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Abstract. An identity-based encryption (IBE) scheme is called
anonymous if the ciphertext leaks no information about the recipient’s
identity. In this paper, we present a novel anonymous identity-based en-
cryption scheme. Our scheme comes from the analysis of Boyen-Waters
anonymous IBE Scheme in which we find a method to construct anony-
mous IBE schemes. We show that Boyen-Waters anonymous IBE scheme
can be transformed from BB1-IBE scheme. Our scheme is also trans-
formed from BB1-IBE scheme and can be seemed as a variant of Boyen-
Waters anonymous IBE scheme. The security proof shows the
transformed scheme has the same semantic security as the original scheme
and has anonymous security. We prove anonymity under the Decision
Linear assumption.

Keywords: Identity-Based Encryption, Anonymity, Transformation.

1 Introduction

The notion of Identity-Based encryption (IBE) was first introduced by Shamir
[25] to simplify the public-key infrastructure in public key encryption. Users can
use arbitrary strings such as e-mail addresses, IP addresses or phone numbers to
form public keys directly. All private keys are generated by private key generator
(PKG). Anyone can encrypt messages using the identity, and only the owner of
the corresponding secret key can decrypt the messages. But a concrete construc-
tion of IBE was not given by Shamir until Boneh and Franklin [8] presented
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the first practical IBE scheme using efficiently computable bilinear maps. At the
same year, Cocks proposed another but less efficient IBE scheme using quadratic
residues [16].

Hierarchical identity-based encryption (HIBE) [21] is a generalization of IBE
that mirrors an organizational hierarchy. In HIBE systems, a parent identity of
the hierarchy tree can issue secret keys to its child identities, but cannot decrypt
messages intended for other identities. The first HIBE scheme was proposed
by Gentry and Silverberg [20] which can be seemed as an extension of Boneh-
Franklin IBE scheme. Their scheme was proved to be secure in the random oracle
model. Up to now, many new secure IBE or HIBE schemes are proposed without
random oracles [12, 3, 4, 5, 10, 18, 15, 14, 28, 24, 19, 22, 13].

Recently, people found the anonymity of IBE and HIBE can help to con-
struct Public Key Encryption with Keyword Search (PEKS) schemes [7,2,9,26].
Roughly speaking, an IBE or HIBE is said to be recipient anonymous or simply
anonymous if the ciphertext leaks no information about the recipient’s identity.
Generally speaking, for pairing-based IBE schemes, we can use some equation
to check whether one identity is the target identity. For example, let us see an
instantiation of BB1-IBE scheme. Let C = M · e(g1, g2)s, C1 = gs, C2 = (gID

1 h)s

where s is the random integer chosen by the encryptor and g, g1, h come from the
public parameter. For such an instantiation C, C1, C2, we can easily construct
h1 = gID′

1 h and h2 = g−1 and check whether e(C1, h1)e(C2, h2) = 1, where
e : G × Ĝ → GT denotes the bilinear map (or called “pairing”) used in the
scheme. If yes, then the target identity is ID′.

Generally but roughly speaking, if an IBE or HIBE scheme is not anonymous,
supposing that C1, · · · , Ck be components of a ciphertext of such a scheme, we
can construct elements h1, · · · , hk from the public parameters and some identity
ID to check whether e(C1, h1) · · · e(Ck, hk) = 1. If the equation is true, the target
identity is ID. It is hard to construct anonymous IBE schemes, even more difficult
for anonymous HIBE schemes. The difficulty or the feasibility of equation check
roots in the bilinearity of bilinear maps, i.e., ∀u ∈ G, v ∈ GT and ∀a, b ∈ Z, we
have e(ua, vb) = e(ub, va). This is the key point why we can test whether some
previous IBE or HIBE schemes are anonymous.

1.1 Our Contribution

We present a novel anonymous IBE scheme from the analysis of Boyen-Waters
anonymous IBE Scheme. We find that in an IBE scheme, if the target identity in
the original IBE scheme is only judged by the equation e(C1, h1) · · · e(Ck, hk) = 1
where C1, · · · , Ck come from ciphertext and h1, · · · , hk are constructed from the
public parameters and some identity. Then we can use the linear splitting tech-
nique in [10,26] to make it hard to distinguish the identity from the ciphertext.
Simply speaking, we divide nearly every component of the ciphertext Ci into four
blind pieces Ci,1, Ci,2, Ci,3, Ci,4 which makes it hard to construct corresponding
elements for equation test.

