Chapter 8

CREATING A CYBER MOVING
TARGET FOR CRITICAL
INFRASTRUCTURE APPLICATIONS

Hamed Okhravi, Adam Comella, Eric Robinson, Stephen Yannalfo,
Peter Michaleas and Joshua Haines

Abstract

Despite the significant amount of effort that often goes into securing
critical infrastructure assets, many systems remain vulnerable to ad-
vanced, targeted cyber attacks. This paper describes the design and
implementation of the Trusted Dynamic Logical Heterogeneity System
(TALENT), a framework for live-migrating critical infrastructure ap-
plications across heterogeneous platforms. TALENT permits a run-
ning critical application to change its hardware platform and operating
system, thus providing cyber survivability through platform diversity.
TALENT uses containers (operating-system-level virtualization) and a
portable checkpoint compiler to create a virtual execution environment
and to migrate a running application across different platforms while
preserving the state of the application (execution state, open files and
network connections). TALENT is designed to support general ap-
plications written in the C programming language. By changing the
platform on-the-fly, TALENT creates a cyber moving target and signifi-
cantly raises the bar for a successful attack against a critical application.
Experiments demonstrate that a complete migration can be completed
within about one second.

Keywords: Cyber moving target, platform heterogeneity, virtualization

1.

Introduction

Critical infrastructure systems are an integral part of the national cyber in-
frastructure. The power grid, oil and gas pipelines, utilities, communications
systems, transportation systems, and banking and financial systems are exam-
ples of critical infrastructure systems. Despite the significant amount of effort
and resources used to secure these systems, many remain vulnerable to ad-

J. Butts and S. Shenoi (Eds.): Critical Infrastructure Protection V, IFIP AICT 367, pp. 107-123, 2011.
© IFIP International Federation for Information Processing 2011



108 CRITICAL INFRASTRUCTURE PROTECTION V

vanced, targeted cyber attacks. The complexity of these systems and their use
of commercial-of-the-shelf components often exacerbate the problem.

Although protecting critical infrastructure systems is a priority, recent cyber
incidents [4, 14] have shown that it is imprudent to rely completely on the
hardening of individual components. As a result, attention is now focusing
on game-changing technologies that achieve mission continuity during cyber
attacks. In fact, the U.S. Air Force Chief Scientist’s report on technology
horizons [27] mentions the need for “a fundamental shift in emphasis from
‘cyber protection’ to ‘maintaining mission effectiveness’ in the presence of cyber
threats” as a way to build cyber systems that are inherently intrusion resilient.
Moreover, the White House National Security Council’s progress report [19]
mentions a “moving target” — a system that moves in multiple dimensions to
foil the attacker and increase resilience — as one of the Administration’s three
key themes for its cyber security research and development strategy.

This paper describes the design and implementation of the Trusted Dynamic
Logical Heterogeneity System (TALENT), a framework for live-migrating crit-
ical applications across heterogeneous platforms. In mission-critical systems,
the mission itself is the top priority, not individual instances of the component.
TALENT can help thwart cyber attacks by live-migrating the mission-critical
application from one platform to another. Also, by dynamically changing the
platform at randomly-chosen time intervals, TALENT creates a cyber moving
target that places the attacker at a disadvantage and increases resilience. This
means that the information collected by the attacker about the platform during
the reconnaissance phase becomes ineffective at the time of attack.

TALENT has several design goals:

m  Heterogeneity at the instruction set architecture level, meaning that ap-
plications should run on processors with different instruction sets.

m  Heterogeneity at the operating system level.

m  Preservation of the state of the application, including the execution state,
open files and sockets. This is an important property in mission-critical
systems because simply restarting the application from scratch on a dif-
ferent platform may have undesirable consequences.

m  Working with a general-purpose system language such as C. Much of TAL-
ENT’s functionality is straightforward to implement using a platform-
independent language like Java because the Java Virtual Machine pro-
vides a sandbox for applications. However, many commodity and com-
mercial-of-the-shelf software systems are developed in C. Restricting TAL-
ENT to a Java-like language would limit its use.

TALENT must provide operating system and hardware heterogeneity while
preserving the state and environment despite the incompatibility of binaries
between different architectures. TALENT addresses these challenges using:
(i) operating-system-level virtualization (container-based operating system) to



Okhravi, et al. 109

sandbox the application and migrate the environment including the filesystem,
open files and network connections; and (ii) portable checkpoint compilation
to compile the application for different architectures and migrate the execution
state across different platforms.

