
Effective and Efficient Entity Search

in RDF Data

Roi Blanco1, Peter Mika1, and Sebastiano Vigna2

1 Yahoo! Research
Diagonal 177, 08018 Barcelona, Spain

{roi,pmika}@yahoo-inc.com
2 Università degli Studi di Milano

via Comelico 39/41, I-20135 Milano, Italy
vigna@acm.org

Abstract. Triple stores have long provided RDF storage as well as data
access using expressive, formal query languages such as SPARQL. The
new end users of the Semantic Web, however, are mostly unaware of
SPARQL and overwhelmingly prefer imprecise, informal keyword queries
for searching over data. At the same time, the amount of data on the
Semantic Web is approaching the limits of the architectures that pro-
vide support for the full expressivity of SPARQL. These factors com-
bined have led to an increased interest in semantic search, i.e. access to
RDF data using Information Retrieval methods. In this work, we pro-
pose a method for effective and efficient entity search over RDF data. We
describe an adaptation of the BM25F ranking function for RDF data,
and demonstrate that it outperforms other state-of-the-art methods in
ranking RDF resources. We also propose a set of new index structures
for efficient retrieval and ranking of results. We implement these results
using the open-source MG4J framework.

1 Introduction

The amount of data published on the Semantic Web has grown at increasing rates
in the past years due to the activities of the Linked Data community and the
adoption of RDFa by major web publishers. The amount of data to be managed
is stretching the scalability limitations of triple stores that are conventionally
used to manage Semantic Web data. At the same time, the Semantic Web is
increasingly reaching end users who need efficient and effective access to large
subsets of this data. Such end users prefer simple, but ambiguous natural lan-
guage queries over highly selective, formal graph queries in SPARQL, the query
language of triple stores. In a web search scenario, formulating SPARQL queries
may not be feasible altogether due to the heterogeneity of data.

These requirements are spurring interest in the field of Semantic Search, in
particular the adaptation of Information Retrieval methods to data access. IR-
style indexing is efficient in that it scales well with respect to the size of text
collections in both index construction and retrieval. The field has also devel-
oped a number of methods for effective ranking of documents that match user

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 83–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 R. Blanco, P. Mika, and S. Vigna

queries. The challenge in Semantic Search is adapting these results in indexing
and ranking to exploit the inherent structure and semantics of RDF data, and
expanding them to support the user tasks common in RDF retrieval. The most
basics of these tasks is entity-search or Ad-hoc Object Retrieval (AOR) as de-
scribed by [15], i.e. the retrieval of RDF resources that are representation of an
entity described in a keyword query.

This problem has direct relevance to the operation of Web search engines,
which increasingly incorporate structured data in their search results pages.
Figure 1 shows a search result page from Yahoo! Search for the query vienna,
austria. Besides the ten blue links representing document results, we can see on
the left-bar suggestions for points of interest in Vienna. This requires an under-
standing that this query represents the city of Vienna, and a ranking over the
points of interest. Similarly, an information box above the result pages shows
relevant travel information such as the current weather and the geographic lo-
cation of the city. This again requires a decision that travel information might
be relevant to this query, and to execute a top-1 query for the most relevant city
in the travel database, and to retrieve the location of the city and the current
weather.

In this paper, we describe our system for entity search that adapts a state-of-
the-art IR ranking model by taking into consideration the structure and seman-
tics of RDF data. We show that this ranking model outperforms in effectiveness
all 14 submissions that have been evaluated on the task of entity-search at the
Semantic Search workshop in 2010. We also discuss the combination of index
structures that allow this system to be efficient even on large and heterogenous
datasets collected from the Web.

2 Related Work

Besides the core problem of document retrieval, ranking models from Information
Retrieval have been applied in the past to the problem of retrieval over XML [9]
and the relational data model [1,8,10]. However, adaptations to the RDF model
are relatively new.

The typical way of providing online access to RDF collections is by using triple
stores (or quad stores) that implement database-style indexing of the structure
of RDF graphs. Triple stores (such as OWLIM1 and 4store2) allow the option
to index the text values of literals in an inverted index on the side (e.g. using
Lucene), or rely on text-indexing of the underlying DBMSs (such as Oracle3

and Virtuoso4), but these indices are only used for matching (filtering candidate
solutions). As SPARQL does not have a built in query language for full text
search in literals, this functionality is typically exposed using ’magic predicates’
1 http://www.ontotext.com/owlim
2 http://4store.org/
3 http://www.oracle.com/technetwork/database/options/semantic-tech/

index.html
4 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro

http://www.ontotext.com/owlim
http://4store.org/
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro

Effective and Efficient Entity Search in RDF Data 85

Vienna - Visitor Guide

travel.yahoo.com

Overview Hotels Restaurants

Extended forecast on Yahoo! Weather

Current Local Time

7:46 pm (CEST)

Weather Forecast

Today Rain Early 70°F | 59°F

Tomorrow Mostly Cloudy 71°F | 55°F

Saturday PM Showers 69°F | 54°F

Name | History | Geography and... | Districts and...