Using the proposed method, we show that Boyen-Waters anonymous IBE
scheme [10] can be transformed from BB1-IBE scheme. Our scheme is also
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transformed from BB1-IBE scheme and can be considered as a variant of Boyen-
Waters anonymous IBE scheme. The security proof shows the transformed scheme
has the same semantic security as the original scheme and has anonymous secu-
rity. And we prove anonymity under the Decision Linear assumption.

1.2 Related Works

Anonymous IBE was first noticed by Boneh et al. [7] and later formalized by
Abdalla et al. [2, 1]. While there are several approaches to constructing an IBE
scheme using bilinear maps, most constructions in the standard model are not
recipient anonymous [12, 3, 4, 27]. BF-IBE [8] is intrinsically anonymous, but its
HIBE version [20] is not anonymous. Gentry [18] proposed a concrete construc-
tion of anonymous IBE in the standard model and Boyen and Waters (BW-
HIBE) [10] also proposed another anonymous IBE scheme and an anonymous
HIBE scheme. Gentry’s version is fully secure under a complicated and dynamic
assumption and Boyen-Waters’ constructions are selectively secure under the
Decision BDH and the Decision Linear assumptions.

Seo et al. [24] proposed the first constant size ciphertext anonymous HIBE
scheme in composite order groups. An extension of anonymous IBE, named
committed blind anonymous IBE, was proposed by Camenisch et al. [11] in
which a user can request the decryption key for a given identity without the
key generation entity learning the identity. Recently, Caro et al. [13], Seo and
Cheon [23] independently presented a new fully secure anonymous HIBE scheme
with short ciphertexts in composite order groups. All of these schemes were
proposed in the standard model without random oracles. Ducas [17] shows that
if asymmetric bilinear maps are used in previous IBE and HIBE schemes with
minor modification, anonymity can also be achieved.

1.3 Organization

The paper is organized as follows. We give necessary background information and
definitions of security in Section 2. We first review Boyen-Waters anonymous IBE
scheme and give an analysis in Section 3. Next we get a variant of Boyen-Waters
anonymous IBE scheme in Section 4 and discuss some extensions in Section 5.
Finally, we conclude the paper with Section 6.

2 Preliminaries

In this section, we briefly summarize the bilinear maps, and review the Decision
Linear (D-Linear) assumption. Then we describe the concepts of IBE and its
security models.

2.1 Bilinear Maps

Definition 1. Let G, G1 be two cyclic multiplicative groups with prime order
p. Let g be be a generator of G and e : G × G → G1 be a bilinear map with the
following properties:
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1. Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: The map does not send all pairs in G×G to the identity

in G1. Observe that since G, G1 are groups of prime order this implies that if g
is a generator of G then e(g, g) is a generator of G1.

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G×G→ G1 are both efficiently computable.

We assume that there is an efficient algorithm G for generating bilinear groups.
The algorithm G, on input a security parameter λ, outputs a tuple G = [p, G, G1

, g ∈ G, e] where g is a generator and log(p) = Θ(λ).

2.2 Complexity Assumption

The Decision Linear (D-Linear) assumption was first proposed in [6] by Boneh,
Boyen, and Shacham for group signatures. In anonymous IBE schemes, the D-
Linear assumption is always used to prove anonymity.

Definition 2. Let c1, c2 ∈ Z∗
p be chosen at random and g, f, ν ∈ G be random

generators. Let Z be a random element in G. We define the advantage of an
algorithm A in breaking the D-Linear assumption to be

Pr[A(g, f, ν, gc1, f c2 , νc1+c2) = 1]− Pr[A(g, f, ν, gc1, f c2 , Z) = 1] .

We say that the D-Linear assumption holds if no probabilistic polynomial-time
algorithm has a non-negligible advantage in breaking the D-Linear assumption.

2.3 Algorithms

An IBE scheme consists of the following five algorithms: Setup, KeyGen, En-
crypt, and Decrypt.

Setup(1λ). This algorithm takes as input the security parameter λ, outputs
a public key PK and a master secret key MK. The public key implies also a key
space K(PK) and an identity space ID(PK).

KeyGen(MK, ID). This algorithm takes as input the master secret key MK
and an identity ID ∈ ID(PK)≤� and outputs a secret key SKID associated with
ID.

Encrypt(PK, M, ID). This algorithm takes as input the public key PK, a
message M , and an identity ID, and outputs a ciphertext CT.

Decrypt(CT, SKID). This algorithm takes as input the ciphertext CT and
a secret key SKID. If the ciphertext is an encryption to ID, then the algorithm
outputs the encrypted message M .