TALENT is novel in several respects. TALENT is a heterogeneous platform
system that dynamically changes the instruction set and operating system. It
supports the seamless migration of critical applications across platforms while
preserving their states. Neither application developers nor operators require
prior knowledge about TALENT; TALENT is also application agnostic. Other
closely-related solutions either lose the internal state of applications or are
limited to specific types of applications (e.g., web servers). The TALENT im-
plementation is optimized to reduce the migration time — the current prototype
completes the migration of state and environment in about one second. To the
best of our knowledge, TALENT is the first realization of a cyber moving target
through platform heterogeneity.

2. Threat Model

The TALENT threat model assumes there is an external adversary who is at-
tempting to exploit a vulnerability in the operating system or in the application
binary in order to disrupt the normal operation of a mission-critical application.
For simplicity and on-the-fly platform generation, a hypervisor (hardware-level
virtualization) is used. The threat model assumes that the hypervisor and the
system hardware are trusted. We assume that the authenticity of the hypervi-
sor is checked using hardware-based cryptographic verification (e.g., TPM) and
that the hypervisor implementation is free of bugs. We also assume that the
operating-system-level virtualization logic is trusted. However, the rest of the
system (including the operating system and applications) is not trusted and
may contain vulnerabilities and malicious logic.

We also assume that, although an attack may be feasible against a number
of different platforms (operating system/architecture combinations), there ex-
ists a platform that is not susceptible to the attack. This means that not all
the platforms are vulnerable. Our primary goal is to migrate a mission-critical
application to a different platform at random time intervals when a new vul-
nerability is discovered or when an attack is detected. Attacks can be detected
using various techniques that are described in the literature (e.g., [5]).

Heterogeneity at different levels can mitigate attacks. Application-level
heterogeneity protects against binary- and architecture-specific exploits, and
untrusted compilers. Operating-system-level heterogeneity mitigates kernel-
specific attacks, operating-system-specific malware and persistent operating
system attacks (rootkits). Finally, hardware heterogeneity can thwart supply
chain attacks, malicious and faulty hardware, and architecture-specific attacks.
It is important to note that TALENT is by no means a complete defense against
all these attacks. Instead, it is designed to enhance survivability in the presence
of platform-specific attacks using dynamic heterogeneity.



110 CRITICAL INFRASTRUCTURE PROTECTION V

Application
\ \ \ \ \
Containers (OpenVZ, VServer, ...) System

calls
Filesi mmapi Socketsi PID i Idev i

Operating System
\ \ \ \ \
HW Virtualization (Xen, VMWare, ...) H:;gng'

Disk Memory PCI i instructions
blocksl pages l Interfacel Cyclesi Dewcesl

Hardware

Figure 1. OS-level and hardware-level virtualization approaches.

3. Design

TALENT uses two key concepts, operating-system-level virtualization and
portable checkpoint compilation, to address the challenges involved in using
heterogeneous platforms, including binary incompatibility and the loss of state
and environment.

3.1 Virtualization and Environment Migration

Preserving the environment of a critical infrastructure application is an im-
portant goal. The environment includes the filesystem, configuration files, open
files, network connections and open devices. Note that many of the environ-
ment parameters can be preserved using virtual machine migration. However,
virtual machine migration can only be accomplished using a homogeneous oper-
ating system and hardware. Indeed, virtual machine migration is not applicable
because it is necessary to change the operating system and hardware while mi-
grating a live application.

TALENT uses operating-system-level virtualization to sandbox an applica-
tion and migrate the environment.

OS-Level Virtualization In operating-system-level virtualization, the
kernel allows for multiple isolated user-level instances. Each instance is called
a container (jail or virtual environment). The method was originally designed
to support fair resource sharing, load balancing and cluster computing applica-
tions. This type of virtualization can be thought of as an extended chroot in
which all resources (devices, filesystem, memory, sockets, etc.) are virtualized.