Vienna lies in the east of Austria and is close to the borders of the

Czech Republic, Slovakia, and Hungary. These regions work

together in a European Centrope border region. Along with...

en.wikipedia.org/wiki/Vienna - Cached

Vienna - Wikipedia, the free encyclopedia

Vienna: City Guide, weather and facts galore from Answers.com
The capital and largest city of Austria, in the northeast part of the country on the Danube

River. Originally a Celtic settlement, it became the official ...

www.answers.com/topic/vienna - Cached

Vienna, Austria - Image Results More Sponsors:

Sponsored Results

350 Hotels in Vienna
Find and book a hotel online. All

hotels with special offers.

www.booking.com/Vienna

Save Big on Vienna Hotels
Hotel Deals in Vienna, Austria.

Compare Prices and Save up to

75%.

Vienna.Austria.Hotel.net

What to Do in Vienna?
Musicals, Concerts, Sightseeing.

Quick and safe. Book now online.

ViennaTicketOffice.com

Vienna Austria Events
Operas, Concerts, all Events. Quick,

secure bookings. No Fees!

www.viennaconcerts.com

Austria Vienna
Make the Most of Your Vacation: Get

the Truth. Then Go.

www.TripAdvisor.com

vienna, austria

See your message here...

44,700,000 results for

vienna, austria

Related Points of Interest

Maria am Gestad...

Kunsthistorisch...

Hundertwasserha...

Hawelka

Spanish Riding ...

Alsergrund

Kahlenberg

Schatzkammer

Ruprechtskirche

SearchScanBETA - On

QuickApps

Searchvienna, austria

Web Images Video Local Shopping News Apps More

Options

Read our updated data policy

Fig. 1. Examples of structured data in the search result page

that are specific to the triple store. SPARQL 1.0 allows matching using regular
expressions, but this is typically not supported by IR engines. Triple stores in
general do not perform ranking.

The work of Wang et al. [18] on the Semplore system considers a deeper
integration of DB and IR technology, where a set of inverted indices are used for
matching limited forms of conjunctive queries, in particular tree-shaped queries
with a single target variable at the root of the tree. Such queries may include
“keyword concepts”, i.e. the set of resources that have a predicate-value that
contains a given set of keywords. They show that resolving such queries can be
more efficient than the combination of a triple-store with a full-text index on the
side. They also propose a simple propagation algorithm to transfer the scores
from the keyword matching along the relations back to the root node of the query
tree, thereby obtaining a ranking over the results. The relations themselves do
not change the scoring.

All of the above systems consider an expert user who is familiar with the
structure of the data and is able to denote his information need using a struc-
tured query, i.e. providing graph patterns for matching. The scenario we consider
in our work is one of ad-hoc retrieval, i.e. retrieval by users who are not assumed
to have prior knowledge of the system, including the representation of data.
This scenario is typical for open search systems with inexperienced users who

86 R. Blanco, P. Mika, and S. Vigna

are not aware of the schema of the data, but also for systems that contain
heterogeneous collections of data that don’t conform to any single schema. As
an example, the web dataset considered in this paper consists of over 30,000
unique RDF properties. In such cases, it is impossible to translate the user’s
information need into a single correct structured representation of the query as
suggested by [17].

More specifically, we consider the task of Ad-hoc Object Retrieval (AOR)
defined by [15]. Pound et al. point out that over 40% of searches in a typi-
cal web search usage are looking for a single object or entity. The task –also
commonly called entity search– is thus to provide a ranking over RDF re-
sources in terms of their relevance to an entity that is explicitly named in the
query (though the query may contain more information than just the name
of the entity). Though this task is basic, it requires solving basic problems
in ad-hoc retrieval, in particular, dealing with multiple potential interpreta-
tions, and ranking partially matching resources based on their degree of
relevance.

This task has been evaluated in a campaign run at the SemSearch 2010 work-
shop, where six participants entered 14 submissions [7]. The submissions rep-
resent a wide range of retrieval approaches, including the ones used in existing
Semantic Web search engines such as Sindice [13]. We show that our method
outperforms these systems in retrieval effectiveness by as much as 40%.

The method we use is closest in nature to the one proposed by Pérez-Agüera
[14]. We also adapt BM25F, a scoring function that is considered state-of-the-
art in text retrieval. The index structure used in their system is similar to our
horizontal index, but it considers five fields: text (all text from property values),
title (words from the URI), object (tokens from the URIs of objects), inlinks
(tokens from predicates of ’incoming’ triples). The main difference to our work
is that BM25F scoring is applied to this five-field structure, while in our work
BM25F is used on the vertical index where there is one field per predicate in
the data. In other words, while Pérez-Agüera et al. consider all predicates with
equal weight, we design a system where it is possible to assign different weights
to different predicates. We will show that such weight assignment can improve
retrieval performance.

