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Abstract. Root extraction is a classical problem in computers algebra.
It plays an essential role in cryptosystems based on elliptic curves. In
2006, Barreto and Voloch proposed an algorithm to compute rth roots in
Fqm for certain choices of m and q. If r || q−1 and (m, r) = 1, they proved

that the complexity of their method is ˜O(r(log m + log log q)m log q). In
this paper, we extend the Barreto-Voloch algorithm to the general case
that r || qm − 1, without the restrictions r || q − 1 and (m, r) = 1. We
also specify the conditions that the Barreto-Voloch algorithm can be
preferably applied.

Keywords: Barreto-Voloch algorithm, Adleman-Manders-Miller
algorithm.

1 Introduction

Consider the problem to find a solution to Xr = δ in Fqm , where q = pd for some
prime p and some integer d > 0. Clearly, it suffices to consider the following two
cases:

(1) (r, qm − 1) = 1, (2) r|qm − 1

Root extraction is a classical problem in computational algebra and number
theory. It plays an essential role in cryptosystems based on elliptic curves. The
typical applications of root extraction are point compression in elliptic curves
and operation of hashing onto elliptic curves [3,4,9].

Adleman, Manders and Miller [1] proposed a method to solve the problem,
which extends Tonelli-Shanks [7,10] square root algorithm. The basic idea of
Adleman-Manders-Miller rth root extraction in Fq can be described as follows.
If r|q − 1, we write p− 1 in the form rt · s, where (s, r) = 1. Given a rth residue
δ, we have (δs)rt−1

= 1. Since (s, r) = 1, it is easy to find the least nonnegative

integer α such that s|rα − 1. Hence,
(

δrα−1
)rt−1

= 1. If t − 1 = 0, then δα is
a rth root of δ. From now on, we assume that t ≥ 2. Given a rth non-residue
ρ ∈ Fq, we have

(ρs)i·rt−1 �= (ρs)j·rt−1

where i �= j, i, j ∈ {0, 1, · · · , r − 1}
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Set Ki = (ρs)i·rt−1

and K = {K0, K1, · · · , Kr−1}. It is easy to find that all Ki

satisfy Xr = 1. Since
(

(

δrα−1
)rt−2)r

= 1, there is a unique j1 ∈ {0, 1, · · · , r−1}
such that

(

δrα−1
)rt−2

= Kr−j1 (where Kr = K0). Hence,
(

δrα−1
)rt−2

Kj1 = 1.
That is

(

δrα−1
)rt−2

(ρs)j1·rt−1

= 1

Likewise, there is a unique j2 ∈ {0, 1, · · · , r − 1} such that

(

δrα−1
)rt−3

(ρs)j1·rt−2

(ρs)j2·rt−1

= 1

Consequently, we obtain j1, · · · , jt−1 such that

(

δrα−1
)

(ρs)j1·r (ρs)j2·r2 · · · (ρs)jt−1·rt−1

= 1

Thus, we have

(δα)r
(

(ρs)j1+j2·r+···jt−1·rt−2
)r

= δ

It means that δα (ρs)j1+j2·r+···jt−1·rt−2

is a rth root of δ. The complexity of
Adleman-Manders-Miller rth root extraction algorithm is O(log4q + rlog3q).
Notice that the algorithm can not run in polynomial time if r is sufficiently
large.

In 2006, Barreto and Voloch [2] proposed an algorithm to compute rth roots
in Fqm for certain choices of m and q. If r || q − 1 and (m, r) = 1, where the
notation ab||c means that ab is the highest power of a dividing c, they proved
that the complexity of their method is ˜O(r(log m + log log q)m log q).

Our contributions. We extend the Barreto-Voloch root extraction method to
the general case that r || qm − 1, without the restrictions r || q − 1 and (m, r) =
1. We also specify the conditions that the Barreto-Voloch algorithm can be
preferably applied.