Note that the major difference between operating-system-level virtualization
and hardware-level virtualization (e.g., Xen and KVM) is the semantic level at
which the entities are virtualized (Figure 1). Hardware-level hypervisors vir-



Okhravi, et al. 111

\ Container 1 / \ Container 2 / \ Container 1 / \ Container 2 / \ Container 1 / \ Container 2 /

10.0.0.1 10.0.0.2 10.0.0.1 10.0.0.1 10.0.0.1 10.0.0.1
Ports: 0-65535 Ports: 0-65535 Ports: 0-65535 Ports: 0-65535 Ports: 0-32767 Ports: 32768-65535
OS-level Virtualization Layer OS-level Virtualization Layer OS-level Virtualization Layer
Second Layer Third Layer Socket Virtualization

Figure 2. Network virtualization approaches.

tualize disk blocks, memory pages, hardware devices and CPU cycles, whereas
operating-system-level virtualization works at the level of filesystems, memory
regions, sockets and kernel objects (e.g., IPC memory segments and network
buffers). Hence, the semantic information that is often lost in hardware virtual-
ization is readily available in operating-system-level virtualization. This makes
operating-system-level virtualization a good choice for applications where se-
mantic information is needed, for example, when monitoring or sandboxing at
the application level.

Environment Migration As discussed above, TALENT uses operating-
system-level virtualization to migrate the environment of a critical application.
When migration is requested (as a result of a malicious activity or a periodic
migration), TALENT migrates the container of the application from the source
machine to the destination machine. This is done by synchronizing the filesys-
tem of the destination container with the source container. Since the operating
system keeps track of open files, the same files are opened in the destination.
Because this information is not available at the hardware virtualization level
(due to the semantic gap between files and disk blocks), additional techniques
must be implemented to recover the information (e.g., virtual machine intro-
spection). On the other hand, this information is readily available in TALENT.

Network connections can be virtualized in three ways: second layer, third
layer and socket virtualization. These terms come from the OpenVZ docu-
mentation [16]. Virtualizing a network at the second layer means that each
container has its own IP address, routing table and loopback interface. Third
layer virtualization implies that each container can access any IP address/port
and that sockets are isolated using the namespace. Socket virtualization means
that each container can access any IP address/port and that sockets are isolated
using filtration.

Figure 2 shows the different network virtualization approaches for two con-
tainers. In socket virtualization, the port numbers are divided between the
containers, whereas in third layer virtualization, the entire port range is avail-
able to every container. TALENT uses second layer virtualization in order to
be able to migrate the IP address of a container.

To preserve network connections during migration, the IP address of the
container’s virtual network interface is migrated to the new container. Then,
the state of each TCP socket (sk_buff of the kernel) is transferred to the
destination. The network migration is seamless to the application, and the



112 CRITICAL INFRASTRUCTURE PROTECTION V

Binary for

Arch 1 4
e Check
point
Binary for
g— NN v Arch 2 'i
_Source check

point

Binary for
Arch n

Figure 3. Portable checkpoint compilation.

application can continue sending and receiving packets on its sockets. In fact,
our evaluation example shows that the state of an SSH connection is preserved
during the migration.

Many operating-system-level virtualization frameworks also support IPC
and signal migration. In each case, the states of IPC and signals are extracted
from the kernel data structures and migrated to the destination. These features
are supported in TALENT through the underlying virtualization layer.

3.2 Checkpointing and Process Migration

Migrating the environment is only one step in backing up the system because
the state of running programs must also be migrated. To do this, a method
to checkpoint running applications must be implemented. After all the check-
pointed program states are saved in checkpoint files, the state is migrated by
simply mirroring the filesystem.

Requirements Checkpointing in TALENT must meet certain requirements.

m Portability: Checkpointed programs should be able to move back and
forth between different architectures and operating systems in a hetero-
geneous computing environment.

m Transparency: Heavy code modification should not be required to ex-
isting programs in order to introduce proper checkpointing.

m  Scalability: Checkpointed programs may be complex and may handle
large amounts of data. Checkpointing should be able to handle such
programs without affecting system performance.

A portable checkpoint compiler (PCC) can help meet the portability require-
ment. Figure 3 illustrates the portable checkpoint compilation process, which
allows compilation to occur independently on various operating system/archi-
tecture pairs. The resulting executable program, including the inserted check-
pointing code, functions properly on each platform on which it was compiled.

Transparency is obtained by performing automatic code analysis and check-
point insertion. This prevents the end user from having to modify their code



Okhravi, et al. 113

to indicate where checkpointing should be performed and what data should be
checkpointed.

Scalability is obtained in two ways. First, the frequency of checkpointing
bottlenecks in the checkpointing process is controlled. Second, through the
use of compressed checkpoint file formats, the checkpoints themselves remain
as small as possible even as the amount of data processed by the program
increases.