Alternative evaluations exist for other important tasks in Semantic Search.
The TREC Entity Track is focusing on entity search over text or hybrid col-
lections (text with metadata).5 The 1st Workshop on Question Answering over
Linked Data (QALD)6 focused on natural language question-answering over se-
lected RDF datasets, where ranking is not required. The evaluation campaign
organized by the European SEALS project focuses on user experience and em-
ploys user studies in addition to automated testing [19]. We do not expect that
our system could be applied directly in all these scenarios, but some of the
techniques described may be useful in designing solutions for them.

5 http://krisztianbalog.com/files/trec2010-entity-overview.pdf
6 http://www.sc.cit-ec.uni-bielefeld.de/qald-1

http://krisztianbalog.com/files/trec2010-entity-overview.pdf
http://www.sc.cit-ec.uni-bielefeld.de/qald-1

Effective and Efficient Entity Search in RDF Data 87

3 Ranking Model

The basis for our ranking is the ranking function BM25F [16] that has been
originally developed for text retrieval. It is an extension of the BM25 probabilistic
model that weights query terms differently depending on which document fields
they appear in. Originally, BM25F was employed to weigh occurrences of terms
in the title, body, or anchor text of Web pages, whereas we will break down
the description of an RDF resource by the property, and consider as values the
literals that appear for each unique datatype-property (see Section 4).

The features that BM25F uses are the field term frequency tfsi (number of
times term i appears in field s), the field length ls (number of tokens in the field
s) and the field weights vs. The ranking function does not exploit proximity
information or term dependencies.

Using BM25F, a document D is scored against a query Q using a summation
over individual scores of query terms q ∈ Q:

scoreBM25F (Q, D) =
∑

q∈Q

wBM25F
i (1)

First, BM25F computes a document length normalization factor as

Bs =
(

(1 − bs) + bs · ls
avls

)
)

, (2)

where avl is the average length of field l and bs is a tunable parameter (0 ≤
bs ≤ 1) that controls the amount of normalization. Next, BM25F aggregates the
weighted term frequencies over all the fields S, normalizing them using Bs as

˜tfi =
S∑

s=1

vs
tfsi

Bs
, (3)

and finally these frequencies are normalized using a sigmoid function as

wBM25F
i =

t̃f

k1 + ˜tfi

· wIDF
i , (4)

where k1 is a parameter and wIDF
i is the inverse document frequency of term i,

calculated as log
(

D−ni+0.5
ni+0.5

)
(ni is the number of documents i occurs in).

The ranking function as described in its most general form requires informa-
tion of all field lengths (ls), which is infeasible to index for very large collections.
Instead, we use a simplified version of the ranking function where the size of
the document D is used as the length of all fields (ls = l). An additional prob-
lem of RDF collections is that many objects are very short and are promoted
by the normalization component. In order to mitigate this problem, we select
a threshold lmax so that if l > lmax → l = lmax, and set lmax = 10 for all the
experiments.

88 R. Blanco, P. Mika, and S. Vigna

Standard document retrieval models also allow for incorporating document
query-independent features, which might come from different sources such as the
Web graph. Two examples are the document PageRank values or the number of
inlinks that point to a particular Web page. In our case, we classify documents
based on their domain into three classes, just like the field weights. We add this
document-weights wD to compute a final retrieval score as [2]:

score(Q, D) = wD · scoreBM25F (Q, D) (5)

4 Indexing

Information Retrieval engines rely on indices for efficient access to the infor-
mation required for computing scores at query time [11]. Indexing in IR is a
basic process of inversion (hence the name inverted index) in which a docu-
ment is made accessible by the term(s) appearing in the content rather than by
some identifier of the document. In more detail, an inverted index provides, for
each term that appears in a collection of documents, a posting list, that is a list
of numbers identifying the documents in which the term appears. The posting
lists can be richer, providing, for instance, also the number of occurrences and
possibly the exact positions (always expressed as offsets from the start of the
document).

Current off-the-shelf retrieval packages allow references to multiple indices
or fields within a single query. In addition, state-of-the-art packages provide
support for an alignment operator. Alignment of queries is useful for parallel
texts. The need for handling parallel texts comes originally from the area of
natural language indexing, e.g. storing part-of-speech information. For example,
a text parallel to “Washington won several battles” could be “PERSON VERB -
NOUN”. Once parallel texts have been indexed, an alignment operator between
terms of two different indices returns just the documents in which two terms
appear in the same positions. For instance, an alignment between “Washington”
and “PERSON” would return the document associated to the parallel texts
above, but an alignment between “Washington” and “PLACE” would not (even
if “Washington” does appear in the document).