2.4 Security Models

The chosen-plaintext security (semantic security) and anonymity of an IBE
scheme are defined according to the following IND-ID-CPA game and ANON-
ID-CPA game, respectively.
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IND-ID-CPA Game

Setup. The challenger C runs the Setup algorithm and gives PK to the
adversary A.

Phase 1. The adversary A submits an identity ID. The challenger creates a
secret key SKID for that identity and gives it to the adversary.

Challenge. A submits a challenge identity ID∗ and two equal length messages
M0, M1 to B with the restriction that each identity ID given out in the key
phase must not be ID∗. Then C flips a random coin μ and passes the ciphertext
CT∗ = Encrypt(PK, Mμ, ID∗) to A.

Phase 2. Phase 1 is repeated with the restriction that any queried identity
vector ID is not ID∗.

Guess. A outputs its guess μ′ of μ.
The advantage of A in this game is defined as AdvA = |Pr[μ′ = μ]− 1

2 |.
Definition 3. We say that an IBE scheme is IND-ID-CPA secure, if no proba-
bilistic polynomial time adversary A has a non-negligible advantage in winning
the IND-ID-CPA game.

ANON-ID-CPA Game

Setup. The challenger C runs the Setup algorithm and gives PK to the ad-
versary A.

Phase 1. The adversary A submits an identity ID. The challenger creates a
secret key SKID for that identity and gives it to the adversary.

Challenge. A submits two challenge identity vectors ID∗
0, ID

∗
1 and a message

M to B with the restriction that each identity ID given out in the key phase
must not be ID∗

0 or ID∗
1. Then C flips a random coin μ and passes the ciphertext

CT∗ = Encrypt(PK, M, ID∗
μ) to A.

Phase 2. Phase 1 is repeated with the restriction that any queried identity ID
is not ID∗

0 or ID∗
1.

Guess. A outputs its guess μ′ of μ.
The advantage of A in this game is defined as AdvA = |Pr[μ′ = μ]− 1

2 |.
Definition 4. We say that an IBE scheme is ANON-ID-CPA secure, if no prob-
abilistic polynomial time adversary A has a non-negligible advantage in winning
the ANON-ID-CPA game.

Some schemes such as [10, 24] use weaker notions called IND-sID-CPA secure
and ANON-sID-CPA secure, which are against selective identity. In the selective
identity models, the adversary submits the target identity ID∗ before public
parameters are generated.
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3 BW-AIBE Review and Analysis

3.1 Scheme Description

Setup(1λ). Given the security parameter λ, the setup algorithm first gets (p, G,
GT , g, e) ← G(λ). Next it chooses another two random group elements
g0, g1 ∈ G and five random integers ω, t1, t2, t3, t4 ∈ Zp. Then the setup
algorithm sets Ω = e(g, g)t1t2ω, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4 . The
public key PK is published as

PK = (Ω, g, g0, g1, v1, v2, v3, v4),

and the master key MK is

MK = (ω, t1, t2, t3, t4).

KeyGen(MK, ID). To generate the secret key SKID for an identity ID ∈ Zp,
the key extract algorithm chooses random r1, r2 ∈ Zp and outputs SKID as

SKID =
(

gr1t1t2+r2t3t4 , g−ωt2(g0g
ID
1 )−r1t2 , g−ωt1(g0g

ID
1 )−r1t1 ,

(g0g
ID
1 )−r2t4 , (g0g

ID
1 )−r2t3

)
.

Encrypt(PK, ID, M). To encrypt a message M ∈ GT for an identity ID, the
algorithm chooses random integers s, s1, s2 ∈ Zp and outputs the ciphertext
CT as

CT = (MΩs, (g0g
ID
1 )s, vs−s1

1 , vs1
2 , vs−s2

3 , vs2
4 ).

Decrypt(SKID, CT). To decrypt a ciphertext CT = (C, C1, C2, C3, C4, C5) for
an identity ID, using the corresponding secret key SKID = (d1, d2, d3, d4, d5),
outputs

M = C · e(d1, C1) · e(d2, C2) · e(d3, C3) · e(d4, C4) · e(d5, C5).

