1 shows the projective geometry where the image sensor is at a distance p
from a lens with focal length f , and the aperture diameter is a. Incident rays from a
scene point M at the distance u converge to the focused point m at a distance v from
the lens. The relation between u and v is described by the Gaussian lens law:

1
f

=
1
u

+
1
v
. (1)

As shown in the figure, if an image sensor is placed at a distance p from the lens, M is
imaged to m′ with blur on the sensor. The diameter of the blurred circle b is given by

b(p) =
a

v
|(v − p)|. (2)

The PSF is a function of the distribution of light energy within the blurred circle. We
consider here r to be the distance of an image point from the center m′ of the blurred
circle, and the PSF is denoted P (r, u, p). The PSF is often modeled as a pillbox func-
tion:

P (r, u, p) =
4

πb2

∏
(
r

b
), (3)

where
∏

(x) is the rectangle function, which has a value 1 if |x| < 1/2 and 0 otherwise.
This is the PSF function of an object placed at u when the sensor position is fixed at p
as in regular imaging with a common camera.

In half-sweep imaging, the sensor moves from p0 to p2 along the optical axis of the
camera as shown in Figure 2-a. We assume that focus points of all objects in a scene
lie between p0 and p2. The half-sweep imaging captures two images f1 and f2 with
exposures e1 and e2 as shown in Figure 2-b. The sensor motion is modeled as a function
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Fig. 2. Half sweep imaging

of time p(t) = st + p0 if the sensor moves with constant speed s. The relation between
the sensor motion and exposure time is shown in Figure 2-b. This figure describes that
the exposures e1 and e2 for capturing the images f1 and f2 correspond to sweep regions
from p0 to p1 and from p1 to p2 respectively. Hence, we obtain two images with different
integrations of different blurred images focusing at positions between p0 and p1 or p1

and p2. It is easy to realize half sweeping by simply changing the shutter timings and
the exposure time from those for full sweeping. An imaging process can be modeled by
convolution of the PSF function:

fi = hi ⊗ f0 + ξ, i = 1, 2, (4)

where fi is the observed image, hi is the half-sweep PSF, f0 is the latent in-focus
image and ξ is the image noise, which is assumed to be Gaussian white noise N(0, σ2).
Normally, the shape of a PSF is determined by the aperture size and object depth as
described by Equation 3. Meanwhile, the half-sweep PSF hi is modeled by integration
of PSFs at multiple sensor positions p through the sweeping regions during the exposure
time. This is described by

hi(r, u) =
∫ pi

pi−1

P (r, u, p)dp, i = 1, 2, (5)

where pi (i = 0, 1, 2) is the position of the image sensor. The sensor moves from pi−1

to pi during exposure time ei. If we assume that the integrated blur model is a pillbox
function as described in Equation 3, the half-sweep PSF is modeled by

hi(r,u) =
uf

(u − f)πaspi

(
λpi−1 + λpi

r
− 2λpi−1

b(pi−1)
− 2λpi

b(pi)

)
, i = 1, 2, (6)

where b(p) is the diameter of the blurred circle at position p, and λp = 1 if b(p) ≥ 2r
and 0 otherwise.

Figure 3-a shows simulated half-sweep PSFs h1, h2 modeled by Equation 6 and their
average PSF hall at four different scene depths. The four different depth positions u are
decided by the relation of the lens law so that the corresponding focal position v is at
constant intervals on the sensor side. The average PSF hall is simply derived according



