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Abstract. We propose a method of predicting human egocentric visual attention
using bottom-up visual saliency and egomotion information. Computational mod-
els of visual saliency are often employed to predict human attention; however, its
mechanism and effectiveness have not been fully explored in egocentric vision.
The purpose of our framework is to compute attention maps from an egocentric
video that can be used to infer a person’s visual attention. In addition to a stan-
dard visual saliency model, two kinds of attention maps are computed based on a
camera’s rotation velocity and direction of movement. These rotation-based and
translation-based attention maps are aggregated with a bottom-up saliency map
to enhance the accuracy with which the person’s gaze positions can be predicted.
The efficiency of the proposed framework was examined in real environments
by using a head-mounted gaze tracker, and we found that the egomotion-based
attention maps contributed to accurately predicting human visual attention.

Keywords: Visual saliency, visual attention, first-person vision, camera motion
estimation.

1 Introduction

Visual attention can be an important cue to infer the internal states of humans. Tech-
niques to predict human visual attention have been employed in various applications in
the area of, e.g., attentive user interfaces and interactive advertisements. One of the most
direct ways of inferring visual attention is to measure the human gaze [7]; however, it
is still a difficult task to measure our gaze in casual and unconstrained settings.

An alternative way of estimating the visual focus of attention is to use a visual
saliency map model. Inspired by psychological studies on visual attention [24], Koch
and Ullman proposed the concept of the saliency map model [17]. Itti et al. subse-
quently proposed a computational model [15] of visual saliency to identify image re-
gions that attract more human attention. Following their study, many types of saliency
map models have been proposed through the years [14,1,2,8,3,25]. Studies using gaze
measurements [5,12,20] have also demonstrated that the saliency maps agree well with
actual distributions of human attention.
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Egocentric vision refers to a research field analyzing dynamic scenes seen from ego-
centric perspectives, e.g., taken from a head-mounted camera. Egocentric perspective
cameras are suited for monitoring daily ego-activities, and hence accurate predictions
of egocentric visual attention will be useful in various fields including health care, ed-
ucation, entertainment, and human-resource management. There has been much work
on video attention analysis [18,21,13]; however, methods of analyzing egocentric vi-
sual attention have yet to be sufficiently explored. Saliency maps in these studies were
computed from images shown to human subjects using monitors, and their effectiveness
was evaluated against the gaze points given on the monitors. Hence, it still remains an
unresolved question as to how we can predict visual attention accurately in egocentric
videos that include visual motions caused by human head motion.

We propose a new framework in this paper to compute attention maps from ego-
centric videos using bottom-up visual saliency and egomotion information. Two kinds
of egomotion-based attention maps, i.e., rotation-based and translation-based maps are
computed in our framework and they are aggregated with the bottom-up saliency maps
to produce accurate attention maps.

Camera motion has been employed to analyze attention in home videos [18,21].
Intentional human head motion in egocentric videos can have a stronger relationship
with attention directed. Hillair et al. proposed a method of predicting egocentric visual
attention in virtual reality environments based on the rotation factor of head move-
ment [10,11]. Fukuchi et al. discussed the effect that focus of expansion (FOE) of mov-
ing pictures had in attracting human attention and they provided some experimental
evaluations of FOE-enhanced saliency maps [6]. Although the basic idea behind our
work was similar to that in these studies, we applied the framework to real egocen-
tric scenes and motion-based maps were computed purely using input video without
requiring additional sensors.

It is a well-known fact that humans tend to look at the center of images and a simple
centering bias map can also contribute to enhancing the accuracy of saliency maps [16].
Our proposed attention maps can be seen as improved centering bias maps that are well-
suited to egocentric vision. The effect of using motion-based attention maps is examined
in a real setting using a mobile gaze tracker, and a comparison with a centering map is
also discussed in Section 3.

2 Prediction of Visual Attention Using Saliency and Egomotion

The goal of this work was to predict visual attention by only using an egocentric video.
Fig. 1 outlines the flow for our proposed framework. While bottom-up visual saliency
maps are computed from input egocentric video, motion maps are computed using a per-
son’s egomotion. These additional motion maps are integrated into the visual saliency
maps, and the resulting map achieves higher accuracy in predicting human attention.
Details on the computations for the visual saliency maps and the motion maps are de-
scribed in the following sections.
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Fig. 1. Flow for our proposed framework. While bottom-up visual saliency maps are computed
from input egocentric video, motion maps are computed using person’s egomotion. These addi-
tional motion maps are integrated into visual saliency maps, and resulting map achieves higher
accuracy in predicting human attention.