3.2 Analysis

As the analysis of BB1 scheme, for a ciphertext instance C = MΩs, C1 = (g0g
ID
1 )s,

C2 = vs−s1
1 , C3 = vs1

2 , C4 = vs−s2
3 , C5 = vs2

4 , we need to find h1, h2, h3, h4, h5 such
that e(C1, h1) e(C2, h2) e(C3, h3) e(C4, h4) e(C5, h5) = 1 where h1, h2, h3, h4, h5

are constructed from public parameters and the target identity ID.
However, it is not easy to find such elements. As shown in the secret key, a

direct construction is that h1 = g−t1t2 , h2 = (g0g
ID
1 )t2 ,h3 = (g0g

ID
1 )t1 , ,h4 =

(g0g
ID
1 )t4 ,h5 = (g0g

ID
1 )t3 . Unfortunately, these elements cannot be provided due

to the loss of gt1
0 , gt1

1 , · · · , gt4
1 , gt4

1 .
This technique is called “linear splitting”, because an important element

gs (corresponding to BB1) is split into four parts: vs−s1
1 , vs1

2 , vs−s2
3 , vs2

4 . To
make things appear clearer, we can rewrite these four elements as gt1sv−s1

1 , vs1
2 ,

gt3sv−s2
3 , vs2

4 . We can find that gs is blinded by two elements v−s1
1 and v−s2

3 .
To remove the blindness factor in decryption, two extra elements vs1

2 , vs2
4 are
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provided. In the security proof of BW-AIBE, we can see that all these elements
are proved “random” at the view of adversary. So if we want hide the identity
in ciphertext, we can blind the related elements to be “random”. In BW-AIBE,
gs is blinded. In fact, we can change the target of blinded target, for example,
blinding (g0g

ID
1 )s. These analyses result in our generic construction in the next

section.

3.3 Generic Construction

Let E be an IBE scheme and e : G × G → GT is the bilinear map used in E .
Suppose a message M ∈ GT is randomized as MY s in the encryption process,
where Y ∈ GT comes from public key and s ∈ Z

∗
p is randomly chosen by the

encryptor. Then E is constructed as follows:

Setup. It outputs public key PK and master secret key MK.
KeyGen. For an identity ID, it outputs the corresponding secret key SKID =

(d1, · · · , dn) where d1, · · · , dn ∈ G.
Encrypt. For a message M ∈ GT and an identity ID, it outputs ciphertext

CT = (C = MY s, C1, · · · , Cn) where C ∈ GT and C1, · · · , Cn ∈ G.
Decrypt. M = C · e(d1, C1) · · · e(dn, Cn).

As stated before, we require that the target identity in the IBE scheme can be
only judged by the equation e(C1, h1) · · · e(Cn, hn) = 1 where C1, · · · , Cn come
from ciphertext and h1, · · · , hn are constructed from the public parameters and
some identity. And we also require that every hi �= 1, i = 1, · · · , n.

Let A be a non-empty set, t ∈ Z∗
p, we define At := {xt|x ∈ A}. This notation is

the same as the definition of product of sets, but can be easily distinguished from
its context. Let A\B be the difference of A and B, i.e., A\B = {x|x ∈ A∧x �∈ B}.
Let g be a generator of G. We transform the above scheme to an anonymous
IBE scheme as follows:

Setup. This algorithm chooses two random integers t1, t2, t3, t4 ∈ Z∗
p, com-

putes v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4 and outputs the public key
{Y t1t2 , v1, v2, v3, v4} ∪ PKt1 ∪ PKt3\{Y t1 , Y t3} and the master secret key
MK ∪ {t1, t2, t3, t4}.

KeyGen. Let h1, · · · , hn be the elements constructed to judge the identity in
the ciphertext, i.e., e(h1, C1) · · · e(hn, Cn) = 1 where C1, · · · , Cn are the
elements of ciphertext. Then we split the transformation into two parts. For
i = 1, · · · , n−1, the algorithm chooses random integer r ∈ Z

∗
p and computes

di,1 = dt1
i , di,2 = dt2

i , di,3 = ht3·r
i , di,4 = ht4·r

i . For i = n, it computes
d′n = dt1t2

n · ht3t4r
n . Then the secret key is

(〈di,1, di,2, di,3, di,4〉i=1,··· ,n−1, d
′
n).

Encrypt. Like KeyGen, we also split the transformation into two parts. For
i = 1, · · · , n− 1, this algorithm chooses 2(n− 1) random integers s1,1, s1,2,
· · · , sn−1,1, sn−1,2 ∈ Z

∗
p, computes Ci,1 = v

si,1
2 , Ci,2 = v

−si,1
1 Ct1

i , Ci,3 =
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v
si,2
4 , Ci,2 = v

−si,2
3 Ct3

i . For i = n, it sets C′
n = Cn, leaving this element

unchanged. Then the ciphertext is

(C′ = MY t1t2s, 〈Ci,1, Ci,2, Ci,3, Ci,4〉i=1,··· ,n−1, C
′
n).