340 S. Matsui, H. Nagahara, and R. Taniguchi

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-15-15 0 15150

0.20.2

0.40.4

PixelsPixels

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sc
en

e 
D

ep
th

Sc
en

e 
D

ep
th

FarFar

NearNear

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

In
te

ns
ity

In
te

ns
ity

h1 h2  hallall HH1 H2  HHallall

Sc
en

e 
D

ep
th

Sc
en

e 
D

ep
th

FarFar

NearNear
FrequencyFrequency

Lo
g 

of
 p

ow
er

 sp
ec

tru
m

Lo
g 

of
 p

ow
er

 sp
ec

tru
m

-40-40

-20-20

0

-1-1 0 1

a. PSF profile b.FFT profile

Fig. 3. Half sweep PSF

to hall = (h1 + h2)/2. Therefore, we consider hall to be the same as the full sweep
PSF [7], [4], since the sum of h1 and h2 is an integration of different focal images
through the entire swept region. The figure shows that PSF shapes h1 and h2 change
according to the depth difference, while shape of the average PSF hall does not vary
visually. Figure 3-b shows the logarithms of power spectrums of these three PSFs with
different scene depths in the frequency domain, where H1, H2 and Hall are the discrete
Fourier transforms of h1, h2 and hall respectively. This plot corresponds to Figure 3-a.
The spectrums of H1 and H2 change according to depth. We also see zero-crossings in
one of the spectrums. On the other hand, Hall has a broadband spectrum. Levin et al.
[5] and Zhou et al. [13] claimed that PSFs having zero-crossings are a useful property of
the DFD measurement and improve depth discrimination. Additionally, it is well known
that broadband PSFs are beneficial for defocus deblurring [12], [14], [7], [4], [13] and
allow the generation of good quality all-in-focus images in DFD application.

4 DFD Algorithm for Half-Sweep Imaging

In this section, we propose a method for estimating a depth map and an all-in-focus im-
age from two images captured by half-sweep imaging. Half-sweep imaging is expressed
as Equation 4. This can be written in the Fourier domain as

F
(d)
i = F0 · H(d)

i + N, i = 1, 2, (7)

where F
(d)
i is the Fourier transform of a captured images (i = 1, 2) at depth d, F0 is the

Fourier transform of a latent all-in-focus image, H(d)
i (i = 1, 2) is the Fourier transform

of a half-sweep PSFs at depth d and N is the Fourier transform of noise. We consider
here the problem in which we estimate the all-in-focus image F0 and unknown scene
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depth d from Equation 7. Generally, the image F0 is given by deconvolution. We use
the Wiener deconvolution:

F̂0 =
F · H

|H2| + |C|2 , (8)

where H̄ is a complex conjugate of H and |H |2 = H · H̄ . C represents σ/A
1
2 , where

A is defined over the power distribution of natural images according to the 1/f law.
The original Wiener deconvolution was designed to deblur one blurred image, and we
propose to use the extended method in our half-sweep imaging. As shown in section 3,
hall, which is the average of h1 and h2 kernels, has a broadband frequency response for
each depth. Additionally, fall, which is the average image of f1 and f2, has broadband
image information, since we can assume that the image fall is captured by the hall

kernel. The property of addition is maintained over the Fourier transform. Hence, we
obtain the Fourier transforms of the average kernel and the image as

Fall =
F1 + F2

2
, H

(d)
all =

H
(d)
1 + H

(d)
2

2
. (9)

We can extend Wiener deconvolution to half-sweep imaging by substituting Equation 9
into Equation 8:

F̂0
(d)

=
(F1 + F2)(H

(d)
1 + H

(d)
2 )

|H(d)
1 + H

(d)
2 |2 + 4|C|2

. (10)

We consider that the error between observed images and estimated observed images
must be minimum when the estimated depth d is correct. Therefore, we defined a cost
function to estimate depth d is expressed as

W (d) =
∑

i=1,2

|IFFT (F̂0
(d) · H(d)

i − Fi)|, (11)

where IFFT is the 2D inverse Fourier transform and F̂0 is derived from Equation 10.
The cost function W (d) represents the error between the reconstructed images and the
captured images; therefore, W (d) is a measure of how close d is to the actual scene
depth d∗. We estimate depths to find the minimum W (d) for each pixel (x, y) using

U(x, y) = argmin
d∈D

W (d)(x, y). (12)

We also obtain an all-in-focus image I from the estimated depth map U as

I(x, y) = F̂0
(U(x,y))

(x, y). (13)

5 Performances Analysis

We carried out simulation experiments to evaluate the performance of our half-sweep
imaging. In this section, we denote the object position as u, the focal point v and sensor
position p as shown in Figure 1. We assumed that the scene is a synthetic staircase
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Table 1. Correspondence among step number, object depth and focus position (f = 9 mm)

Depth step Step1 Step5 Step10 Step15 Step20 Step25 Step30 Step35 Step40
Object:u[mm] 2034 321 160 109 83.6 68.6 58.5 51.4 46.1
Focus: v[mm] 9.040 9.260 9.535 9.810 10.085 10.360 10.64 10.91 11.185