2 Barreto-Voloch Method

Barreto-Voloch method takes advantage of the periodic structure of v written in
base q to compute rth roots in Fqm , where v = r−1 (mod qm−1) if (r, qm−1) = 1.
This advantage is based on the following fact [2]:

Fact 1. Let Fqm be a finite field of characteristic p and let s be a power of p.
Define the map

φn : Fqm → Fqm , y �→ y1+s+···+sn

for n ∈ N
∗

We can compute φn(y) with O(log n) multiplications and raisings to powers of p.
Notice that raising to powers of p has negligible cost, if we use a normal basis

for Fqm/Fq. Since it only requires O(log n) multiplications and raisings to powers
of p to compute y1+s+···+sn

, where p is the characteristic of Fqm and s is a power
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of p, their method becomes more efficient for certain choices of m and q. They
obtained the following results [2].
Lemma 1. Given q and r with (q(q−1), r) = 1, let k > 1 be the order of q modulo
r. For any m > 0, (m, k) = 1, let u, 1 ≤ u < r satisfy u(qm−1) ≡ −1 (mod r) and
v = 	qmu/r
. Then rv ≡ 1 (mod qm − 1). In addition, v = a+ b

∑n−1
j=0 qjk, a, b <

q2k, n = 	m/k
.
Theorem 1. Let q be a prime power, let r > 1 be such that (q(q − 1), r) = 1 and
let k > 1 be the order of q modulo r. For any m > 0, (m, k) = 1, the complexity
of taking rth roots in Fqm is ˜O((log m + r log q)m log q).
Lemma 2. Given q and r with r | (q − 1) and ((q − 1)/r, r) = 1, for any m > 0,
(m, r) = 1, let u, 1 ≤ u < r satisfy u(qm − 1)/r ≡ −1 (mod r) and v = �qmu/r�.
Then rv ≡ 1 (mod (qm − 1)/r2). In addition, v = a + b

∑n−1
j=0 qjr, a, b < q2r, n =

	m/r
.
Theorem 2. Let q be a prime power and let r > 1 be such that r | (q − 1) and ((q −
1)/r, r) = 1. For any m > 0, (m, r) = 1, given x ∈ Fqm one can compute the rth
root of x in Fqm , or show it does not exist, in ˜O(r(log m + log log q)m log q) steps.

3 Analysis of Barreto-Voloch Method

3.1 On the Conditions of Barreto-Voloch Method

In Theorem 1, it requires that

(q(q − 1), r) = 1 and (m, k) = 1

where k > 1 is the order of q modulo r. These conditions imply (qm − 1, r) = 1.
But these are not necessary to the general case. Likewise, in Theorem 2, it
requires that

r || q − 1 and (m, r) = 1

These imply r || qm − 1. But these are not necessary, too. We will remove the
restrictions and investigate the following cases:

(1) (r, pm − 1) = 1; (2) r || pm − 1.
where p is a prime. As for the general case, pm − 1 = rαs, α ≥ 2, (r, s) = 1, we
refer to [1].

3.2 On the Technique of Periodic Structure

As we mentioned before, Barreto-Voloch method takes advantage of the periodic
structure of v written in base q. Precisely, in Lemma 1

v = a + b
n−1
∑

j=0

qjk, a, b < q2k, n = 	m/k
 (1)

where k > 1 is the order of q modulo r. From the expression, we know it requires
that n = 	m/k
 ≥ 1. It is easy to find that the advantage of Barreto-Voloch method
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due to the periodic expansion in base q requires that m is much greater than k. That
is, the length of such periodic expansion, n, should be as large as possible.

Since raising to a power of p is a linear bijection in characteristic p, the
complexity of such operation is no larger than that of multiplication, namely,
˜O(m log p) using FFT techniques [5,6,8]. In light of that q = pd for some prime
p, it is better to write v as

v = a′ + b′
n′−1
∑

j=0

pjk′
, a′, b′ < p2k′

, n′ = 	md/k′
 (2)

where k′ is the order of p modulo r. That is, the periodic expansion in base p
could produce a large expansion length, instead of the original periodic expansion
in base q. This claim is directly based on the following fact

n′ = 	md/k′
 ≥ 	md/kd
 = n (3)

(This is because k′ | kd. See the definitions of k, k′.)

4 Extension of Barreto-Voloch Method

4.1 Taking rth Roots When r is Invertible

We first discuss the problem to take rth roots over Fpm if (r, pm − 1) = 1, where
p is a prime.