Decrypt. This algorithm outputs

M = C′·
(

n−1∏
i=1

e(di,1, Ci,1) · e(di,2, Ci,2) · e(di,3, Ci,3) · e(di,4, Ci,4)

)
·e(d′n, C′

n).

Correctness: The correctness of new decryption can be easily seen as follows.
Note that in the original decryption process, we have M = C·e(d1, C1) · · · e(dn, Cn)
which implies Y s · e(d1, C1) · · · e(dn, Cn) = 1. For i = 1, · · · , n− 1, we have

e(di,1, Ci,1) · e(di,2, Ci,2) · e(di,3, Ci,3) · e(di,4, Ci,4)
= e(dt1

i , v
si,1
2 )e(dt2

i , v
−si,1
1 Ct1

i )e(ht3·r
i , v

si,2
4 )e(ht4·r

i , v
−si,2
3 Ct3

i )
= e(di, Ci)t1t2e(hi, Ci)t3t4r

For i = n, we have e(d′n, C′
n) = e(dt1t2

n ·ht3t4r
n , Cn) = e(dn, Cn)t1t2 ·e(hn, Cn)t3t4r.

Note that
∏n

i=1 e(hi, Ci)t3t4r = (
∏n

i=1 e(hi, Ci))t3t4r = 1. So

C′ ·
(∏n−1

i=1 e(di,1, Ci,1) · e(di,2, Ci,2) · e(di,3, Ci,3) · e(di,4, Ci,4)
)
· e(d′n, C′

n)
= MY t1t2s ·∏n

i=1 e(di, Ci)t1t2 ·∏n
i=1 e(hi, Ci)t3t4r

= MY t1t2s · e(d1, C1)t1t2 · · · e(dn, Cn)t1t2

= M(Y s · e(d1, C1) · · · e(dn, Cn))t1t2

= M

Observe that if the Decrypt algorithm is M = C · e(a1, C1) · · · 1
e(ak,Ck) · · ·

e(an, Cn), we don’t need to modify the Encrypt and Decrypt algorithms. The
Encrypt algorithm remains the same and the Decrypt algorithm is

M = C · e(a1,1, C1,1) · e(a1,2, C1,2) · e(a1,3, C1,3) · e(a1,4, C1,4) · · ·
· 1
e(ak,1,Ck,1)·e(ak,2,Ck,2)·e(ak,3,Ck,3)·e(ak,4,Ck,4)

·
· · · e(an,1, Cn,1) · e(an,2, Cn,2) · e(an,3, Cn,3) · e(an,4, Cn,4).

4 A Variant of BW-AIBE

We now transform the first Boneh-Boyen scheme (BB1) [3] to an anonymous
scheme. Note that BB1 was proposed as an HIBE scheme but can be regarded
as an IBE scheme with the hierarchy depth = 1. For ease of presentation, we
denote the IBE and HIBE version by BB1-IBE, BB1-HIBE. Given an instance
of BB1-IBE ciphertext M · e(g1, g2)s, gs, (gID

1 h)s, if we leave (gID
1 h)s unchanged,

then we can get Boyen-Waters anonymous IBE scheme (BW-AIBE). If we leave
gs unchanged, we can get a variant of BW-AIBE scheme. We denote this trans-
formed scheme by BB1-AIBE.



50 S. Luo et al.

4.1 Construction

For an instance of ciphertext C = M · e(g1, g2)s, C1 = gs, C2 = (gID
1 h)s, we

choose h1 = (gID
1 h)−1 and h2 = g. It is easy to see that e(C1, h1)e(C2, h2) = 1.

Then scheme BB1-AIBE is constructed as follows.

Setup(1λ). Given the security parameter λ, the setup algorithm first gets (p, G,
GT , g, e)← G(λ). Next it chooses another two random generator g2, h ∈ G

and five random integers α, t1, t2, t3, t4 ∈ Z∗
p. Then the setup algorithm sets

g1 = gα, Y = e(g1, g2)t1t2 , v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4 . The public
key PK is published as

PK = (Y, g, v1, v2, v3, v4, g
t1
1 , ht1 , gt3

1 , ht3),

and the master key MK is

MK = (gα
2 , t1, t2, t3, t4).

KeyGen(MK, ID). To generate the secret key SKID for an identity ID ∈ Zp,
the key extract algorithm chooses random r1, r2 ∈ Zp and outputs SKID as

SKID = (g−αt1t2
2 (gID

1 h)−r1t1t2−r2t3t4 , vr1
1 , vr1

2 , vr2
3 , vr2

4 ).

