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Abstract. Support vector machines, let them be bi-class or multi-class,
have proved efficient for protein secondary structure prediction. They can
be used either as sequence-to-structure classifier, structure-to-structure
classifier, or both. Compared to the classifier most commonly found in
the main prediction methods, the multi-layer perceptron, they exhibit
one single drawback: their outputs are not class posterior probability
estimates. This paper addresses the problem of post-processing the out-
puts of multi-class support vector machines used as sequence-to-structure
classifiers with a structure-to-structure classifier estimating the class pos-
terior probabilities. The aim of this comparative study is to obtain im-
proved performance with respect to both criteria: prediction accuracy
and quality of the estimates.

Keywords: protein secondary structure prediction, multi-class support
vector machines, class membership probabilities.

1 Introduction

With the multiplication of genome sequencing projects, the gap between the
number of known protein sequences and the number of experimentally deter-
mined protein (tertiary) structures is widening rapidly. This raises a central
problem, since knowledge of the structure of a protein is a key in understand-
ing its detailed function. The prediction of protein structure from amino acid
sequence, i.e., ab initio, has thus become a hot topic in molecular biology. Due
to its intrinsic difficulty, it is ordinarily tackled through a divide and conquer
approach in which a critical first step is the prediction of the secondary struc-
ture, the local, regular structure defined by hydrogen bonds. Considered from
the point of view of pattern recognition, this prediction is a three-category dis-
crimination task consisting in assigning a conformational state a-helix, S-strand
or aperiodic (coil), to each residue (amino acid) of a sequence.

For almost half a century, many methods have been developed for protein sec-
ondary structure prediction. Since the pioneering work of Qian and Sejnowski
[1], state-of-the-art methods are machine learning ones [2[3/4l5]. Furthermore,
a majority of them shares the original architecture implemented by Qian and
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Sejnowski. Two classifiers are used in cascade. The first one, named sequence-
to-structure, takes in input the content of a window sliding on the sequence, or
the coding of a multiple alignment, to produce an initial prediction. The second
one, named structure-to-structure, takes in input the content of a second window
sliding on the initial prediction. Making use of the fact that the conformational
states of consecutive residues are correlated, it mainly acts as a filter, increas-
ing the biological plausibility of the prediction. Until the end of the nineties,
the classifiers at the basis of most of the prediction methods implementing the
cascade treatment were neural networks [6], either feed-forward, like the multi-
layer perceptron (MLP) [1I2/] or recurrent [3]. During the last decade, they
were gradually replaced with bi-class support vector machines (SVMs) [7J5] and
multi-class SVMs (M-SVMs) [8[9[T0]. This resulted in a slight increase of the
prediction accuracy. On the other and, an advantage of the neural networks
over the SVMs rests in the fact that under mild hypotheses regarding the loss
function and the activation function of the output units, they estimate the class
posterior probabilities (see for instance [11I12]). This is a useful property in the
framework of interest, for two main reasons. The first one is obvious: such esti-
mates provide the most accurate reliability indices for the prediction (see [13/4]
for indices based on them, and [7] for an index based on the outputs of bi-class
SVMs). The second one is of higher importance, since it deals with the future of
protein secondary structure prediction. It is commonly admitted that the main
limiting factor for the prediction accuracy of any prediction method based on the
standard cascade architecture is the fact that local information is not enough to
specify utterly the structure. This limitation is only partly overcome by using re-
current neural networks. Several works [S[9/T3] have considered a more ambitious
alternative, consisting in the implementation of hybrid architectures combining
discriminant models and hidden Markov models (HMMs) [14]. In short, the dis-
criminant models are used to compute class posterior probability estimates from
which the emission probabilities of the HMMs are derived, by application of
Bayes’ formula. This approach widens the context used for the prediction, and
makes it possible to incorporate some pieces of information provided by the biol-
ogist, such as syntactic rules. It appears highly promising, although it still calls
for significant developments in order to bear its fruits. It is this observation that
motivated the present study. Our thesis is that in the framework of such hy-
brid architectures, an efficient implementation of the cascade architecture could
result from using as sequence-to-structure classifiers M-SVMs endowed with a
dedicated kernel, provided that the structure-to-structure classifier is chosen ap-
propriately. In this article, we thus address the problem of identifying the optimal
structure-to-structure classifier when the classifiers performing the sequence-to-
structure prediction are dedicated M-SVMs, and the final outputs must be class
membership probability estimates. In practice, we want to take benefit of the
high recognition rate of the M-SVMs without suffering their drawback. Our con-
tribution, the first of this kind, focuses on the use of tools from nonparametric
statistics.
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The organization of the paper is as follows. Section [2] proposes a general in-
troduction to the M-SVMs. The four M-SVMs involved in the experiments are
then characterized in this framework, and their implementation for sequence-to-
structure classification is detailed. Section [Blis devoted to the description of the
different models considered for the structure-to-structure prediction. Experimen-
tal results are gathered in Section @l At last, we draw conclusions and outline
our ongoing research in Section [l

2 Multi-class Support Vector Machines
2.1 General Introduction

The theoretical framework of M-SVMs is the one of large margin multi-category
classifiers [15]. Formally, it deals with @-category pattern recognition problems
with 3 < @ < 4o00. Each object is represented by its description z € X and the
set ) of the categories y can be identified with the set of indices of the categories:
[1,Q]. The assignment of the descriptions to the categories is performed by
means of a classifier, i.e., a function on X taking values in R¥. For such a
function g, the corresponding decision rule f is defined as follows:

e {if Ik €]1,Q] : gx(x) > maxjzy gi(x), then f(x) =
else f(z) =

where * denotes a dummy category introduced to deal with the cases of ex sequo.
Like all the SVMs, all the M-SVMs published so far belong to the family of kernel
machines [L6/17], which implies that they operate on a class of functions induced
by a positive type function/kernel [I8]. For a given kernel, this class, hereafter
denoted by H, is the same for all the models (it only depends on the kernel and
Q). In what follows, » designates a real-valued kernel on X2 and (Hm (s )m, )
the corresponding reproducing kernel Hilbert space (RKHS) [1§]. The RKHS of
R@-valued functions [I9] at the basis of a Q-category M-SVM whose kernel is
can be defined simply as a function of .