Lemma 3. Suppose that (pm − 1, r) = 1. Let k be the order of p modulo r. Let
u, 1 ≤ u < r satisfy u(pm − 1) ≡ −1 (mod r). Then rv ≡ 1 (mod pm − 1), where
v = 	pmu/r
. In addition, if m > k, then v = a + b

∑n−1
j=0 pjk, a, b < p2k, n =

	m/k
.
Proof. Since u(pm−1) ≡ −1 (mod r) and 1 ≤ u < r, we have pmu/r = 	pmu/r
+
(u − 1)/r and r	pmu/r
 ≡ 1 (mod pm − 1). Let z = u(pk − 1)/r. Then z is an
integer and z < pk − 1. Hence, pmu/r = pmz/(pk − 1). If m > k, then we have
the following expansion

pmz/(pk − 1) = pm−kz

∞
∑

j=0

p−jk = pm−nkz

n−1
∑

j=0

pjk + pm−kz

∞
∑

n

p−jk

Take a = 	pm−kz
∑∞

n p−jk
, b = pm−nkz. This completes the proof. �
Theorem 3. Suppose that (pm − 1, r) = 1. Let k be the order of p modulo r.
If m > k, then the complexity of taking rth roots of δ in Fpm is ˜O((log m +
k log p)m log p).

Proof. Given δ ∈ Fpm , clearly, δr−1
is a root of Xr = δ if (pm − 1, r) = 1, where

r−1 is the inverse of r modulo pm − 1.
By Lemma 3, if m > k, then r−1 = a + b

∑n−1
j=0 pjk (mod pm − 1), a, b <

p2k, n = 	m/k
. Raising to the power
∑n−1

j=0 pjk takes O(log n) multiplications
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and raisings to powers of p. The raising to the power a takes O(k log p) multi-
plications due to the bound on the exponent. So does the raising to the power
b. The total computation cost is therefore O(log m + k log p) operations of com-
plexity ˜O(m log p) (if directly using the form r−1 = u(pm−1)+1

r , it takes time
˜O(m2 log2 p)). This completes the proof. �

4.2 Taking rth Roots When r is Not Invertible

We now discuss the problem to take rth roots over Fpm if r || pm − 1, where p is
a prime.

Lemma 4. Suppose that r || pm−1. Let k be the order of p modulo r. Let u, 1 ≤ u <
r satisfy u(pm − 1)/r ≡ −1 (mod r) and v = �pmu/r2�. Then rv ≡ 1 (mod (pm −
1)/r). In addition, if m > kr, then v = a+b

∑n−1
j=0 pjkr , a, b < p2kr, n = 	m/kr
.

Proof. Since u(pm − 1)/r ≡ −1 (mod r) and 1 ≤ u < r, we have pmu/r2 =
�pmu/r2�+(u−r)/r2 and r�pmu/r2� ≡ 1 (mod (pm−1)/r). Let z = u(pkr−1)/r2.
Then z is an integer and z < pkr−1. Hence, pmu/r2 = pmz/(pkr−1). If m > kr,
then we have the following expansion

pmz/(pkr − 1) = pm−krz
∞
∑

j=0

p−jkr = pm−nkrz
n−1
∑

j=0

pjkr + pm−krz
∞
∑

n

p−jkr

Take a = 	pm−krz
∑∞

n p−jkr
, b = pm−nkrz. This completes the proof. �

Theorem 4. Suppose that r || pm−1. Let k be the order of p modulo r. If m > kr,
then one can compute the rth root of δ in Fpm , or show it does not exist, in
˜O((log m + kr log p)m log p) steps.

Proof. Given δ ∈ Fpm , we have δpm−1 = 1. If r || pm − 1 and δ(pm−1)/r = 1, then
there exists an integer v such that pm−1

r | vr− 1 and (δv)r = δ. Hence, it suffices
to compute the inverse of r modulo pm−1

r .
By Lemma 4, if m > kr, r−1 ≡ v = a + b

∑n−1
j=0 pjkr (mod (pm − 1)/r), a, b <

p2kr, n = 	m/kr
, Since raising to the power
∑n−1

j=0 pjkr takes O(log n) multi-
plications and raisings to powers of p. Raising to the power a takes O(kr log p)
multiplications due to the bound on the exponent. So does raising to the power
b. The cost of raising to v is therefore O(log m+kr log p) operations of complex-
ity ˜O(m log p). To check that ρ = δv is a correct root, we compute ρr with cost
˜O(m log r log p). If δ is a rth power, then ρr = δ, otherwise ρr is not equal to δ.
The total computation cost is therefore ˜O((log m + kr log p)m log p) (if directly
using the form r−1 = u(pm−1)+r

r2 , it takes time ˜O(m2 log2 p)). This completes the
proof. �
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5 Conclusion

In this paper, we analyze and extend the Barreto-Voloch method to compute
rth roots over finite fields. We specify the conditions that the Barreto-Voloch
algorithm can be preferably applied. We also give a formal complexity analysis
of the method.
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