Encrypt(PK, ID, M). To encrypt a message M ∈ GT for an identity ID, the
algorithm chooses random integers s, s1, s2 ∈ Zp and outputs the ciphertext
CT as

CT = (MY s, gs, vs1
2 , (gt1ID

1 ht1)sv−s1
1 , vs2

4 , (gt3ID
1 ht3)sv−s2

3 ).

Decrypt(SKID, CT). To decrypt a ciphertext CT = (C, C1, C2, C3, C4, C5) for
an identity ID, using the corresponding secret key SKID = (d1, d2, d3, d4, d5),
outputs

M = C · e(d1, C1) · e(d2, C2) · e(d3, C3) · e(d4, C4) · e(d5, C5).

4.2 Security

We have the following result for the transformed scheme.

Theorem 1. If the Decision BDH and D-Linear assumptions hold, scheme BB1-
AIBE is IND-sID-CPA secure and ANON-sID-CPA secure.

The security (semantic security and anonymity) of the transformed scheme can
be proved by hybrid experiments similar to that of [10]. We define the following
hybrid games which differ on what challenge ciphertext is given by the simulator
to the adversary:

– Game1: CT1 = (C, C1, C2, C3, C4, C5)
– Game2: CT2 = (R, C1, C2, C3, C4, C5)
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– Game3: CT3 = (R, C1, C2, R1, C4, C5)
– Game4: CT4 = (R, C1, C2, R1, C4, R2)

Here (C, C1, C2, C3, C4, C5) denotes the challenge ciphertext given to the adver-
sary during a real attack, R is a randomly chosen element from G1 and R1, R2

are randomly chosen elements from G. Since every element of the challenge ci-
phertext in Game4 is random group element, so it does not leak any information
about the message or the identity. Therefore indistinguishability between games
proves semantic security and anonymity.

Indistinguishability between Game1 and Game2

To prove the indistinguishability between Game1 and Game2, we can directly
prove the transformed scheme is IND-sID-CPA secure. Here we prove this by
an indirect way which is based on the semantic security of the original scheme,
that is, if one can break the transformed scheme, the original scheme can also
be broken.

Lemma 1 (Semantic Security). If there is an adversary who can distinguish
between Game1 and Game2 with advantage ε, a simulator can take the adversary
as oracle and break BB1-IBE in the IND-sID-CPA game with advantage ε.

Proof. We show how to construct a simulator B which can take the adversary
A as oracle to play the IND-sID-CPA game with the challenger C to break BB1-
IBE.

Init. The simulator B runs A. A gives B a challenge identity ID∗. Then B
submits the challenge identity ID∗ to C.

Setup. The challenger C generates the master public parameters PK′ = {Y, g,
g1, h} and gives them to B. B chooses random integers t1, t2, t3, t4 ∈ Z∗

p,
computes v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4 and outputs the new pub-
lic key PK = {Y t1t2 , g, v1, v2, v3, v4, g

t1
1 , ht1 , gt3

1 , ht3} and keeps {t1, t2, t3, t4}
secret. Then B gives PK to the adversary A.

Phase 1. A submits ID to B with the restriction that A cannot request the
secret key for ID∗. Then B sends the same ID to C. C gives B the secret
key SK′

ID = (d′1, d
′
2). Then B chooses a random integer r ∈ Z∗

p, computes
d1 = d′t1t2

1 (gID
1 h)−rt3t4 , d2 = d′t12 ,d3 = d′t22 , d4 = vr

3 , d5 = vr
4 and sets

SKID = (d1, d2, d3, d4, d5). Finally B gives the new secret key to A.
Challenge. A submits a message M to B. B chooses a random element R0 ∈

GT , sets M0 = R
t−1
1 t−1

2
0 , M1 = M t−1

1 t−1
2 and submits ID∗, M0, M1 to C. Here

we suppose that M0 has the same length as M1. C flips a random coin b
and passes the ciphertext CT′∗ = Encrypt(PK, Mb, ID∗) = (C′, C′

1, C
′
2) to

B. Then B chooses random integers s1, s2 ∈ Z∗
p, sets C = C′t1t2 , C1 = C′

1,
computes C2 = vs1

2 , C3 = C′t1
2 v−s1

1 , C4 = vs2
4 , C5 = C′t3

2 v−s2
3 , and gives the

new ciphertext CT∗ = (C, C1, C2, C3, C4, C5) to A.
Phase 2. Phase 1 is repeated.
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Guess. B outputs its guess b′ of b as follows: if A outputs 1 (Game1), then
B outputs its guess b′ = 1; if A outputs 2 (Game2), then B outputs its
guess b′ = 0. Note that M = M t1t2