This technique is implemented in MG4J [5], an open-source engine for text
indexing. MG4J provides, for each query, a minimal-interval semantics—a set
of regions of text satisfying the query which are incomparable by containment
(i.e., no region is contained inside another region). The resulting semantics are
an extension of the Clarke–Cormack–Burkowski lattice [6] that handles multiple
indices (e.g., title and main text) particularly suited to parallel texts. Indeed,
the alignment operator can align any set of regions, and since the set of regions
associated to a term is exactly given by the positions in which the term appears,
we obtain the alignment of parallel texts we described. Other possibilities are
also available, such as operators that are weaker than exact alignment.

Effective and Efficient Entity Search in RDF Data 89

These functionality allow two main alternatives to implement structured
retrieval.

The first option is illustrated in Table 2 using the sample data shown in
Table 1. For simplicity, we will call this a horizontal index on the basis that
RDF resources are represented using only three fields, one field for the tokens
from values, one for the properties and one for the tokens from the subject URI.
The token and property indices are aligned in that there is a correspondence
between the positions in the token and property fields, i.e. the value in the token
field at a given position is (part of) the value for the property written to the
same position in the property index. (Note that we write the complete predicate
in each position of the property field.) The alignment operator is used to align
the matches in the token and property fields where the query specifies a token
to match in a particular field.

The second option, which we will call a vertical index is shown in Table 3
using the same data. Here we create a field for each property occurring in the
data. In this case performing matching on particular properties only requires the
ability to restrict matches by field. Positions can be still useful, e.g. to make sure
the first and last name are matched as consecutive words. Note that structured
retrieval can also be implemented using a single field, e.g. by encoding fields as a
post-fix of tokens or storing field information as payload. These alternatives are
much less appealing. Post-fixing, for example storing terms like peter foaf:name,
leads to an explosion in dictionary size, especially when using a large number
of fields. On the other hand, encoding fields as payload makes it inefficient to
restrict searches to particular fields.

Table 1. Sample RDF data in Turtle format

@prefix foo: <http://example.org/ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

foo:peter foaf:name "peter mika" .

foo:peter foaf:age "32" .

foo:peter vcard:location "barcelona" .

Table 2. Horizontal index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

token peter mika 32 barcelona
property foaf:name foaf:name foaf:age vcard:location
subject http example org ns peter

In previous work [12], we have shown that both of these index structures can
be efficiently built in a distributed fashion using a single MapReduce job. Since
indexing can be efficiently parallelized, the index building time is linear in the

90 R. Blanco, P. Mika, and S. Vigna

Table 3. Vertical index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

foaf:name peter mika
foaf:age 32
vcard:location barcelona

Table 4. R-vertical index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

wimp peter mika barcelona
wneut

wuni 32

size of the input given the same number of machines in the cluster, and also linear
in the number of machines given the same input (up to the natural limit where
the cost of distribution outweighs the cost of indexing). The resulting indices
are similar in size for the horizontal and vertical case and a small fraction of
the size of the input data. Note that the vertical index alone does not contain
all the information we need for ranking, in particular only the horizontal index
provides direct access to term frequencies and the document sizes that is used in
our ranking. Thus in practice we can either use the horizontal index on its own
or use a combination of the vertical and the horizontal index, where the vertical
index is used for faster matching, but the horizontal index is also accessed when
computing resource scores.

In our current work, we propose a third additional index structure for im-
proved performance. For purposes of ranking, we only need to distinguish fields
that have different weights assigned. In our ranking function, we will use three
different weight levels for important, neutral, and unimportant properties so that
we can index all properties with the same weight using only three fields, instead
of the much larger number of fields we build for the regular vertical index. We
call this reduced version of the vertical index the r-vertical index. Table 4 shows
how we would index our sample data using this index structure, assuming that
we classify foaf:name and vcard:location as important, and foaf:age as unimpor-
tant. The disadvantage of the r-vertical index is the loss in functionality: using
this index it is not possible any more to issue queries that explicitly restrict
matches to particular properties, e.g. to retrieve resources where the word peter
matches in foaf:name and not in other fields. Note that using the r-vertical index
instead of the vertical index does not change the way ranking is performed, it
merely provides faster access and therefore speeds up the ranking process. We
investigate this next. We refer the reader to [12] for more discussion on how we
build these indices, the time spent and the distributed methods used to scale up
indexing.