Variable Level Checkpointing There are two possible approaches for
checkpointing a live process: data segment level checkpointing (DSLC) and
variable level checkpointing (VLC). Note that DSLC and VLC are different
types of portable checkpoint compilers.

In DSLC [26], the entire state of the process including the stack and heap
are dumped into a checkpoint file. DSLC preserves the entire state of a process,
but since the checkpoint file contains platform specific data such as the stack
and heap, this approach suffers from a lack of portability.

VLC [3], on the other hand, stores the values of restart-relevant variables in
the checkpoint file. Since the checkpoint file only contains portable data, VL.C
is a good candidate for migration across heterogeneous platforms. In order to
construct the entire state of the process, VLC must re-execute the non-portable
portions of the code. The non-portable portions refer to the platform-dependent
values stored in the stack or heap, not the variables.

To perform VLC, the code is precompiled to find restart-relevant variables.
These variables and their memory locations are then registered in the check-
pointing tool. When checkpointing, the process is paused and the values of the
memory locations are dumped into a file. The checkpointing operation must
occur at safe points in the code to generate a consistent view.

At restart, the memory of the destination process is populated with the
desired variable values from the checkpoint file. Some portions of the code are
re-executed in order to construct the entire state.

A simple example involving a factorial computation is presented to illustrate
VLC operation. Of course, TALENT is capable of handling much more com-
plicated code bases. The factorial code is shown in Figure 4. For simplicity,
the code incorporates a main function with no inputs.

Figure 5 illustrates the VLC markup of the factorial program. All calls to
the checkpointing tool are shown with pseudo-function calls with VLC_ prefixes.
First, the checkpointer is initialized. Then, the variables to be tracked and
checkpointed are registered with the tool. In the example, the variables fact,
curr and i have to be registered. The actual checkpointing must occur inside
the loop after each iteration. When the loop is done, there is no need to track
the variables any longer, so they are unregistered. Finally, the environment is
torn down before the return. Note that for transparency and scalability, the
code markup has been done automatically and prior to compilation.



114 CRITICAL INFRASTRUCTURE PROTECTION V

int main(int argc, char **argv)
int fact;
double curr;
int i;

fact = 20;
curr = 1;
for(i=1; i<=fact; i++)

{
}

printf ("%d factorial is %f",
fact, curr);
return 0;

curr = curr * i;

}

Figure 4. Simple program that computes the factorial of 20.

int main(int argc, char **argv)
{
int fact;
double curr;
int i;
VLC_INITIALIZE();
fact = 20;
curr = 1;
VLC_REGISTER_VARIABLES (fact, curr, );
for(i=1; i<=fact; i++)
{
VLC_PERFORM_CHECKPOINT () ;
curr = curr * i;
}
VLC_UNREGISTER_VARIABLES (fact, curr, 1i);
printf ("%d factorial is %f",
fact, curr);
VLC_TEAR_DOWN() ;
return O;

}

Figure 5. Variable level checkpointing of the factorial program.

Checkpoint Portability The checkpoint file itself must have a portable
format to achieve portability across heterogeneous platforms. Storing the check-
point in a simple binary file can result in incompatibility if the destination
platform has different “bitness” (32 vs. 64 bits) or endianness (little vs. big).
Thus, the checkpoint file format has to be portable.



Okhravi, et al. 115

K‘» State :
migration

Application / \ Application /

Files l Socketsl —

\

— e = = =

Environment Files Socketsg
migration \ / \J

Operating System Operating System

Figure 6. TALENT migration process.

TALENT uses the HDF5 format [9] through the precompiler checkpointing
tool. HDF5 is an open, versatile data model that can represent complex data
objects. It is also portable in that it can represent various types of bitness and
endianness. Like XML, HDF5 is self-describing. Unlike XML, HDF5 uses a
binary format that allows for the efficient parsing of data.

Figure 6 illustrates the complete migration process. First, the environment
of the application is migrated using container migration. Then, the application
itself is checkpointed and resumed on the destination platform. Heterogeneous
platforms are illustrated using different colors in the figure. The application
box on the destination platform shows a different binary of the same application
that is compiled for the platform.

4. Implementation

TALENT is implemented using the OpenVZ container-based operating sys-
tem and the CPPC portable checkpoint compiler.