1 and MY t1t2s = (M t−1
1 t−1

2 Y s)t1t2 , so if
b = 1, CT∗ is the right ciphertext for message M . If b = 0, C = R0Y

t1t2s =
(Rt−1

1 t−1
2

0 Y s)t1t2 is a random element in G1.

Since the simulator plays Game1 if and only if the given ciphertext CT∗ is
encrypted for message M1, the simulator’s advantage in the IND-sID-CPA game
is exactly ε. ��
According to [3, Theorem 1], we have the following result for BB1-AIBE’s se-
mantic security:

Corollary 1. If the Decision BDH assumption holds, scheme BB1-AIBE is
IND-sID-CPA secure.

Indistinguishability between Game2 and Game3

Lemma 2 (Anonymity, Part 1). If there is an adversary who can distinguish
between Game2 and Game3 with advantage ε, a simulator can take the adversary
as oracle and win the D-Linear game with advantage ε.

Proof. We assume that there exists an adversaryA who can distinguish between
Game2 and Game3 with advantage ε. We show that the simulator B can win the
D-Linear game with advantage ε by taking A as oracle.

Given a D-Linear instance [g, f, ν, gc1, f c2 , Z] where Z is either νc1+c2 or ran-
dom in G with equal probability. The simulator plays the game in the following
stages.

Init. The simulator B runs A. A gives B a challenge identity ID∗.
Setup. B first chooses random exponents α, ω, y, t3, t4 ∈ Zp. It lets g in the

simulation be as in the instance and sets v1 = ν, v2 = f which implies t1, t2
are unknown to the simulator. Next it sets g1 = gα, g2 = gω, h = gy, v3 =
gt3 , v4 = gt4 . Then Y = e(g1, g2)t1t2 = e(f, ν)αω . The public key is published
as:

PK = (Y, g, v1, v2, v3, v4, g
t1
1 = να, ht1 = νy, gt3

1 , ht3).

Phase 1. A submits ID to B with the restriction thatA cannot request the secret
key for ID∗. Then B chooses random r ∈ Zp, computes d1 = g−r(αID+y)t3t4 ,
d2 = ν− αω

αID+y , d3 = f− αω
αID+y , d4 = vr

3 , d5 = vr
4 and sets SKID = (d1, d2, d3, d4,

d5). We say this is a well formed secret key if we set r1 = − αω
αID+y , r2 = r, then

d1 = g−αt1t2
2 (gID

1 h)−r1t1t2−r2t3t4 , d2 = vr1
1 , d3 = vr1

2 , d4 = vr2
3 and d5 = vr2

4 .
Finally B gives the secret key to A.

Challenge. A submits a message M to B and B discard this message. B picks
a random element R ∈ G1, a random integer s2 ∈ Zp and outputs the
ciphertext as:

CT∗ = (R, gc1, (f c2)−(αID∗+y), ZαID∗+y, vs2
4 , (gc1)(αID∗+y)t3v−s2

3 ).
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IfZ =νc1+c2 , thenC1 =gc1, C2 = (f c2)−(αID∗+y) = vs1
2 ,C3 = ν(c1+c2)(αID∗+y)

= (gt1ID
∗

1 ht1)sv−s1
1 , C4 = vs2

4 , C5 = (gt3ID∗
1 ht3)sv−k2

3 where s = c1, s1 =
−(αID∗ + y)c2; all parts of the challenge but C are thus well formed, and the
simulator behaved as in Game2. If instead, when Z is random, then C3 are ran-
dom elements from the adversarial viewpoint, i.e., the simulator responded as
in Game3.

Phase 2. Phase 1 is repeated.
Guess. B outputs its guess as follows: if A outputs 2 (Game2), then B outputs

its guess 1 (Z = νc1+c2); if A outputs 3 (Game3), then B outputs its guess
0 (Z �= νc1+c2).

By the simulation setup, the simulator’s advantage in the D-Linear game is
exactly ε. ��
Indistinguishability between Game3 and Game4

Lemma 3 (Anonymity, Part 2). If there is an adversary who can distinguish
between Game3 and Game4 with advantage ε, a simulator can take the adversary
as oracle and win the D-Linear game with advantage ε.

Proof. We assume that there exists an adversaryA who can distinguish between
Game3 and Game4 with advantage ε. We show that the simulator B can win the
D-Linear game with advantage ε by taking A as oracle.

