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Abstract. In a compartmented access structure, there are disjoint par-
ticipants C1, . . . , Cm. The access structure consists of subsets of partic-
ipants containing at least ti from Ci for i = 1, . . . , m, and a total of at
least t0 participants. Tassa [2] asked: whether there exists an efficient
ideal secret sharing scheme for such an access structure? Tassa and Dyn
[5] realized this access structure with the help of its dual access struc-
ture. Unlike the scheme constructed in [5], we propose a direct solution
here, in the sense that it does not utilize the dual access structure. So
our method is compact and simple.
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1 Introduction

Shamir [1] and Blake [6] proposed a (t, n) threshold secret sharing scheme, that
is, sharing a secret among a given set of n participants, such that every k(k ≤ n)
of those participants could recover the secret by pooling their shares together,
while no subset of less than k participants can do so. Simmons [3] generalized
this scheme, he described a new scheme: compartmented access structure. In this
scheme, there are disjoint participants C1, . . . , Cm. The access structure consists
of subsets of participants containing at least ti from Ci for i = 1, . . . , m, and a
total of at least t0 participants. We give a formal definition and some related
concepts in the following.

Definition 1 (Ideality). [3,5] A secret sharing scheme with domain of secrets
S is ideal if the domain of shares of each user is S. An access structure Γ is
ideal if for some finite domain of secrets S, there exists an ideal secret sharing
scheme realizing it.

Definition 2 (Compartmented Access Structure). [3,5] Let C be a set of
n participants and assume that C is composed of compartments, i.e., C =

⋃m
i=1 Ci
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where Ci∩Cj = ∅ for all 1 ≤ i < j ≤ m. Let t = {ti}m
i=0 be a sequence of integers

such that t0 ≥ ∑m
i=1 ti. Then the (t, n)-compartmented access structure is

Γ = {V ⊂ C : | V ∩ Ci |≥ ti for all i ∈ {1, . . . , m} and | V |≥ t0}. (1)

Brickell [4] studied this scheme later, he proved that this access structure is
ideal, but the secret sharing scheme that he proposed suffered from the same
problem of inefficiency as Simmons’s schemes [3] did (namely, the dealer must
perform possibly exponentially many checks when assigning identities and shares
to the participants). So Tassa [2] asked: whether there exists an efficient ideal
secret sharing scheme for such access structures? In [5], Tassa and Dyn gave
a positive answer. Their idea results from the following conclusion [8,9]: If an
access structure Λ is computed by a monotone span program M, then the dual
access structure Λ∗ is computed by a monotone span program M∗ of the same
size, and M∗ can be efficiently computed from M. Tassa and Dyn gave a solution
to the dual access structure of (1), so they can efficiently construct a solution
for (1). This is a good idea, but still can be improved. As a matter of fact, we
do not need to use the idea of dual span program, just make a little amendment
of the idea from [5], then we can get an easier solution for the compartmented
access structure (1). First, let us neglect the restriction of ideality, then there
is nothing difficult, we describe a solution to realize the weaken version of the
access structure (1) here:

– The dealer generates a random polynomial R(y) =
∑t0

i=1 aiy
i, and then the

dealer generates other random polynomials Pi(x) =
∑ti

j=1 bijx
j (1 ≤ i ≤ m).

– The secret is S = a1 +
∑m

i=1 bi1.
– Each participant cij from compartment Ci will be identified by a unique

public point (xij , yij), where xij �= xil for j �= l and yij �= ykl for (i, j) �=
(k, l). The participant cij ’s private share will be (Pi(xij), R(yij)).

This idea can be explained as a compound version of shamir’s (t,n) threshold,
but it is not ideal. In this paper, we try to modify this idea and finally get
an ideal solution. The solution uses similar idea as in [5], especially their proof
techniques. The drawback of this solution is: although V ∈ Γ , sometimes the
participants in V cannot recover the secret either. To our exciting, it is only a
small probability event, so this solution is useful. we will prove this result in the
rest of this paper.