4.1 Environment Migration

Several operating-system-level virtualization implementations are available,
including OpenVZ [16] and LXC [18] for Linux, Virtuozzo [20] for Windows,
and Jail [23] for FreeBSD. We have chosen UNIX-like operating systems as
our platform. We have also chosen OpenVZ as the container because of its
ease of use, stable code and support for second layer network virtualization.
In particular, we have used OpenVZ version 2.6.27 and have patched it into
different kernels; KVM [8] has been used as the underlying hypervisor.

We have implemented and tested TALENT on Intel Xeon 32-bit, Intel Core
2 Quad 64-bit and AMD Opteron 64-bit processors. Also, we have tested
TALENT on the Gentoo, Fedora (9, 10, 11 and 12), CentOS (4 and 5), Debian



116 CRITICAL INFRASTRUCTURE PROTECTION V

(4 and 5), Ubuntu (8 and 9) and SUSE (10 and 11) operating systems. In total,
we have tested 37 combinations.

For environment migration, we do not use the OpenVZ live migration fea-
ture because it migrates the processes within the container and causes binary
incompatibility. Instead, we migrate the environment by freezing the container,
synchronizing the filesystem, migrating the virtual network interface and trans-
ferring buffers, IPC and signals. We then substitute the binary of the appli-
cation built for the destination processor. Note that TALENT can also be
implemented across more diverse operating systems such as Windows using the
Virtuozzo [20] container. In this case, migrating complex environment features
such as signals and IPC requires more effort because they have to be mapped
correctly to the destination platform.

4.2 Process Migration

Given the desired requirements enumerated in Section 3.2, TALENT employs
the Controller /Precompiler for Portable Checkpointing (CPPC) [22] to save the
state of a running program. CPPC is a VLC precompiler implementation. It
is capable of storing the program state of a running program in a format that
is operating system and hardware independent (HDF5), and then correctly
restarting the program on a different platform using the previously-stored state.

CPPC is a compiler-assisted checkpointing program that involves four exe-
cution phases:

m Compiling the Code: The code is compiled on each platform indepen-
dently.

m Configuring the Run: The preferences for checkpointing during a run
are configured.

m  Checkpointing: The run is started and checkpointing of the state occurs
automatically.

m Restarting the Run: The checkpoint (after being migrated) is resumed
on a new platform.

Compiling the Code CPPC can compile traditional C and Fortran 77
code. It compiles unmodified source code and the programmer does not need
to have any knowledge of checkpointing. CPPC automatically determines how
and where to checkpoint a program. Section 4.3 shows an example of how this
is done.

CPPC interfaces with the user code as a precompiler. It uses the Cetus com-
piler infrastructure [17] to determine the semantic behavior of a program in or-
der to decide where to place checkpointing directives. Once this is determined,
the code is re-factored with checkpointing function calls. The re-factored code
can then be compiled using a traditional compiler such as cc or gcc.



Okhravi, et al. 117

Configuring the Run CPPC requires a configuration file in order to run
with checkpointing. This file specifies the parameters used for checkpoint-
ing, including the frequency of checkpointing, the number of checkpoints to be
stored and their storage locations. Although a default file is provided, a user
may wish to configure the file based on the expected behavior of the program.
For example, the frequency of checkpointing can be increased for critical ap-
plications that change frequently so as to capture the most recent state; or the
frequency can be decreased for slowly-changing programs to avoid bottlenecks
when writing files.

Run parameters can be changed directly in the configuration file by modi-
fying the appropriate values or by using command line options when starting
a run. Typically, a program will have a suitable configuration specified in the
configuration file. However, a user may override the configuration to obtain
different behavior by entering a new value for a parameter via the command
line. The configuration file can be stored in text or XML formats.

Checkpoint Checkpoints are stored in a file using the HDF5 format [9].
Since this format is deployed on many platforms, checkpoint files can be stored
in a manner that is compatible across a range of architectures and operating
systems. Additionally, a CRC-32-based algorithm is supported to verify the
integrity of checkpoint files.

As stated above, checkpointing is done automatically. The user may change
the rate at which checkpointing is performed via the configuration file or the
command line. Compiler options also allow programmers to manually specify
where checkpointing should occur by adding #pragma directives to the source
code. Directives also exist for other CPPC functionality such as indicating code
that should be run upon restart for re-initializing data not stored in memory,
or for other initialization tasks such as restarting the message passing interface.

