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Abstract. In automatic facial expression recognition, an increasing num-
ber of techniques had been proposed for in the literature that exploits
the temporal nature of facial expressions. As all facial expressions are
known to evolve over time, it is crucially important for a classifier to be
capable of modelling their dynamics. We establish that the method of
sparse representation (SR) classifiers proves to be a suitable candidate
for this purpose, and subsequently propose a framework for expression
dynamics to be efficiently incorporated into its current formulation. We
additionally show that for the SR method to be applied effectively, then a
certain threshold on image dimensionality must be enforced (unlike in fa-
cial recognition problems). Thirdly, we determined that recognition rates
may be significantly influenced by the size of the projection matrix ®.
To demonstrate these, a battery of experiments had been conducted on
the CK+ dataset for the recognition of the seven prototypic expressions
— anger, contempt, disgust, fear, happiness, sadness and surprise — and
comparisons have been made between the proposed temporal-SR against
the static-SR framework and state-of-the-art support vector machine.

Keywords: sparse representation classification, facial expression recog-
nition, temporal framework

1 Introduction

Advancements made in the field of affective computing research are being rapidly
propelled by commercial interests such as marketing, human-computer-
interaction, health-care, security, behavioral science, driver safety, etc. A cen-
tral aim of this research is to enable a computer system to detect the emotional
state of a person through various modalities (e.g., face, voice, body, actions),
in which the inference through one’s facial expression had been a significant
contribution. In the recent literature [II2J3l[4], an increasing number of machine
learning techniques had been proposed to take advantage of the dynamics in-
herent in facial expressions. Intuitively, enabling the temporal information of a
signal to be exploited serves to elegantly unify a machine learning framework
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Fig. 1. As a simple thought experiment, consider in (a) a static approach which distin-
guishes between 2 classes of signals s1 and s2 (e.g., happiness vs sadness as the choice
of signals here). Observe that only the terminal points in (a) are considered, where the
signal’s temporal evolution have been discarded (hence small Astatic). On the other
hand, a strategy which exploits temporal information is able to map (a) to (b), which
enforces both signal classes to occupy a two-dimensional space based on their ‘shape’
in time (i.e., temporal content); and thus produces a large Atemporal-

with the architecture of how facial expressions naturally evolve (see Figure [2I).
To illustrate this concept, observe in Figure [[{a) how the training/prediction
of a classifier is determined using only the terminal points (e.g., a single frame
containing the expression’s apex). A problem with such a static approach is that
it takes into account only a single state of the signal, but disregards the signal’s
past states (i.e., memoryless). By incorporating temporal information (Figure
(b)), one is able to amplify the minuscule static differences Astatic using the
signals’ temporal content to obtain a larger A¢emporal. A drawback with adopt-
ing such a strategy revolving round a temporal framework, however, is that the
complexity of the problem increases proportionally to the quantity of temporal
information under consideration (i.e., more training and testing data). Having
this in mind, we aim to develop a method which achieves these objectives, while
at the same time being able to reduce data dimensionality. One method which
gracefully fulfills the latter requirement is the method of sparse representation
(SR) classification [5]. However, this method in its current formulation is unable
to fulfill the former objective of modelling the dynamics of various expressions. In
this paper, we propose a temporal framework for it to fully exploit the dynamics
of facial expression signals in an efficient manner (see Section [3]).

Recently, the above-mentioned (static) SR classification method had gener-
ated considerable excitement in the field of face recognition, thus its transition
towards facial expression recognition comes as little surprise. In [5], it was pro-
posed that the downsampling of the input image to a dimensionality of approxi-
mately 10 x 10 pixels, and then projecting this image using a random projection
produced impressive performance for the task of person identification. From our
experiments, we found that this procedure was not suitable for expression recog-
nition. As opposed to solving for the identity of a person, facial expressions
are formed through numerous interactions between various facial muscle groups
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Fig. 2. Examples from the CK+ dataset [I0] illustrating the strong temporal links
present within neighbouring frames among different expressions, (a) sadness, (b) hap-
piness, (¢) contempt, (d) anger and (e) fear

(e.g., eyebrows, lips, nose), most of which require an adequate number of pixels
to represent.