In the following context, we use F to denote the finite field of size q. We discuss
problems in F throughout this paper. In this paper, the following lemma plays
an important role:

Lemma 1 (Schwartz-Zippel Lemma). [5] Let G(z1, z2, . . . , zk) be a nonzero
polynomial of k variables over a finite field F of size q. Assume that the highest
degree of each of the variables zj in G is no larger than d. Then the number of
zeros of G in F

k is bounded from above by kdqk−1.
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2 New Solution and Proofs

In this section we will describe a probabilistic scheme to realize the compart-
mented access structure Γ and give its proof.

2.1 New Solution

1. The dealer generates a random polynomial R(y) =
∑l

i=1 aiy
i, where l1 =

deg(R(y)) = t0 − ∑m
i=1 ti, and then the dealer generates other m random

polynomials Pi(x) =
∑ti

j=1 bijx
j , let Qi(x, y) = Pi(x) + R(y) (1 ≤ i ≤ m).

2. The secret is S = a1 +
∑m

i=1 bi1.
3. Each participant cij from compartment Ci will be identified by a unique

public point (xij , yij), where xij �= xil for j �= l and yij �= ykl for (i, j) �=
(k, l). The participant cij ’s private share will be Qi(xij , yij).

Remark 1. It seems natural to start the indices with 0, but in that case, the
scheme will fail all the times, so we do not use the constant terms in the above
polynomials. The price is that we must select all the points to be nonzero. we
will give a detailed explanation after Example 1.

The scheme is similar as ”Secret Sharing Scheme 4” in [5], but we solve different
problems here. In [5], Tassa and Dyn gave a solution for the dual access structure
of (1) (See ”Secret Sharing Scheme 2”). They stated that using the explicit
construction described in [8], they can translate the dual access structure into
(1). But they did not give the detailed process. We give a direct solution here,
which means that we do not utilize the dual access structure. Note that there
are m random polynomials here, but only one in [5]. So we can do more things
here. Obviously, this is an ideal scheme since the private shares of all users are
taken from the domain of secrets F. The unknown variables are coefficients of all
the polynomials R(y) and Pi(x) (1 ≤ i ≤ m), the total number of these variables
is t0. In view of the above, if any participants want to recover the secret S,
they must recover all the polynomials before-mentioned, so the total number
of these participants is at least t0, and the members from Ci is at least ti. In
brief, this scheme satisfies the constraints in Γ . Such a demonstration may not
be convincing, we proceed to give a strict proof.

2.2 Proofs

Theorem 1. If V ∈ Γ , it may recover the secret S with probability 1 − Cq−1,
where the constant C depends on t0, t1, · · · tm.

Proof. When the participants try to recover the secret from their shares, they
have to solve the corresponding system of linear equations that is induced by the
shares. Let V be a minimal set in Γ , then |V| = t0. We assume that |V∩Ci| = ki ≥
1 If l=0, then it it a trivial problem, we omit such situation.
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ti, 1 ≤ i ≤ m. If V∩Ci = {ci1, · · · , ciki} and cij is identified by the point (xij , yij),
then we can reduce the recover of the polynomials R(y) and Pi(x) (1 ≤ i ≤ m)
to the solution of the following linear equations:

M · A = Q, (2)

where

M =

⎛

⎜
⎜
⎜
⎝

M1 G1

M2 G2

. . .
Mm Gm

⎞

⎟
⎟
⎟
⎠

, (3)

A =
(
b11 · · · b1t1 · · · bm1 · · · bmtm a1 · · · al

)t
,

and

Q =
(
Q1(x11, y11) · · · Q1(x1k1 , y1k1) · · · Qm(xm1, ym1) · · · Qm(xmkm , ymkm)

)t
.

The pairs of blocks Mi and Gi, 1 ≤ i ≤ m, represents the equations that are
contributed by the ki participants from compartment Ci. They have the following
form:

(Mi · · ·Gi) =

⎛

⎜
⎜
⎜
⎝

xi1 x2
i1 · · · xti

i1 · · · yi1 y2
i1 · · · yl

i1

xi2 x2
i2 · · · xti

i2 · · · yi2 y2
i2 · · · yl

i2
...