Restarting from a Checkpoint After a run has been started and a
checkpoint has been recorded, it is possible to restart the run from the last
recorded checkpoint. This is done on the same platform or on a different
platform. “Jump” statements are added in the original code to the locations
of the checkpoints. Based on the checkpoint file, the jump locations are known
upon restart. These jump states are ignored during the initial run so that the
program is executed as if no changes were introduced. In addition to jumping
to the appropriate starting location, the checkpoint file contains information
about variable values within the program. These are loaded upon restart to
ensure that the program resumes in the same state it was upon checkpointing.

4.3 Code Example

We revisit the factorial code in Figure 4 to illustrate the operation of the
checkpointer.

First, the code is automatically converted to a markup code using #pragma
directives to specify where special CPPC content should be inserted. Figure



118 CRITICAL INFRASTRUCTURE PROTECTION V

int main(int argc, char **argv)

{

int fact;
double curr;
int i;
#pragma cppc init
fact = 20;
curr = 1;
#pragma cppc register
( fact, curr, % )
for(i=1; i<=fact; i++)
{
#pragma cppc checkpoint
curr = curr * i;
}
#pragma cppc unregister
( fact, curr, % )
printf("%d factorial is %f",
fact, curr);
#pragma cppc shutdown
return O;

Figure 7. CPCC markup of the factorial program.

7 shows the markup for the factorial code. Note that the variables to be
checkpointed are registered with CPPC.

Next, CPPC uses the markup in Figure 7 to create a final version of the code
that the C compiler can understand. The final code is not shown here due to
its length. However, the concepts involved in generating the code are straight-
forward. For each checkpoint, line labels are inserted to mark the locations of
the checkpoints. The labels are tracked using an array that is populated when
CPPC is initialized. Each label is assigned a unique ID based on its location in
the array. When a call to checkpoint is made, the appropriate ID is also stored
in the checkpoint file.

When the program is restarted, the call to initialize re-populates the regis-
tered values that were in memory from the previous run. The code then jumps
to the appropriate checkpoint label. This is achieved by using a “goto” com-
mand to jump to the line in the line label array referenced by the ID stored in
the checkpoint file. From here, the program proceeds as normal, continuing to
checkpoint at the indicated locations in the program.

5. Evaluation

We have developed a test application to evaluate the performance of TAL-
ENT. The application contains 2,000 lines of C code and a GUI developed using



Okhravi, et al. 119

Initial ——» |

» || | || >
Periodic ———» = s >
L . — >
Finall —» Q& & - ' =, s
Initial Destination
Platform Platform

Figure 8. Optimized filesystem synchronization model.

wxWidgets [24]. The graphical output of the application is sent to a remote
machine via an SSH connection. Upon receiving a migration request, the appli-
cation and its GUI are migrated from a Gentoo/Intel Xeon 32-bit machine to
an Ubuntu 10.04.1/AMD Opteron 64-bit machine using environment migration
and checkpointing.

The original migrations took a long time (about a minute), so we decided
to time the individual elements of migration. After breaking down the delays,
we discovered that synchronizing the filesystem took 98.7% of the migration
time. This is not surprising because, during a migration, the entire filesystem
available to the container must be copied to the destination. As a result, we
decided to focus on optimizing the filesystem synchronization.

In the optimized version, the filesystem is synchronized with the destina-
tion once before the migration occurs. The synchronization is subsequently
performed at periodic intervals by sending the differences to the destination.

Figure 8 presents the optimized synchronization model. We chose 30 sec-
onds as the synchronization interval. When a migration is requested, only the
differences are sent to the destination. This simple optimization reduces the
environment migration time to about one second.

Figure 9 shows the performance of TALENT with and without optimization.
Note that quota and configuration refer to checking the resource quotas (CPU,
disk, memory, etc.) assigned to each container and verifying the platform
configurations, respectively. If the optimization is enabled, then network traffic
to the destination platform has to be strictly limited to filesystem updates to
prevent the attacker from performing a reconnaissance of the destination.

During the migration, the graphical output at the remote machine disappears
for about two seconds. When the migration is completed, the graphical output
reappears on the remote terminal (now running on the second platform) without
any user intervention because the state of the SSH connection is preserved.