In Section B] we show that the solution to such high dimensionality vectors
is computationally exhaustive. We employ SR theory to reduce the image di-
mensionality, and investigate the impact of different dimensions on recognition
performance. Interestingly, different expressions were observed to react differ-
ently to this. In most of the works [GI7/8/9] pertaining to using SR classifiers for
expression detection, a static approach had been adopted; that is, only single
independent frames from various sequences were used. However, it should be
recognized that facial expressions are inherently temporal by nature (as shown
in Figure ) and it will be beneficial to incorporate temporal information into
the SR classifier.

The central contributions of this paper are,

— Propose a temporal framework for sparse representation classifiers to im-
prove facial expression recognition rates.

— Investigate the effects of downsampling the input images, and the significance
of dimensionality reduction on detection accuracy.

— Compare the state-of-the-art SVM framework versus the conventional static-
SR classifier and the proposed temporal-SR classifier frameworks and demon-
strate that the proposed temporal method offers improved recognition rates.
To the best of our knowledge, we are the first to quantitatively report the
performance of SR classifiers for all seven expressions. This is important
because application developers can decide between SVM and temporal-SR,
classifier based on the accuracy versus complexity trade-off.
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2 Review of Temporal-Based Methods in Expression
Recognition

Exploiting temporal information for facial expression recognition is not new. For
example, in [4] which used a dynamic Bayesian network to model the dynamic
evolution of various facial action units (AUs). A slightly different approach was
adopted in [3] which modeled AUs using expression dynamics coupled with phase
information. A list of other temporal techniques can be found in [TTJT2/13]. The
major difference between these works and ours, however, is that all these meth-
ods proposed require complex features to be extracted from multiple temporal
frames. As feature extraction may be considered to be computationally expen-
sive even in the static context, the problem becomes additionally complex and
computationally expensive when multiple temporal frames are to be considered.
On the other hand, our method does not require any feature representations to
be computed. Furthermore, our method is driven by SR theory which is different
from all of the above-mentioned methods. SR classification had been used for
both face recognition [5] and facial expression recognition [14] previously (espe-
cially in [5] which utilized random features). However, none of these SR methods
had capitalized on expression dynamics. Our proposed method exploits expres-
sion dynamics through SR theory, and we demonstrate the advantages of this
method over other feature-based alternatives that rely mainly on only spatial
information.

3 A Temporal Framework for Sparse Representation
Classification

In this section we describe the underlying mechanics of the proposed Sparse
Representation (SR) classifier for facial expression recognition. We initiate the
description in terms of static frames, and then introduce the incorporation of
temporal information into the framework.

Let us consider that we have N facial expression images spanning over ¢ =
1,2,...,C class. We represent these N images by N vectors 1, ..,Uny € R™. Let
us construct a dictionary £ by packing the vectors #;, V;—; . n into the columns
of a matrix ¢ € R™ ¥ Intuitively, a test sample (e.g., a face image) ¥ € R"
of class i € {1,2,...,C} can be represented in terms of the dictionary £ by the
following linear combination,

7y =¢a, 1)

where @ = [0,0, 71, .., mix, 0,0] 7, m;; are some scalars and k is the number of
face images per class. Clearly, the solution to () (i.e. &) would recognize the
test image class (class corresponds to nonzero element is the match), however,
we have to identify a method to compute a sparse d&.

A general method to find the sparse solution of () is to solve the following
optimization problem:

argmin & = ||d|]g, s.t.7 = &£4Q, (2)
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where ||.||o denotes the ¢y norm, which returns the nonzero elements of a. Note
that if n > N, the system is overdetermined, in that case (2) can be solved in
polynomial time. Typically the dimension of the image (n) is quite high compared
to the available image set, therefore, it is rather impossible for normal computers
to solve (@) [5]. For this reason, in practice, the dimension of n is reduced to a
smaller size d << n (by multiplying a random projection matrix @ € RZX" with
£), which turns (2)) into a underdetermined problem. In general, searching for a
sparse solution of an underdetermined system using (2] is NP-hard.
Encouragingly, SR theory shows that if & is sufficiently sparse, then this un-
derdetermined system can be solved using the following ¢; norm minimization
problem, which will produce a similar solution to solving the £y norm.

argmin @ = ||d||1, sty =¢&a (3)

However, a sparse & cannot always guarantee a unique solution to (3). SR the-
ory shows that if © = @ obeys the restricted isometry property(RIP) [I5], then
the underdetermined system () can be solved through (B]). More encouragingly,
SR theory also suggests that @ obeys RIP. Such as, we use a ¢ which is popu-
lated by sampling normally distributed numbers with zero mean and variance Cll
(ie., ® ~ N(0,})). SR theory has shown that & ~ AN(0, ;) obeys RIP when
d o< K'log (). Here K is the measure of the sparsity of . In this paper, instead
of seeking to determine an optimal d, we investigated the impact of different
values of d on the detection accuracy (see Figure [H).