...
...

... · · · ...
...

...
...

xiki x2
iki

· · · xti

iki
· · · yiki y2

iki
· · · yl

iki

⎞

⎟
⎟
⎟
⎠

.

Here, Mi is a block of size ki × ti, and Gi is a block of size ki × l (We omit
the trivial situation l = 0, so G always exists). Besides Mi and Gi, all the other
places of M is 0. The size of M is t0 × t0.

The unknown variables are the components of A. According to the knowledge
of linear algebra, the equation (2) has only one solution only when det(M) �= 0, so
the probability that we can solve A is equal to the probability that det(M) �= 0.
Now we will consider the expansion of det(M). Clearly, it has the following
properties:

(1) det(M) is a nonzero polynomial of 2t0 variables over the finite field F.
(2) The highest degree of each of the variables in det(M) is no larger than

d = max(t1, · · · , tm, l).

According to Lemma 1, we may conclude that the number of zeros of det(M)
in F

2t0 is bounded by 2t0dq2t0−1. But in det(M), the 2t0 variables can have q2t0

values. So the probability that det(M) = 0 is bounded by 2t0dq2t0−1 · q−2t0 =
2t0dq−1. 	
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Example 1. We give an example here, suppose m = 3, t0 = 9, t1 = 2, t2 = 2, t3 =
3, k1 = 3, k2 = 2, k3 = 4, then

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11 x2
11 0 0 0 0 0 y11 y2

11

x12 x2
12 0 0 0 0 0 y12 y2

12

x13 x2
13 0 0 0 0 0 y13 y2

13

0 0 x21 x2
21 0 0 0 y21 y2

21

0 0 x22 x2
22 0 0 0 y22 y2

22

0 0 0 0 x31 x2
31 x3

31 y31 y2
31

0 0 0 0 x32 x2
32 x3

32 y32 y2
32

0 0 0 0 x33 x2
33 x3

33 y33 y2
33

0 0 0 0 x34 x2
34 x3

34 y31 y2
34

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and d = max(2, 2, 3, 2) = 3. We just give the form of M here, and it will be
helpful to understand this theorem. In the next part of this section, we will use
computer to illustrate the validity of the above theorem. We give the results
in tables only, without any more details. In the following two tables, q is the
size of the finite field F, other parameters are as in the above. The column
”Times” denotes how many experiments have we made, ”Results” denotes the
probability of det(M) = 0 in the experiments, ”Theoretical” denotes the lower
bound probability of det(M) = 0 under Theorem 1.

Table 1. q = 4999

Parameters Times Results Theoretical

t1 = 2, t2 = 3, m = 2
k1 = 3, k2 = 6, t0 = 9 10000 99.98% > 98.55%

t1 = 1, t2 = 1, t3 = 1, m = 3
k1 = 1, k2 = 1, k3 = 2, t0 = 4 10000 99.96% > 99.83%

t1 = 2, t2 = 2, t3 = 3, m = 3
k1 = 3, k2 = 2, k3 = 4, t0 = 9 10000 99.93% > 98.91%

Table 2. q = 832809541

Parameters Times Results Theoretical

t1 = 2, t2 = 3, m = 2
k1 = 3, k2 = 6, t0 = 9 10000 100% > 1 − 9 × 10−8

t1 = 1, t2 = 1, t3 = 1, m = 3
k1 = 1, k2 = 1, k3 = 2, t0 = 4 10000 100% > 1 − 1 × 10−8

t1 = 2, t2 = 2, t3 = 3, m = 3
k1 = 3, k2 = 2, k3 = 4, t0 = 9 10000 100% > 1 − 7 × 10−8

From the tables above, it can be seen that if q is large enough, then we can
recover the secret with probability very close to 1. That is, when q is larger,
the probability will be closer to 1. The results is in accord with the theorem.
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The results imply that if we want to put the above idea into practice, we must
chose a large finite field F.