6. Related Work

Several data segment level [6, 26] and variable level process migration tech-
niques [3] have been proposed in the literature. These methods are often used



120 CRITICAL INFRASTRUCTURE PROTECTION V

Optimization Results

100,000

10,000

1,000

O File System

H Quota

O Error Checking
[ Configuration
[ Checkpoint

100

Time (milliseconds)

Non-optimized Optimized

Optimizations

Figure 9. TALENT’s performance with and without optimization.

in high performance and cluster computing systems for load balancing and fault
tolerance.

Virtual machine migration [7] has also been proposed as a cluster administra-
tion technique for load balancing, online maintenance and power management.
However, it requires a homogeneous architecture and operating system in order
to preserve state.

The Self-Cleansing Intrusion Tolerance (SCIT) Project [25] is closely related
to TALENT. It migrates an application across different virtual machines to
reduce the exposure time. Our work differs from SCIT in a number of ways.
First, TALENT preserves the state of the application. SCIT-web server [1] and
SCIT-DNS [11] preserve the session information and DNS master file and keys,
respectively, but not the internal state of the application. Second, TALENT
uses heterogeneous platforms for migration. The designers of SCIT mention
the use of diverse operating systems and memory images to further confuse an
attacker, but the current implementation uses the same operating system with
the same configuration [1]. Finally, TALENT is designed to support general
critical infrastructure applications and is not limited to a specific server.

The Resilient Web Service (RWS) Project [12] uses a virtualization-based
web server system that detects intrusions and periodically restores them to a
pristine state. Its successor, RWS-Moving Target (RWS-MT) [13] plans to use
diversity to create a moving target, but it only focuses on web servers as the
critical application. In addition, both systems lose the state of the web server.



Okhravi, et al. 121

Certain forms of server rotation have been proposed by Blackmon and Nguyen
[2] and by Rabbat, et al. [21] in an attempt to achieve high availability servers.

7. Conclusions

The TALENT system provides dynamic, heterogeneous platforms for crit-
ical infrastructure applications. It creates a cyber moving target that offers
resilience in the face of platform-specific cyber attacks. To the best of our
knowledge, TALENT is the first heterogeneous platform solution that preserves
the internal state of a general application.

The current TALENT prototype is focused on providing high availability.
There is no guarantee that the migrated state (persistent or ephemeral) is not
already corrupted. In future work, we plan to extend TALENT by adding
sanitization and recovery capabilities. This would provide integrity guarantees
for an application under attack. We also plan to augment TALENT with an
attack detection engine that can trigger migration. Finally, we plan to integrate
TALENT with an assessment framework based on attack graphs [15] so that
the destination platform can be selected based on formal vulnerability and
reachability analysis.

Note that the opinions, interpretations, conclusions and recommendations
in this paper are those of the authors and are not necessarily endorsed by the
U.S. Government.

Acknowledgements

This work was sponsored by the U.S. Department of Defense under Air Force
Contract FA8721-05-C-0002.

References

[1] A. Bangalore and A. Sood, Securing web servers using self cleansing intru-
sion tolerance (SCIT), Proceedings of the Second International Conference
on Dependability, pp. 60-65, 2009.

[2] S. Blackmon and J. Nguyen, Storage: High-availability file server with
heartbeat, System Administration, vol. 10(9), pp. 24-32, 2001.

[3] G. Bronevetsky, D. Marques, K. Pingali and P. Stodghill, Automated
application-level checkpointing of MPI programs, ACM SIGPLAN No-
tices, vol. 38(10), pp. 84-94, 2003.

[4] R. Brown, Stuxnet worm causes industry concern for security firms,
Mass High Tech, Boston, Massachusetts (www.masshightech.com/stories
/2010/10/18/daily19-Stuxnet-worm-causes-industry-concern-for-security-
firms.html), October 19, 2010.

[5] G. Carl, G. Kesidis, R. Brooks and S. Rai, Denial-of-service attack detec-
tion techniques, IEEE Internet Computing, vol. 10(1), pp. 8289, 2006.



122 CRITICAL INFRASTRUCTURE PROTECTION V

[6] Y. Chen, K. Li and J. Plank, CLIP: A checkpointing tool for message
passing parallel programs, Proceedings of the ACM/IEEE Conference on
Supercomputing, p. 33, 1997.

[7] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt and
A. Warfield, Live migration of virtual machines, Proceedings of the Second
Conference on Symposium on Networked Systems Design and Implemen-
tation , vol. 2, pp. 273-286, 2005.