Transitioning to a temporal framework, the most straightforward approach to
incorporate the dynamics of a video sequence (i.e., temporal frames) into a SR
classifier would be to simply concatenate consecutive frames into £, such that E €
R™"*(N—=7) where 7 = Nt and ¢ represents the length of the temporal window.
Intuitively, one problem with this approach is that the sparsity of the solution
a* is ultimately reduced (by a factor of ¢) due to the increase in dimensionality
of €. Following this, v is then said to be composed of an additional number of
terms in the linear combination {& (which may be considered to be noise). In
order to circumvent this problem, we postulate that the dimensions of £ must
be maintained to be at N number of columns.

In order to retain the size to IV, each column in £ is formed through the fusion
of multiple frames into a single frame that is representative of the temporal in-
formation in all ¢ frames; such that ¢ +— 1 and £ € R"*" — ¢ € R™*. Another
point that needs to be addressed is whether the utilization of sparse feature
representations (i.e., a sparse £ ) would lead to a better dynamic model. We ex-
plored a technique described in [7] which utilized absolute difference images (i.e.,
[Tapex — Ineut|) as sparse feature representations for £ and «y . Theoretically speak-
ing, an argument may be made that the majority of holistic information in the
face is effectively removed once the absolute difference operation is performed.
This may be undesirable because facial expressions are essentially holistic in na-
ture (i.e., anger or happiness, etc, occurs in the whole face and are therefore not
limited to specific local facial regions). To show this, we incorporated absolute
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difference feature representations into E, and compared the performance with
using just pixels,

; (4)

Dj = |I(apex—t) - Ineutral|a |I(apex—t+1) - Ineutral|a LR |Iapex — Ineutral

where je{l,...,7}

where the columns D; € R"** of E € R™ 7 are calculated using absolute dif-
ference image operations on the neutral frame with respect to frames 1 to ¢.
Empirical results shown in Figure suggested that utilizing these sparse ab-
solute difference features had led to a deterioration in detection accuracy. More
details can be found in Section

Understanding this, we focused on using only pixels (i.e., no features) and an-
alyzed various approaches of temporal fusion to form the columns of E Simply
computing the global average of all ¢ frames in the temporal window would sat-
isfy this criterion. However, from preliminary experiments conducted, we found
that one drawback with such an approach was that a blurring phenomenon was
induced as a result of registration-error/pixel-misalignments that is inherent in
all tracked faces. In order to minimize blurring, we employed local averages of
several selected facial regions which we had deemed vital in expression recogni-
tion (i.e., eyes and mouth, see Figure [3). The pixels residing outside of these two
regions were then filled by the remainder of pixels from the apex frame. Further
details on this approach are discussed in Section [El

More sophisticatedly, temporal fusion can be accommodated by familiar meth-
ods such as principal component analysis (PCA) and discrete wavelet transforms,
etc. To elucidate, the edges in an image may be considered to be the most salient
features [I6] perceived by the human visual system. Wavelet decomposition may
be employed to extract these salient features, and the combination of these fea-
tures would thus effectively capture the dynamics of the entire window into a
single frame. Similarly with PCA, the most salient features are computed us-
ing the eigenvalues of the respective covariance matrices. The complete list of
all temporal fusion methods employed in this paper is listed as follows — a)
local average (AVG), b) gradient pyramid (GRA), c) laplacian pyramid (LAP),
d) principal component analysis (PCA), e) discrete wavelet transform (DWT),
f) shift invariant discrete wavelet transform (SID), g) morphological difference
pyramid (MOD), and h) filter-subtract-decimate pyramid (FSD). Please refer
to Figure B] for an illustration of the fusion process, and also refer to [17] for
an excellent description of these image fusion methods. In Section [5] we demon-
strate that there is no universal fusion technique that is better for all the facial
expressions. It was also reported in [I§] that due to the subjective characteristics
of the fusion performance evaluation, it is difficult to recommend a method for
a given expression. However, in future we wish to investigate why a given fusion
method performs better for a given expression.
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Fig. 3. Fusion of multiple images in a temporal window using i) AVG: local-average (the
red bounding boxes illustrate regions where the local averaged were calculated from),
ii) DWT: discrete wavelet transform , iii) FSD: filter-subtract-decimate pyramid, iv)
GRA: gradient pyramid, v) LAP: laplacian pyramid, vi) PCA: principal component
analysis, vii) SIDWT: shift invariant discrete (SID) wavelet transform, and viii) MOD:
morphological difference pyramid