Effective and Efficient Entity Search in RDF Data 91

5 Evaluation

5.1 Evaluation of Efficiency

To measure the efficiency of these structures, we index the Billion Triples Chal-
lenge 2009 dataset.7 It contains RDF data collected by various Semantic Web
crawlers, and as such the data is highly heterogeneous. It contains 2,680,081
classes and 33,164 properties, and therefore it is unlikely that any user could be
aware of the complete structure of the data and compose formal queries to match
this structure. The collection contains 1.14 billion quads, which is 249GB of data
in uncompressed N-Quads format. The usage of predicates is highly skewed, and
fits an exponentially decaying distribution (refer to the webpage for other statis-
tics). Note that the scale of the data justifies the use of distributed indexing, i.e.
a single-machine setup would have been much slower in indexing this amount of
data.

For indexing, we grouped the quads by subject URI, and considered as virtual
documents the quads with the same subject. We subdivided each document into
fields by considering each unique predicate as a separate field. We only indexed
datatype-properties, i.e. quads with literals in the object position. In case of
multiple values for the same subject and predicate, we simply considered the
concatenation of values. We performed a minimal processing of values at indexing
time, namely we removed stop-words using a list of 389 common English terms
and lower-cased terms. We also indexed the subject URIs by replacing delimiters
with blank spaces and applying the same processing to the resulting string. The
version of the BTC 2009 dataset used in the evaluation does not include blank
nodes, i.e. all blank node identifiers have been replaced by URIs. We index this
data using all three index structures. For the vertical index, we select the top
three-hundred most common datatype-properties for indexing.

In the experiments, we measure the efficiency of retrieval, i.e. the time it takes
to process queries including matching and ranking, but not result rendering. We
consider two execution modes: AND where we require all keywords to be present
in a document to be scored and OR where only a single term is needed. The
former execution mode resembles Web search engines whereas the latter is the
mode by default in our ranking model. To show the additional cost of structured
retrieval, we also include a plain BM25 run using the token index.

We sample 150K queries taken from Yahoo!’s query logs with the restriction
that they lead to a click in Wikipedia, in order to ensure there is an entity focus
in the user intent. Among those queries 68% are unique and the average query
length is 2.2 terms. Table 5 presents the average running times, which converge
after a couple of thousand queries are being executed. The Table shows results for
the baseline BM25 retrieval, all three index configurations (horizontal, vertical
and reduced-vertical) and the two query execution modes.

Our tests show that the vertical approach is about eight time faster than the
horizontal approach when queries are executed in AND mode, while it is only
slightly faster in OR mode.
7 http://vmlion25.deri.ie/

http://vmlion25.deri.ie/

92 R. Blanco, P. Mika, and S. Vigna

Table 5. Retrieval efficiency using different index structures and execution modes

AND mode OR mode

BM25 46 ms 80 ms
Horizontal 819 ms 847 ms
Vertical 97 ms 780 ms

R-Vertical 48 ms 152 ms

In general, AND queries execute faster than OR queries. In AND mode, it
is necessary to compute the intersection of two (or more) posting lists; for OR
queries, it is necessary to compute the union. Clearly, in the second case we
always need to read the full posting list of each term involved. In the AND case,
instead, it is often possible to skip over documents that are not necessary using
skip-pointers [11]. For instance, when computing the AND of a very common
and a very rare term, most of the postings of the very common term are not
needed to compute the result, as the rare term doesn’t appear there.

The difference between AND or OR execution modes is small in the horizontal
case, because the alignment operator dominates execution times. Further, we can
see that the r-vertical index is almost as fast as the vertical index. This proves
that it is possible to trade-off query expressivity for faster execution times and
apply our scoring at execution times comparable to the current state-of-the-art
in Web search engines.

5.2 Evaluation of Effectiveness

We evaluate the effectiveness of our ranking using the data set, the queries and
the relevance assessments that have been made available as part of the Semantic
Search Challenge of 2010 [7]. All of the data has been made publicly available
for research use.8

The collection used in this evaluation is the Billion Triples Challenge 2009
data set that we have described in Section 4. The query set consists of 92 queries
with an entity focus selected from the query logs of Microsoft Live Search and
Yahoo! Search (see [7] for details.) We use a proprietary, state-of-the-art spell
corrector to fix a small number of user mistakes in the queries and apply the
same term-processing as on the collection.

For ranking, we use the ranking function described in Section 3. We classify
manually the properties into three classes (important, unimportant and neutral)
and assign the same vs for each class. In principle, we could learn or select a
different vs for each field, but in practice this would lead to an excessive number
of parameters. Table 6 shows the list of important and unimportant properties.

Similarly, we do not assign a weight wD individually to each document, but
manually classify a small number of domains into the three classes. Table 7
shows the list of important and unimportant domains, while all other domains
are considered neutral. We then set wD to wi

D, wu
D, wn

D for documents coming

8 http://km.aifb.kit.edu/ws/semsearch10/

http://km.aifb.kit.edu/ws/semsearch10/

Effective and Efficient Entity Search in RDF Data 93

from domains classified as important, unimportant and neutral respectively. It
is future work to look at how we could automatically learn these lists, i.e. based
on the likelihood of the fields matching in relevant documents or domains vs.
the likelihood of matching in irrelevant documents or domains. Similarly, we
use a single b parameter for all bs. We choose a separate weight for the subject
field, which plays a special role as the identifier of the resource. We score the
documents after matching in OR execution mode.