20
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1

(step)

a. Ground Truth b. Conventional DFD c. Coded aperture pair d. Half-sweep imaging

Fig. 4. Estimated depth map
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Fig. 5. Error map of deblurred image

scene as shown in Figure 4-a. These depth maps have false-color representation with
red indicating locations far (step 1) from the camera and blue locations near (step 20)
the camera. The scene has two textures, one with strong and dense patterns and the other
of natural wood with weak texture as shown in Figure 5-a. The physical object depths u
are from 2034 to 83.6 mm from a camera lens. The corresponding focal point v varies
from 9.04 to 10.085 mm behind the lens according to the lens law of Equation 1. We
divided the possible range of the focal position v into 20 uniform steps (Δv =0.055
mm) so that the depth blur must change by a similar ratio (0.5 pixels for each step) in
an image. Table 1 gives the conversion among a step number, the corresponded object
depth u and the focal position v for easy understanding of the relations. The focal
length and F-number of a lens are taken as f = 9 mm and f/1.4 in our setting. Under
these settings, we simulated captured images through convolution with theoretical PSFs
modeled by the pillbox function described by Equation 6. We set integration intervals
to half by half of the target depth range for half-sweep DFD. When the depth range
is 20 steps in this case, the intervals are 1 to 10 and 11 to 20 steps. The corresponding
sensor positions are p0=9.04 mm, p1=9.945 mm and p2=10.085 mm for equation 5. The
conventional DFD used far-focused (step 1, p = 9.04 mm) and near-focused (step 20, p
= 10.085 mm) images with an open circular aperture. The coded aperture used two far-
focused (step 20, p = 9.04 mm) images captured by an aperture pair [13](i.e., aperture
difference is the depth key). We estimated scene depth maps and all-in-focus images
using the proposed DFD algorithm as mentioned in Section 4. For the conventional and
coded-aperture DFD estimation, we used Zhou’s DFD algorithm [13] for comparison.



Half-Sweep Imaging for Depth from Defocus 343

5 10 15 20 25 30 35 400
1
2
3
4
5
6
7
8
9
10

Depth range[step]

RM
S[
st
ep
]

 

 
HalfSweep
Conventional
CodedAperture

2 5 10 15 20 25 30 35 4015

20

25

30

35

40

45

50

55

Depth range[step]

PS
NR
[d
B]

 

 
HalfSweep
Conventional
CodedAperture

2

a. RMS vs Depth range b.PSNR vs Depth range

Fig. 6. Simulation results

Figure 4 shows the depth estimation results. The figure shows the depth maps of
(a) the ground truth, (b) the conventional DFD method, (c) Zhou’s coded aperture pair
and (d) our proposed method by capturing half-sweep imaging. We see that the strong
texture on the left side of the scene does not differ greatly among the methods. However,
there are large differences for the weak texture on the right side, with our proposed half-
sweep imaging having the best performance. Figure 4-b, the result for conventional
DFD estimation, shows large error around the central depth, and Figure 4-c, the result
for coded-aperture-pair DFD estimation, shows error for the entire depth range. On the
other hand, Figure 4-d, the result for our method, shows greater robustness, although the
scene has weak texture. Figures 5-b, c, d show difference images between the estimated
images and the true texture as shown in Figure 5-a, since it is difficult to recognize
the error in the estimated images. The figures are shown by false color representation
and the color bar indicates the errors in normalized intensity (i.e., maximum intensity
is 1.0). Figure 5-b shows large reconstruction errors for the center of the image, since
captured images have large blurs and high-frequency information was lost in the center
of the image in conventional DFD estimation. Figure 5-c shows that the recovery errors
increase where the object depth approaches a far position. It is difficult to distinguish the
difference between the coded aperture pair where the size of blur is small or in focus,
since the method of the coded aperture pair employs the shape difference between the
apertures as a depth key. Figure 5-d shows that the proposed recovery method produces
errors that are smaller and more uniform.

We also compared numerical qualities among these methods. In this experiment, we
used similar setting to Figure 4, but we changed the object depth range (the number
of stairs) from 2 to 40 steps. Table 1 also shows the conversion of the object depth.
We used arbitrary 30 images downloaded from flickr as scene textures for generating
simulated images. Figure 6-a and b show the root-mean-square (RMS) of the estimated
depth errors and the peak signal-to-noise ratios (PSNR) of the recovered images against
the object ranges. In these figures, line plots indicate the average values of the RMS
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error or PSNR, and the error bars indicate the standard deviations of 30 variations of
the textures. The standard deviations imply that the each result is deviated depending on
the texture difference. Figure 6-a shows that all of the methods are getting worse if the
depth range are enlarged, since bigger size of blur must be used for estimating larger
depth range and it is difficult to estimate the blur size when the size is larger. Half sweep
DFD is still better performance for estimating the depth than the others. Figure 6-b also
shows the similar results that PSNR is getting worse when the depth range is enlarged
among the all methods. Yet, it is obvious that the PSNR of the proposed method is far
better than that of the others. We can also see that the standard deviation of the proposed
method is smaller than the others. It means that half sweep DFD is more robust to
recover the images independent to the scene texture variety. These figures show that the
proposed method outperforms both depth estimation and the recovered image quality.