4 Experimental Setup

All experiments in this paper had been conducted with the objective of detect-
ing the seven prototypic emotional facial expressions — anger, contempt, disgust,
fear, happiness, sadness and surprise — which are available in the CK+ database.
Active appearance models (AAMs) were employed for face-tracking, and its cor-
responding output SAPP pixel representations were used for training and testing
the classifiers. For a fair comparison, the exact same two-fold cross validation
train/test data partitions were adopted in all evaluations. A subject-independent
approach was adopted in all evalutions. We shall adopt pigiag to represent the
weighted mean of the diagonal of the confusion matrix as the performance metric
in all experiments.

4.1 AAM-Derived Pixel Representations

Active Appearance Models (AAMs) [19] have been shown to be a good method
of aligning a pre-defined linear shape model that also has linear appearance
variation, to a previously unseen source image containing the object of interest.
In general, AAMs fit their shape and appearance components through a gradient-
descent search. The shape, s = sg + Y .-, pis;, of an AAM is described by a
2D triangulated mesh, which corresponds to a source appearance image; where
p = (p1,...,pm)" are the shape parameters. In all our experiments, we report
empirical results obtained from processing AAM-derived similarity normalized
appearance features (i.e., SAPP pixel representations).

4.2 The Extended Cohn-Kanade Database

In this paper we used the Extended Cohn-Kanade (CK+) database [10], which
contains 593 sequences from 123 subjects. The image sequences vary in duration
(from 10 to 60 frames) and incorporate the onset (which is also the neutral

frame) to peak formation of the facial expressions. For the 593 posed sequences,
full FACS [20] coding of the peak frames had been provided.
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Fig. 4. (a) Once a threshold was exceeded (25 x 25 pixels), recognition rates were no
longer significantly influenced by the image dimensionality. But, if image dimensionality
fell below the threshold, then a unique solution to the objective function could not
be found. (b) A deterioration in recognition rates was incurred when sparse absolute
difference representations (DIF) were utilized in place of raw intensity pixel values
(PIX).

5 Experimental Results

As mentioned in Section B} we wish to first highlight the effect of naively con-
catenating temporal frames in &, such that & € R"*V=7) _ig equivalent to the
addition of noise; and therefore would have a detrimental effect on recognition
rates. We further demonstrate that no benefits are introduced from using dif-
ference images due to a lossy effect inherent in subtractive operations on the
holistic face. In fact, taking absolute difference images had produced substantial
deterioration, which was mainly due to holistic information lost from the sub-
traction. These were supported by empirical results presented in Figure [4(b)l In
the SR classifier, the dimension of the random projection matrix ¢ was taken to
be a quarter that of the input image (we shall denote this by A = 7 = 4).