Table 6. Manually selected list of important and unimportant properties. URIs are
abbreviated using known prefixes provided by the prefix.cc web service

important dbp:abstract, rdfs:label, rdfs:comment, rss:description, rss:title,
skos:prefLabel, akt:family-name, wn:lexicalForm, nie:title

unimportant dc:date, dc:identifier, dc:language, dc:issued, dc:type, dc:rights,
rss:pubDate, dbp:imagesize, dbp:coorDmsProperty, dbo:birthdate,
foaf:dateOfBirth,foaf:nick, foaf:aimChatID, foaf:openid, foaf:yahooChatID,
georss:point, wgs84:lat, wgs84:long

We use the official relevance assessments for evaluation, which were gathered
using Amazon Mechanical Turk and used a three-scale grading for excellent re-
sults, fair results and irrelevant results [3]. We report the retrieval performance
using Mean Average Precision (MAP) [11] which is more robust to noise pertur-
bations than the P@10 measure [4] and check for statistical significant differences
against the baseline using Wilcoxon’s signed rank test (significance level set to
0.01).

Table 7. Manually selected list of important and unimportant domains

important dbpedia.org, netflix.com

unimportant www.flickr.com, www.vox.com, ex.plode.us

Our results are shown in Table 8. We perform two rounds of parameter tuning,
in each round using a linear search over the individual parameter spaces. First,
we select a default configuration for the parameters and tune the performance
of each one of the features individually and report on their individual contribu-
tion to the increase in performance. Next, given the parameter list ordered as
displayed in the table, we report the performance increase when adding a new
parameter to the model, one at a time. This allows us to determine what is the
benefit of adding each parameter over the best configuration found for the model
so far.

We report the contribution of each of the features described Section 3. We start
with the plain BM25 function with no structure (vs = 1). We then investigate
the effect of tuning BM25’s b parameter. We then look at the result of assigning
field weights other the default vs = 1, in particular the effect of finding an
optimal weight for the subject field (vsjc), and for important and unimportant

94 R. Blanco, P. Mika, and S. Vigna

fields according to Table 6. Last, we look at changing document weights to other
than the default wn

D = 1. In particular, we assign a higher weight to documents
that are from important domains as given by Table 7, and then decrease the
weights of documents from unimportant domains. We omit the results for the
k1 parameter as it has little effect in retrieval performance.

Table 8. Feature importance measured with MAP. Improvements are statistically sig-
nificant against plain BM25 using Wilcoxon’s pairwise sign rank test (p-value < 0.01).
The Individual Features column computes the improvement of each feature indepen-
dently, on top of the untuned baseline, whereas the Combination column shows cumu-
lative gain as we add features in the listed order, one at a time.

Feature Description Individual Features Combination

BM25 BM25 0.1805 0.1805

b BM25’s b parameter 0.2450 (+35.7%) 0.2450 (+35.7%)

vsjc weighting for the subject field 0.2279 (+26.26%) 0.2512 (+2.5%)

vimp weighting for important properties 0.2261 (+25.25%) 0.2565(+2.1%)

vuni weighting for unimportant properties 0.2160 (+19.72%) 0.2590 (+1%)

wi
D weighting for important domains 0.2229 (+23.49%) 0.2730 (+5.4%)

wu
D weighting for unimportant domains 0.2319 (+28.47%) 0.2754 (+1%)

The first column of results shows that all features are able to improve sig-
nificantly the baseline, even adding them individually. It is interesting to note
that property field weighting (vsjc, vimp, vuni) is able to improve the MAP
score by more than 20%. This is a promising result given that we only took
a few properties into account, and potentially adding more parameters to the
ranking function could boost the performance by a larger margin. Adding query-
independent domain-based weights (wi

D, wu
D) is also beneficial, despite the fact

that we only included a limited number of site domains. This indicates that there
is still room for improvement, given enough training data available and further
analysis of which fields and properties should be weighted differently.

The second column of the table shows the accumulated improvement when we
introduce one parameter at a time in the model. The total improvement using
this one-step linear tuning of features is around 53% over the untuned baseline.
35% of the improvement is due to the b parameter, and on top of that, the field
and site features are able to boost the performance another 18%, which is an
encouraging result. The fact that the document normalization component plays
an important role in the performance (controlled by b) goes accordingly to results
in document retrieval. This indicates that the model is able to incorporate many
different signals and boost up the performance significantly by combining them
in a suitable way.