2.1 Computation of Visual Saliency Maps

We used the graph-based visual saliency (GBVS) model proposed by Harel et al. [8]
in this work to compute the bottom-up saliency maps. Since it has previously been re-
ported that saliency maps using dynamic features (motion and flicker) reduce the accu-
racy of saliency maps in egocentric scenes [26], we only employed static features, i.e.,
color, intensity and orientation to compute the saliency maps. As discussed above, the
core concept in computational visual saliency is extracting regions with vastly different
image features than their surrounding regions. Saliency maps in the GBVS model are
generated by computing the equilibrium distributions of Markov chain graphs. Graphs
are defined with nodes corresponding to pixels, and higher transition probabilities are
assigned between dissimilar nodes (=pixels). Higher values are given in this way to
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nodes with distinctive image features in their equilibrium distribution and these can be
used as saliency maps. Readers should refer to [8] for more details. Saliency maps are
computed from each of the three features, and combined with equal weights to generate
the final saliency map.

2.2 Computation of Attention Maps from Egomotion

Motion-based attention maps were computed using a person’s egomotion in addition to
the above visual saliency maps. We employed two kinds of attention maps in this work:
rotation-based and translation-based. The computation consisted of three steps: 1) we
estimated camera motion from the egocentric video, 2) estimated angular velocity and
generating rotation-based attention maps, and 3) estimated the direction of movement
and generated translation-based attention maps. We assumed that the camera’s intrinsic
parameters were known in this work and the lens distortion would be corrected through
calibration. The camera was also assumed to be attached to the person’s head so that its
coordinates were identical to his/her visual field. Details on the three steps are described
in what follows.

Estimation of Camera Motion. First, camera motion between two consecutive frames
was computed using epipolar geometry, and rotation matrix R and translation vector t
were obtained. Feature flows between the two frames were acquired using the Kanade-
Lucas-Tomasi feature tracker [23,22], and an eight-point algorithm [9] was then applied
to compute the fundamental matrix, F . RANSAC [4] was used to robustly select the
eight points without being affected by outliers caused by items such as moving objects.
Since the intrinsic parameters were known, R and t could be obtained from F .

Rotation-Based Attention Map. The rotation angle around each axis was computed
from R in the second step, and the rotation-based attention map was generated using
horizontal and vertical angular velocities. Let us denote the horizontal and vertical axes
of the egocentric video as x and y, the camera’s optical axis as z, and the rotation angles
around these axes as θx, θy, θz . Since it is assumed that the camera and the person’s
visual field share the same coordinates, the horizontal and vertical rotation angles of
the head correspond to θy and θx. Given rotation matrix R and if we assume a x-y-
z rotation order, θx and θy can be uniquely determined (θz is set to 0 if θy = ±π

2 ).
By denoting the frame rate of the video as f [fps], the horizontal and vertical angular
velocities can be written as ωx = 180fθx/π and ωy = 180fθy/π.

We drew a 2-D Gaussian circle based on the angular velocities with a fixed variance
to generate rotation-based attention maps. Hillair et al. [10] reported a strong correlation
between gaze positions and angular velocities when the velocity was less than about
100[deg /s]. With larger velocity, Gaze positions tend to be almost fixed. According to
their report, we define the center of the Gaussian (x, y) as illustrated in Fig. 2:

x =

⎧
⎪⎨

⎪⎩

ωy

100 · w
k (|ωy| ≤ 100)

w
k (ωy > 100)
−w

k (ωy < −100)
(1)
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Attention map Definition of the center position

Fig. 2. Rotation-based attention map. 2-D Gaussian circle is drawn with fixed variance to gen-
erate rotation-based attention maps based on angular velocities. According to report by Hillair
et al. [10], center of Gaussian is defined so that it is proportional to angular velocity within the
range of 100[deg /s].

and

y =

⎧
⎪⎨

⎪⎩

− ωx

100 · h
l (|ωx| ≤ 100)

−h
l (ωx > 100)

h
l (ωx < −100),

(2)

where w, h indicate the width and height of the attention map and k, l are parameters
according to the camera’s angle of view.