5.1 Investigating Temporal Fusion and The Dimension of the
Random Projection Matrix

In order to rectify the problems discussed in the previous section, two objectives
must be fulfilled: i) the dimension N in £ should not increase to obtain the
sparsest &, and ii) holistic face information must be retained. These two criteria
may be easily fulfilled through the utilization of image fusion techniques. All
image fusion methods listed in Section [3 had been explored in our experiments.
Concerning image dimensionality, we found that downsampling of facial images
to a very low dimensionality was not suitable for expression recognition (unlike
in face recognition [5]). Figure shows that when all other variables except
image dimensionality were held constant (A = 4 and ¢ = 1 in this experiment),
the mean detection accuracy was not influenced once a threshold (25 x 25 pixels)
on the image dimensionality was exceeded. In all subsequent experiments, the
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original image dimensionality had been preserved (87 x 93 pixels). It had also
been observed that the dimension of the random projection matrix played a
significant role in emotional expression detection. Denoting A = ) as the factor
by which the dimension of the projection matrix is downsampled with respect
to the dimension of the input image, we were interested in analyzing the effect
that varying the temporal window length ¢ and A had on recognition rates. The
3D plots (Accuracy versus time(t) versus \) shown in Figure [l shows that the
optimal A and ¢ can be very different for different expressions. We observed
that a larger ¢ was more suitable for contempt, a larger A was more suitable for
sadness, and a larger A coupled with a mid-range ¢t was more suitable for anger.
However, these two variables did not significantly influence happiness, disgust
and surprise; which achieved near-perfect detections in our experiments.

5.2 Discussion

Recognition rates of the proposed temporal-SR classifier versus the static-SR
classifier is presented in Table Il For completeness, we have also included the
performance of linear SVMs (which was trained and tested on in the exact same

"
20y ; 5 ¢ 5 6 7 8 9 10
t

(a) Anger (GRA) (b) Contempt (FSD) (c) Disgust (FSD)

Accuracy

(f) Happiness (FSD) (g) Sadness (AVG)

Fig. 5. 3D plots (X-axis (time t), Y-axis (random projection matrix dimension down-
sampling factor A = 7)), Z-axis (Accuracy)) of the detection perfoamnces of the seven
emotions as functions of time and A. The image fusion method which produced the
best recognition accuracy is shown in brackets.
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Table 1. Recognition rates for emotion classification on the CK+ dataset for static-
SR versus temporal-SR classification, and referenced to a linear SVM. piqiag represents
the weighted mean of the diagonal of the respective confusion matrices (computed
through majority voting), and N represents the number of examples available from
each emotion.

N static-SRC temporal-SRC SVM

Anger 45 90.9 95.5 86.1
Contempt 18 55.6 75.0 55.6
Disgust 59 100.0 100.0 100.0
Fear 25 66.7 75.0 91.7
Happiness 69 100.0 100.0 100.0
Sadness 28 85.7 92.9 85.7
Surprise 83 97.6 97.6 97.6
[ding - 91.9 94.9 93.2

manner). As can be seen, the static-SR method experienced a deterioration of
1.3% with respect to the SVM, but once temporal information had been incorpo-
rated into the SR classifier, then a 3% improvement of the temporal-SR method
over the static-SR method was afforded. Although it may appear on the surface
that the differences between all three methods are not very significant, but we
should not ignore the fact that the asympotote of ideal detection (i.e., perfect
100% recognition) is being approached and slight differences of a few percent
may be more significant than as it would appear.

In view of this, it would be profoundly more interesting for an investigation to
be conducted on more realistic facial expressions (i.e., acted and spontaneous)
which possess deeper temporal dependencies for further insights of the under-
lying mechanisms of both static- and temporal-SR classifiers to be gained. In
addition, since SVMs have been actively employed in expression recognition, it
would also be interesting to make a direct comparison with the SR classifiers
by employing fused temporal information. Such an analysis would stimulate an
interesting thought-provoking analysis on which is more capable at exploiting
expression dynamics — the £;-norm or the f5-norm?

6 Conclusion and Future Work

In this paper, we explored the method of sparse representation (SR) classifica-
tion to detect the seven prototypic emotion-related facial expressions. Having
established the importance of expression dynamics, we proposed a framework
in which a dynamic model could be effectively implemented into the SR clas-
sifier. Our work explored the logic behind the use of sparse features in the SR
framework, and also investigated the influence of the dimensions of the random
projection matrix and length of the temporal window. Indeed, we found that
the latter two were significant factors in influencing detection performance. Ad-
ditionally, various techniques of incorporating temporal information into feature
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matrix £ had been analyzed and proposed. In future work, we intend to inves-
tigate if the dynamics of more realistic and spontaneous facial expressions (on
both emotional-related expressions and action units) could be exploited using
our proposed method. Apart from this, we wish to analyze in further detail why
the filter-subtract-decimate pyramid image fusion method was more suitable for
most expressions, but not for the remaining few.
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