[8] I. Habib, Virtualization with KVM, Linuz Journal (www.linuxjournal.com
/article/9764), February 1, 2008.

[9] HDF Group, HDF4 Reference Manual, Champaign, Illinois (ftp.hdfgroup
.org/HDF /Documentation/HDF4.2.5 /HDF425_RefMan.pdf), 2010.

[10] Y. Huang, D. Arsenault and A. Sood, Closing cluster attack windows
through server redundancy and rotations, Proceedings of the Sixzth IEEE
International Symposium on Cluster Computing and the Grid, p. 21, 2006.

[11] Y. Huang, D. Arsenault and A. Sood, Incorruptible self cleansing intrusion
tolerance and its application to DNS security, Journal of Networks, vol.
1(5), pp. 21-30, 2006.

[12] Y. Huang and A. Ghosh, Automating intrusion response via virtualization
for realizing uninterruptible web services, Proceedings of the FEighth IEEE
International Symposium on Network Computing and Applications, pp.

114-117, 2009.

[13] Y. Huang, A. Ghosh, T. Bracewell and B. Mastropietro, A security evalu-
ation of a novel resilient web serving architecture: Lessons learned through
industry/academia collaboration, Proceedings of the International Confer-
ence on Dependable Systems and Networks Workshops, pp. 188-193, 2010.

[14] Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), ICS-ALERT-10-301-01 — Control System Internet Accessibility,
Department of Homeland Security, Washington, DC (www.us-cert.gov
/control_systems/pdf/ICS-Alert-10-301-01.pdf), October 28, 2010.

[15] K. Ingols, M. Chu, R. Lippmann, S. Webster and S. Boyer, Modeling mod-
ern network attacks and countermeasures using attack graphs, Proceedings
of the Annual Computer Security Applications Conference, pp. 117-126,
2009.

[16] K. Kolyshkin, Virtualization in Linux, OpenVZ (ftp.openvz.org/doc/open
vz-intro.pdf), 2006.

[17] S. Lee, T. Johnson and R. Eigenmann, Cetus — An extensible compiler
infrastructure for source-to-source transformation, Proceedings of the Siz-
teenth International Workshop on Languages and Compilers for Parallel
Computing, pp. 539-553, 2003.

[18] 1xc Linux Containers, Ixc man pages (Ixc.sourceforge.net /index.php/about
/man).

[19] National Security Council, Cybersecurity Progress after President
Obama’s Address, The White House, Washington, DC, July 14, 2010.



Okhravi, et al. 123

[20]

[21]

Parallels, Clustering in Parallels Virtuozzo-Based Systems, White Paper,
Renton, Washington, 2009.

R. Rabbat, T. McNeal and T. Burke, A high-availability clustering archi-
tecture with data integrity guarantees, Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, pp. 178-182, 2001.

G. Rodriguez, M. Martin, P. Gonzalez, J. Tourino and R. Doallo, CPPC:
A compiler-assisted tool for portable checkpointing of message-passing ap-
plications, Concurrency and Computation: Practice and Experience, vol.

22(6), pp. 749-766, 2010.

E. Sarmiento, Securing FreeBSD using Jail, System Administration, vol.
10(5), pp. 31-37, 2001.

J. Smart, K. Hock and S. Csomor, Cross-Platform GUI Programming with
wx Widgets, Prentice Hall, Upper Saddle River, New Jersey, 2005.

A. Sood, Intrusion tolerance to mitigate attacks that persist, presented at
the Secure and Resilient Cyber Architectures Conference, 2010.

G. Stellner, CoCheck: Checkpointing and process migration for MPI, Pro-
ceedings of the Tenth International Parallel Processing Symposium, pp.
526-531, 1996.

U.S. Air Force Chief Scientist, Report on Technology Horizons: A Vision
for Air Force Science and Technology During 2010-2030, Volume 1, Tech-
nical Report AF/ST-TR-10-01-PR, Department of the Air Force, Wash-
ington, DC, 2010.



	III INFRASTRUCTURE SECURITY
	CREATING A CYBER MOVING TARGET FOR CRITICAL INFRASTRUCTURE APPLICATIONS
	Introduction
	Threat Model
	Design
	Virtualization and Environment Migration
	Checkpointing and Process Migration

	Implementation
	Environment Migration
	Process Migration
	Code Example

	Evaluation
	Related Work
	Conclusions
	Acknowledgements
	References