We explain why we choose to start the indices with 0 in our new solution (See
Setc. 2.1). For example, if we use constant terms in those polynomials, then the
matrix M in Example 1 will be changed into:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x11 0 0 0 0 0 1 y11

1 x12 0 0 0 0 0 1 y12

1 x13 0 0 0 0 0 1 y13

0 0 1 x21 0 0 0 1 y21

0 0 1 x22 0 0 0 1 y22

0 0 0 0 1 x31 x2
31 1 y31

0 0 0 0 1 x32 x2
32 1 y32

0 0 0 0 1 x33 x2
33 1 y33

0 0 0 0 1 x34 x2
34 1 y34

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the first three constant columns span the fourth, so det(M) = 0,
according to the proof of Theorem 1, we cannot recover the secret in this case,
the scheme will fail under such condition. As a matter of fact, det(M) ≡ 0 if we
start the indices with 0, these situation should be avoided in our scheme, so we
start the indices with 1.

In [5], Tassa and Dyn chose to start the indices with 0, but in practice, their
scheme cannot handle the case when there needs only one partiticipant in some
compartment Ci, that is, when min(t1, · · · , tm) = 1, their scheme will fail. More-
over, according to our experiments, the probability that det(M) �= 0 will become
a little higher when we start the indices with 1, so it is a better choice.

Theorem 2. If V /∈ Γ , then with probability 1 − Cq−1 it may not learn any
information about the secret S, where the constant C depends on t0, t1, · · · , tm.

Proof. Assume that V /∈ Γ , we choose V to be a maximal unauthorized subset,
namely, a subset that lacks only one participant to becoming an authorized
subset, then there are only two situations to be considered: |V ∩Ci| = ki < ti for
some 1 ≤ i ≤ m or |V| < t0 but |V ∩ Ci| ≥ ti for all 1 ≤ i ≤ m. In the first case,
let ki = ti − 1 for some i. If V ∩ Ci = {ci1, ci2, · · · , ci(ti−1)} and cij is identified
by the point (xij , yij), consider the matrix as follows:

M
′
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
xi1 x2

i1 · · · xti

i1

xi2 x2
i2 · · · xti

i2
...

...
...

...
xi(ti−1) x2

i(ti−1) · · · xti

i(ti−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

M
′
i is a matrix of size ti × ti. If we can recover the value of bi1, then the first row

must be spanned by the rest, which implies that det(M
′
) = 0. But according to

the property of vandermonde determinant, it is easy to conclude that det(M
′
) �= 0.
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So we cannot get bi1, nor can we recover the secret S. In the second case, without
lose of generality, suppose |V| = t0 − 1, define a t0 dimension vector

e =
(
1 · · · 0 · · · 1 · · · 0 1 · · · 0

)t
.

e can be seen as a vector transformed from A, if we replace bi1 (1 ≤ i ≤ m) and
a1 by 1, replace other components by 0, we will get e. Similar as the proof of
Theorem 1, we can get a matrix M

′
, the differences are: in equation (3) the size

of M is t0 × t0, but here the size of M
′

is (t0 − 1) × t0. We need to show that
the vector e is, most probably, not spanned by the rows of M

′
. In order to show

this, we augment M
′

by adding to it the vector e as the first row and note the
augmented matrix as M

′′
, we need to show that the probability of det(M

′′
) = 0

is 1 − Cq−1. The proof goes along the same as in the proof of Theorem 1. 	


3 Conclusions

We give a probabilistic solution of the open problem proposed in [2], using the
similar idea as in [5]. The solution result from Tassa’s idea, but easier than his.
In practical application, q, the size of the finite field F, is large, so the value of
1−Cq−1 is close to 1, which implies the practicability of this scheme. Moreover,
ideality is a theoretic notation, in practical application, we need not restrict the
scheme to be ideal. In such case, the scheme proposed in the introduction of this
paper will be a good choice.
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