Translation-Based Attention Map. Another attention map is generated in the third
step based on the direction of the person’s movement. The FOE of the input visual
stimuli during translatory movements indicates the direction of movement. Similarly
to [6], we generate the motion-based attention map based on the assumption that sur-
rounding regions of the FOE attract more attention. We calculate the FOE of the input
video as follows.

Egocentric videos usually contain independently moving objects and the person can
also perform rotational movements. Therefore, the intersecting point of their feature
flows does not always correspond to the FOE as illustrated in Fig. 3. We first rejected
feature flows in this work that were identified as outliers when computing fundamental
matrix F and only inlier flows were used in further processing.

Next, the rotational and translational components of the flow were separated. Let
us denote the current image as I(t) and the previous image as I(t−1). If we can rotate
I(t−1) using the previously computed rotation matrix, R, the relationship between the
rotated image, I(t−1)

R , and I can be described by the translation vector, t. If we denote

the camera’s intrinsic matrix as A, pixel coordinates m(t−1) and m
(t−1)
R of the feature

point in I(t−1) and I(t−1)
R can be written in homogeneous coordinates as

m(t−1) ∼ Ax(t−1), (3)

m
(t−1)
R ∼ Ax

(t−1)
R , , (4)
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  (a) Feature flows

  (b) Translational flows   (c) Flows of moving objects

   

  (d) Rotational flows

FOE

Fig. 3. Components of feature flows. Intersection point of translational flow (b) corresponds to
Focus of Expansion (FOE) and it indicates direction of camera movement. However, feature flows
computed from egocentric video (a) include flows caused by independently moving objects (c)
and rotational movements (d). Components corresponding to (c) and (d) must first be separated
from computed flow (a) to estimate FOE of input frame.

where x(t−1) and x
(t−1)
R indicate the normalized image coordinates of the feature point.

As discussed above, the following relationship also holds:

x
(t−1)
R ∼ Rx(t−1), (5)

and hence m
(t−1)
R can be written as

m
(t−1)
R ∼ ARA−1m(t−1). (6)

By applying Eq. (6) to all coordinates m(t−1) of inlier flows, the translational compo-
nents of flow m(t) −m

(t−1)
R can be computed. The FOE is computed as the point with

the minimum Euclid distance to all the translational flows. Fig. 4 shows a example of
all feature flows and the separated translational flows. The bright rectangles indicate
feature positions in current frame m(t), and the dark rectangles indicate feature posi-
tions in original image m(t−1) (a) and rotated image m

(t−1)
R . The circles overlaid in

the images indicate the computed FOE.
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(a) Raw feature flows (b) Translational flows

Fig. 4. Separation of translational flows. By rotating previous frame using rotation matrix R,
translational flows (b) can be obtained from raw feature flows (a). Each image shows current
frame I(t). Bright rectangles indicate feature positions in current frame m(t), and dark rectan-
gles indicate feature positions in original image m(t−1) (a) and rotated image m

(t−1)
R . Circles

overlaid in images indicate FOEs that are computed as point with minimum Euclid distance to all
translational flows.

The above process computes the FOE based only on two successive frames; however,
using multiple video frames will lead to more accurate computation of the moving
direction. For this reason, we computed the FOEs between all K pairs of I(t) and I(t−k)

(k = 1, 2, . . . , K , and K = 15 in this work). A motion-based attention map is generated
from the K FOEs by Gaussian kernel density estimation.

2.3 Aggregation of Maps

The bottom-up visual saliency maps and the egomotion-based attention maps are then
aggregated to compute the final attention map. All maps are summed with equal weights,
and the summed map is then normalized to have fixed maximum and minimum values.
Fig. 5 shows some examples of visual saliency maps, attention maps, and the final ag-
gregated map. We evaluated three combinations of the maps in this work: A) saliency
+ rotation + translation, B) saliency + rotation, and C) saliency + translation. This is
further discussed in Section 3.

3 Experiments

Here, we describe the details on the experiments we carried out to evaluate what effect
using motion-based attention maps had. We used a head-mounted gaze tracker to cap-
ture real egocentric videos and ground-truth gaze points. The prediction accuracy of the
attention maps was assessed with the receiver operating characteristic (ROC) curves of
the maps similarly to evaluating visual saliency maps. The prediction accuracy of our
maps was also compared with a simple centering bias map to further demonstrate the
efficiency of our method.