Next, we perform a 2-fold cross validation splitting the query set in two halves
in order to determine the performance of the combination of features and what
would be the effectiveness of the system in a real search environment, with

Effective and Efficient Entity Search in RDF Data 95

Table 9. Cross-validated results comparing our ranking function against the BM25
baseline and the best performing submission at SemSearch 2010 (percentage improve-
ments are relative to SemSearch 2010)

Method MAP NDCG

SemSearch’10 0.1909 0.3134

BM25 0.1805 (-6%) 0.3869 (+23%)

BM25F 0.2705 (+42 %) 0.4800 (+52%)

limited training data available. We tune the parameters performance with a lin-
ear search and the promising directions algorithm [16] on each one of the halves
separately. The algorithm starts with an initial set of parameter values, and per-
forms one independent linear search over each parameter. Then, it selects the
vector going from the initial set of parameter values and the best found values,
which defines a promising direction in the parameter space. The algorithm ex-
plores the parameter space over this vector and repeats the whole process until
convergence to a local minimum or when a maximum number of iterations is
reached. We report the results averaged over the two halves in Table 9 using
both the MAP and the NDCG metric, where the latter exploits graded rele-
vance judgments. Our method improves 50% over the BM25 baseline, and 42%
over the best run submitted to SemSearch 2010 using MAP [7]. These results
are extremely significant and would necessarily translate to a qualitative jump
in user experience.

Looking at the results in more detail, we could conclude that we did poorly
on long queries such as the morning call lehigh valley pa. We also did poorly
on queries with only one relevant result that we didn’t find such as kaz vapor-
izer, in this case because the single result came from ex.plode.us domain which
we marked as unimportant due to poor quality data (a flat list of tags).9 We
also performed low on the query hospice of cincinnati, which is a long-term care
provider in Cincinnati that has no directly relevant resource in the BTC dataset.
In this case, our system favored blog posts from RSS feeds that mentioned all
three words and in general talked about hospice care in Cincinnati. However,
the assessors marked as fair results other institutes in Cincinnati, such as the
University of Cincinnati, the Hyde Park in Cincinnati and the Cincinnati Police
Department. Conversely, we did well on queries that were short but highly selec-
tive such as mst3000, which stands for Mystery Science Theater 3000, an Ameri-
can cult television comedy. We also did well on queries where there was only one
relevant result that we did manage to find, e.g. fitzgerald auto mall chambersburg
pa. This auto mall has no relevant information in the BTC dataset, but the City
of Chambersburg, Pennsylvania was accepted as a fair result by the assessors.
All other queries fell in between these extremes, and typically had more than
one relevant result.

9 http://ex.plode.us is a social aggregator that is not in service any more.

http://ex.plode.us

96 R. Blanco, P. Mika, and S. Vigna

6 Conclusions

Ad-hoc object retrieval is one of the most basic tasks in semantic search and
it has direct applications in search engines that incorporate structured data
in their result pages. In this paper, we have proposed an adaptation of the
BM25F ranking function to the RDF data model that incorporates both field
weights, document priors and a separate field for the subject URIs. We have
shown that each of these features contributes to effectiveness on its own and in
combination with other features. In cross-validation, the combination of these
features outperforms in effectiveness the baseline BM25 method that ignores
RDF structure and semantics by 50% in MAP score. It also improves on other
state-of-the-art methods on the ad-hoc object retrieval task by 42% in MAP and
52% in NDCG scores.

We have shown two basic index structures, which we called the horizontal
and vertical indices, for efficient retrieval of the information required for scoring.
Both provide the same query expressivity, but represent different trade-offs in
effectiveness. The vertical index becomes ineffective as the number of properties
grow, while the horizontal index is able to capture all our data, but requires
the slower alignment operator to resolve queries. We also proposed a modified
version of the vertical index, which groups properties with the same weight, and
thereby trades off query expressivity for a performance that is comparable to
retrieval over text. In previous work, we have shown that both basic structures
can be efficiently built using MapReduce.

In future work, we plan to explore the combination of retrieval with data
integration to reduce the redundancy in current object search results. For this,
we need to find co-referent objects in search results and integrate the information
that different sources provide. A second problem we would like to address is the
ranking of information that is provided about each object. As some objects may
have several hundreds of triples associated with them, it is necessary to select
only those triples for display that are most descriptive of the object and at the
same time pertinent to the user query.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
Searching and Browsing in Databases using BANKS. In: ICDE, pp. 431–440 (2002)

2. Blanco, R., Barreiro, Á.: Probabilistic Document Length Priors for Language
Models. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W.
(eds.) ECIR 2008. LNCS, vol. 4956, pp. 394–405. Springer, Heidelberg (2008),
http://portal.acm.org/citation.cfm?id=1793274.1793322

3. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Tran,
D.T.: Repeatable and reliable search system evaluation using crowdsourcing. In:
Proceeding of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR, ACM (2011)

4. Blanco, R., Zaragoza, H.: Beware of relatively large but meaningless improvements.
Yahoo! Research Technical Report (2011)

http://portal.acm.org/citation.cfm?id=1793274.1793322

Effective and Efficient Entity Search in RDF Data 97

5. Boldi, P., Vigna, S.: MG4J at TREC 2005. In: Voorhees, E.M., Buckland, L.P.
(eds.) The Fourteenth Text REtrieval Conference (TREC 2005) Proceedings. No.
SP 500-266 in Special Publications, NIST (2005), http://mg4j.dsi.unimi.it/

6. Clarke, C.L.A., Cormack, G.V., Burkowski, F.J.: An algebra for structured text
search and a framework for its implementation. The Computer Journal 38(1), 43–
56 (1995), http://comjnl.oxfordjournals.org/content/38/1/43.abstract

7. Halpin, H., Herzig, D., Mika, P., Blanco, R., Pound, J., Thompon, H., Duc, T.T.:
Evaluating ad-hoc object retrieval. In: Proceedings of IWEST (2010)

8. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: VLDB, pp. 670–681 (2002)

9. Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the Inex
2008 Ad Hoc Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 1–28. Springer, Heidelberg (2009)

10. Luo, Y., Wang, W., Lin, X.: SPARK: A Keyword Search Engine on Relational
Databases. In: ICDE, pp. 1552–1555 (2008)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

12. Mika, P.: Distributed indexing for semantic search. In: SEMSEARCH 2010 Pro-
ceedings of the 3rd International Semantic Search Workshop, pp. 1–4. ACM (2010),
http://portal.acm.org/citation.cfm?id=1863879.1863882

13. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello,
G.: Sindice.com: {A} Document-oriented Lookup Index for Open Linked Data.
International Journal of Metadata, Semantics and Ontologies 3(1) (2008),
http://www.sindice.com/pdf/sindice-ijmso2008.pdf

14. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using
BM25F for semantic search. In: Proceedings of the 3rd International Seman-
tic Search Workshop on - SEMSEARCH 2010, pp. 1–8. ACM Press, New
York (2010), http://portal.acm.org/citation.cfm?doid=1863879.1863881,
http://km.aifb.kit.edu/ws/semsearch10/Files/bm25f.pdf

15. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc Object Ranking in the Web of Data. In:
Proceedings of the WWW, pp. 771–780. Raleigh, USA (2010)

16. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and
beyond, foundations and trends in information retrieval. Foundations and Trends
in Information Retrieval 3(4), 333–389 (2009),
http://dx.doi.org/10.1561/1500000019

17. Tran, T., Wang, H., Haase, P.: Hermes: Data Web search on a pay-as-you-go inte-
gration infrastructure. Web Semantics: Science, Services and Agents on the World
Wide Web 7(3), 189–203 (2009),
http://linkinghub.elsevier.com/retrieve/pii/S1570826809000213

18. Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Sem-
plore: A scalable IR approach to search the Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web 7(3), 177–188 (2009),
http://www.sciencedirect.com/science/article/

B758F-X1SBDK-1/2/8efe2a494e75791c8b333a1abdfc4188

19. Wrigley, S.N., Reinhard, D., Elbedweihy, K., Bernstein, A., Ciravegna, F.: Method-
ology and campaign design for the evaluation of semantic search tools. In: Proceed-
ings of the 3rd International Semantic Search Workshop on - SEMSEARCH 2010,
pp. 1–10. ACM Press, New York (2010),
http://portal.acm.org/citation.cfm?doid=1863879.1863889

http://mg4j.dsi.unimi.it/
http://comjnl.oxfordjournals.org/content/38/1/43.abstract
http://portal.acm.org/citation.cfm?id=1863879.1863882
http://www.sindice.com/pdf/sindice-ijmso2008.pdf
http://portal.acm.org/citation.cfm?doid=1863879.1863881
http://km.aifb.kit.edu/ws/semsearch10/Files/bm25f.pdf
http://dx.doi.org/10.1561/1500000019
http://linkinghub.elsevier.com/retrieve/pii/S1570826809000213
http://www.sciencedirect.com/science/article/B758F-X1SBDK-1/2/8efe2a494e75791c8b333a1abdfc4188
http://www.sciencedirect.com/science/article/B758F-X1SBDK-1/2/8efe2a494e75791c8b333a1abdfc4188
http://portal.acm.org/citation.cfm?doid=1863879.1863889

	Effective and Efficient Entity Search in RDF Data

	Introduction
	Related Work
	Ranking Model
	Indexing
	Evaluation
	Evaluation of Efficiency
	Evaluation of Effectiveness

	Conclusions
	References