Given a D-Linear instance [g, f, ν, gc1, f c2 , Z] where Z is either νc1+c2 or ran-
dom in G with equal probability. The simulator plays the game in the following
stages.

Init. The simulator B runs A. A gives B a challenge identity ID∗.
Setup. B first chooses random exponents α, ω, y, t1, t2 ∈ Zp. It lets g in the

simulation be as in the instance and sets v3 = ν, v4 = f which implies t3, t4
are unknown to the simulator. Next it sets g1 = gα, h = gy, v1 = gt1 , v2 = gt2 .
Finally it sets Y = e(f, ν)αωt1t2 . Note that it means g2 = gωt3t4 . The public
key is published as:

PK = (Y, g, v1, v2, v3, v4, g
t1
1 , ht1 , gt3

1 = να, ht3 = νy).

Phase 1. A submits ID to B with the restriction thatA cannot request the secret
key for ID∗. Then B chooses random r ∈ Zp, computes d1 = g−r(αID+y)t1t2 ,
d2 = vr

1 ,d3 = vr
2 ,d4 = ν−αωt1t2

αID+y ,d5 = f−αωt1t2
αID+y and sets SKID = (d1,d2,d3,d4,

d5). We say this is a well formed secret key if we set r1 = r, r2 = −αωt1t2
αID+y , then

d1 = g−αt1t2
2 (gID

1 h)−r1t1t2−r2t3t4 , d2 = vr1
1 , d3 = vr1

2 , d4 = vr2
3 and d5 = vr2

4 .
Finally B gives the secret key to A.

Challenge. A submits a message M to B and B discard this message. B picks
a random element R ∈ G1, a random element R1 ∈ G, a random integer
s1 ∈ Zp and outputs the ciphertext as:

CT∗ = (R, gc1 , vs1
2 , R1, (f c2)−(αID+y), ZαID+y).
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If Z = νc1+c2 , then C1 = gc1 , C4 = (f c2)−(αID+y) = vs2
4 , C5 = ν(c1+c2)(αID+y)

= (gt3ID
1 ht3)sv−s2

3 , where s = c1, s2 = −(αID+y)c2; all parts of the challenge
but C are thus well formed, and the simulator behaved as in Game2. If in-
stead, when Z is random, then C3 are random elements from the adversarial
viewpoint, i.e., the simulator responded as in Game3.

Phase 2. Phase 1 is repeated.
Guess. B outputs its guess as follows: if A outputs 3 (Game3), then B outputs

its guess 1 (Z = νc1+c2); if A outputs 4 (Game4), then B outputs its guess
0 (Z �= νc1+c2).

By the simulation setup, the simulator’s advantage in the D-Linear game is
exactly ε. ��
Proof of Theorem 1. It is obvious from Corollary 1, Lemma 2 and Lemma 3. ��

5 Discussion

5.1 Other Transformation

Note that the transformed scheme BB1-AIBE is IND-sID-CPA secure and ANON-
sID-CPA secure. To get fully secure anonymous schemes, we can transform
fully secure schemes by using our method, such as another Boneh-Boyen IBE
scheme [4], or Waters IBE scheme [27], or Waters dual system encryption IBE
scheme [28], and these transformed schemes will be IND-ID-CPA secure and
ANON-ID-CPA secure.

5.2 Anonymous HIBE

Another natural extension for our method is that whether our method can be
used to transform an HIBE scheme to an anonymous HIBE scheme. There are
two problems. One is that our framework is present for IBE not HIBE, so we
should prove security under the security model of HIBE. Another obstacle is
that we should consider the key derivation, i.e., an identity ID’s secret key can
be derived from another identity ID∗’s secret key if ID∗ is a prefix of ID. Un-
fortunately, our method cannot be applied in previous HIBE schemes, such as
BB1-HIBE, BBG-HIBE, due to the key delegation of hierarchical identities. A
possible approach would be to use the parallel technique introduced in [10] which
re-randomizes the keys between all siblings and all children. We leave it an open
problem to construct secure anonymous HIBE schemes by extending our method.

6 Conclusion

We analyse the construction of Boyen-Waters anonymous IBE Scheme and find
a method to construct anonymous IBE schemes. We show that Boyen-Waters
anonymous IBE scheme can be transformed from BB1-IBE scheme. We give a
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new anonymous IBE scheme which is also transformed from BB1-IBE scheme
and can be seemed as a variant of Boyen-Waters anonymous IBE scheme. The
security proof shows the transformed scheme has the same semantic security
as the original BB1-IBE scheme and has anonymous security. And we prove
anonymity under the Decision Linear assumption.
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