We confirm that the proposed method of half-sweep imaging has the best perfor-
mance in terms of estimating the scene depth and recovering an all-in-focus image.
This is due to one of the proposed half-sweep imaging PSFs having zero-crossings and
their sum having a broadband spectrum in the Fourier domain.

6 Real Implementation and Experiments

We evaluated our half-sweep imaging for real images captured by a prototype camera.
Figure 7 shows the prototype camera for realizing half-sweep imaging. The camera
consists of a 1/3” Sony CCD (with 1032×776 pixels) mounted on a Physik Instrument
P-628.1CL translation stage. This stage is driven by a piezoelectric actuator and the
range of translation is 800 microns. We attached a Tokina 12.5 mm lens and the F-
number was set to f/1.4 in this experiment. The shutter of the CCD and the actuator
were controlled with by signals generated by PC. They were completely synchronized
for realizing half-sweep imaging.

A target scene that we captured in this experiment is shown in Figures 8 and 9. There
are four objects at different depths in front of a wall in the scene. The range of scene
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depth was 340 to 750 mm from the camera lens. The actuator needed to translate 225
microns from start to end positions to covering the entire scene depth. Figure 9-a shows
the images captured using the prototype camera with half-sweep imaging. The images
f1 and f2 were captured by the front half and back half of the sensor sweeping. Figures
8-a show images again captured using the prototype camera but with near-focus and
far-focus positions (not sweeping) for conventional DFD. We captured measured PSFs
for both half-sweep imaging and conventional DFD estimation at ten depths using a
point light source before the experiments.

We estimated the object depths and recovered all-in-focus images using the input
images and measured PSFs. Figures 9-b, c show the results of the recovered all-in-focus
images and the depth map of the scene. We employed the proposed DFD method as
mentioned in Section 4. Figures 8-b, c show the results of conventional DFD estimation
for comparison. Comparing Figures 9-d and 8-d, we see that both depth maps show
the depth differences among the objects and we cannot see a strong advantage for one
method over the other. It was caused by that the scene has relatively strong texture
unlike the scene in the simulation. Hence, the difference was not appeared between the
methods.

Comparing Figures 9-b and 8-b, we see that the recovered focused images have large
differences. The image obtained through conventional DFD estimation has many arti-
facts such as enhanced noise and ringging artifacts. We also see that some portion of
the texture is still blurred even after deconvolution because of depth estimation errors.
Figures 10 clearly show the differences for magnified portions of the images. Figure
10-c shows the ground truth textures captured for the same scene with a small aperture
setting of f/16. The proposed method does not provide an image that is identical to the
ground truth but has far better performance than the conventional DFD approach. The
experiments confirm that our proposed method has an advantage over the conventional
DFD and works in a real implementation.

7 Conclusion

This paper proposes a new computational imaging technique called half-sweep imaging
and a processing method for DFD estimation. The sensor sweeps during the exposure
time to capture two images. We show that PSFs of the proposed half-sweep imaging
simultaneously have zero-crossings and broadband properties in the Fourier domain.
We realized robust depth estimation and high-quality image recovery from the contri-
bution of the PSF properties. We confirmed the advantage of our half-sweep imaging
over previous methods in simulation and real experiments. We implemented a proto-
type camera that incorporates a piezoelectric actuator to sweep an image sensor in real
experiments. However, the sweeping operation can be more easily implemented for
commercial cameras; e.g., utilizing the auto-focusing mechanism. Half-sweep imaging
has the advantages of obtaining a higher SNR for images, having flexibility such that
it can adapt to the scene depth, and having complete compatible with regular imaging.
Hence, it is applicable for a wide range of products such as digital still cameras.
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Near focus : f2

Far focus : f1

a. Captured images

b. Recovered image

c. Depth map
Fig. 8. Conventional DFD

Near sweep : f2

Far sweep : f1

a. Captured images

b. Recovered image

c. Depth map
Fig. 9. Half-sweep imaging

a. Conventional DFD b. Half-sweep imaging DFD c. Ground truth (f/#=16)

Fig. 10. Zoom up potion of images
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