284 K. Yamada et al.

Imput images

Attention maps
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Saliency + Rotation + Translation

Saliency + Rotation

Saliency + Translation

Saliency
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Fig. 5. Examples of attention maps. Top row shows input images, and other images show exam-
ples of visual saliency maps (saliency), motion-based attention maps (rotation and translation),
and three different types of their combinations.

3.1 Experimental Settings

A mobile gaze tracker, the EMR-9 [19] developed by NAC Image Technology, was used
in the experiments. A scene camera was installed on the EMR-9 as seen in Fig. 6(a),
and it captured egocentric video of the subject at 30 [Hz]. The horizontal field of view
of the scene camera was 121◦, and the resolution of the egocentric video was 640×480
[pixels]. EMR-9 also had two eye cameras and two infrared light sources, and recorded
the ground-truth gaze points on the egocentric video at 240 [Hz].
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Scene camera

Eye camerasEye cameras

IR light sourcesIR light sources

(a) (b)

Fig. 6. (a) Mobile gaze tracker employed in experiments. Scene camera is installed and it captures
egocentric video of subject at 30 [Hz]. Two eye-cameras and two infrared light sources can record
ground-truth gaze points on egocentric video at 240 [Hz]. (b) Example frame of egocentric video.
Horizontal field of view of scene camera was 121◦ , and resolution of egocentric video was 640×
480 [pixels].

Egocentric videos and gaze points of five test subjects were recorded under three
different settings in which the subjects were: seated indoors, walking indoors, and
walking outdoors. Free head movements were allowed in all the settings. Fig. 6(b)
shows some examples of the recorded scenes. After rejecting frames with unreliable
gaze data caused by actions such as blinking and fast eye movements, the same number
of 8, 000 gaze points was selected in each of the 5 × 3 datasets we used for
evaluation.

3.2 Results

To assess how accurately the attention maps predicted a persons’ visual attention, we
analyzed the correspondence between the maps and the ground-truth gaze points. Fig. 7
shows the ROC curves of the attention maps generated by our framework that were
drawn by sweeping the threshold value across all maps. The vertical axis indicates true
positive rates, i.e., the rates of gaze points that have higher values than the threshold
in the corresponding maps. The horizontal axis indicates false positive rates, i.e., rates
of map regions without gaze points that have higher values than the threshold. There-
fore, this indicates that the maps can predict gaze points more accurately if the curve
approaches the top-left corner.

The area under the curve (AUC) values of the ROC curves are listed in Table 1, where
results using a simple centering bias map (centering) have also been listed in addition to
the maps (saliency, rotation, and translation) discussed above. It can be seen from these
results that our proposed framework can predict actual gaze points more accurately than
the standard visual saliency maps and the centering bias maps in egocentric videos. The
combination of the visual saliency map and the rotation-based attention map achieved
the highest AUC, and thus the highest accuracy.
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Fig. 7. ROC curves of attention maps. Curves were drawn by sweeping threshold value across all
maps in four datasets ((a) seated indoors, (b) walking indoorsC(c) walking outdoors, and (d) all
combined). Vertical axis indicates true positive rates, i.e., rates of gaze points that have higher
value than threshold in corresponding maps. Horizontal axis indicates false positive rates, i.e.,
rates of map regions without gaze points that have higher value than threshold.
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Table 1. Prediction accuracy of attention maps. Each row lists area under curve (AUC) values of
ROC curves using bottom-up visual saliency maps (saliency), rotation-based attention maps (ro-
tation), translation-based attention maps (translation), centering bias maps (centering) and their
combinations.

Method AUC

Proposed (saliency + rotation) 0.900

Proposed (saliency + translation) 0.841

Proposed (saliency + rotation + translation) 0.893

Saliency 0.809

Rotation 0.892

Centering 0.884

Saliency + centering 0.890

4 Conclusion

We proposed a framework for computing human visual attention maps based on bottom-
up visual saliency and egomotion. Rotation-based and translation-based attention maps
were generated only using egocentric videos without requiring additional sensors. The
effect of using egomotion-based maps was quantitatively evaluated using real egocen-
tric videos, and we demonstrated that the combination of visual saliency maps and
rotation-based attention maps could achieve the most accurate predictions of human
attention.

Attention prediction using our framework can be done just by using egocentric videos.
This has widespread possibilities for applications including casual gaze trackers and
attention-based life-log systems. More sophisticated mechanisms for human egocentric
visual perception will be investigated in future work to achieve more accurate prediction
of visual attention.
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