Definition 1 (RKHS H). Let k be a real-valued positive type function on X2.

Then, the RKHS of R9-valued functions at the basis of a Q-category M-SVM
whose kernel is r is H = HY. Furthermore, the inner product of H can be
expressed as a function of the inner product of H, as follows:

Q
¥ (h,1') € H?, h = () 1cnens W' = (M) cpeg s (BR) = (hx By

k=1
Definition 2 (Class of functions H). Let £ be a real-valued positive type
function on X% and let H be the RKHS of R®-valued functions derived from
according to Definition [l Let {1} be the one-dimensional space of real-valued
constant functions on X. The class of functions at the basis of a Q-category
M-SVM whose kernel is k is

H=Hao {1}9=H, s {1)°
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Thus, a function h in H can be written as

h()=h()+b=(h()+ bk)1<k<Q

where the function h = (hy) is an element of H and b = (bk)1<r<q € R%.

1<k<@Q

Let m € N*. For a given sequence of examples d,, = ((a;, yi))1<z<m in
(X x[1,Q]™, we denote R®™ (d,,,) the subspace of R%™ made up of the vectors
v = (1)1 <rcom Satistying:

(v(i—l)Q+yi)1<i§m =0 (1)

Furthermore, for the sake of simplicity, the components of the vectors of R®™ (d,;,)
are written with two indices, i.e., vy in place of v(;_1)g+k, for 4 in [1,m] and
k in [1,Q]. As a consequence, [0 simplifies into (viy,);c;<,, = Om. For n in
N*, let M, (R) be the algebra of n x n matrices over R and Mqgm.om (dm)
the subspace of Mqgm,qom (R) made up of the matrices M = (Mtu)1<; ucom
satisfying:
vj e, m], (mt7(j—1)Q+yj)1<thm = Ogm -

Once more for the sake of simplicity, the components of the matrices
of Mgm,om (dm) are written with four indices, i.e., my,; in place of
M(i—1)Q+k,(j—1)Q+1» for (i,7) in [[l,m]]2 and (k,1) in [[I,Q]]Q. With these defi-
nitions and notations at hand, a generic model of M-SVM can be defined as
follows.

Definition 3 (Generic model of M-SVM, Definition 4 in [20]). Let X
be a non empty set and Q € N\ [0,2]. Let x be a real-valued positive type
function on X2. Let H and H be two classes of functions induced by r according
to Definitions[l and[@ Let Py be the orthogonal projection operator from H onto
H. For m € N*, let d,, = (i, ¥i))1cicm € (X x[1,QD™ and € € RO™ (d,,).
A Q-category M-SVM whose kernel is k is a large margin discriminant model
obtained by solving a convex quadratic programming problem of the form

Problem 1 (M-SVM learning problem, primal formulation).

. P B 27
min {[|MEI, + A |1 Preh5 |

Vie[1,m], Vk €[1,Q]\ {vi}, Kihy, (@) — hi(x;) = Ko — &k
vie[1,m], V(k,1) € (1, QI\{wi})*, Ks (& — &) =0

Vi€ [[Lm]]v Vk € [[LQ]]\{yi}a (2 7p)£ik >0

(1-K)X2 hy=0

where X € R, M € Mgm,qm (dn) is a matriz of rank (Q —1)m, p € {1,2},
(K1, K3) € {0, 1}2, and Ko € RY.. If p=1, then M is a diagonal matriz.

s.t.
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In the chronological order of their introduction, the four M-SVMs involved in
our experiments are those of Weston and Watkins [2I], Crammer and Singer
[22], Lee and co-authors [23], and the M-SVM? [24]. Let Ig,, (dy,) and M)
designate two matrices of Mgm,om (d) Whose general terms are respectively

Mik,ji = 050k, (1 — Oy, k)

and

VQ -1
M1 = (1= 8y1) (1= 0y, 0) <5k,l o1 0i.j
where § is the Kronecker symbol. In order to characterize the aforementioned
M-SVMs as instances of the generic model, we express the primal formulation
of their learning problems as a specification of Problem [l The corresponding
values of the hyperparameters are gathered in Table [Tl

Table 1. Specifications of the four M-SVMs used as sequence-to-structure classifier.
The first three machines are the ones of Weston and Watkins (WW), Crammer and
Singer (CS), and Lee, Lin, and Wahba (LLW).

M-SVM M p K1 K2 Ks

WW-M-SVM Igm (dm) 11 1 0
CS-M-SVM ! Jom(dm) 11 1 1
LLW-M-SVM Igm (dm) 10 45,0
M-SVM? M® 20 1,0

1

2.2 Dedication to Sequence-to-Structure Prediction

In our experiments, each protein sequence is represented by a position-specific
scoring matrix (PSSM) produced by PSI-BLAST [25]. To generate each PSSM,
we ran three iterations of PSI-BLAST against the nr database downloaded in
February 2010. The E-value inclusion threshold was set to 0.005 and the default
scoring matrix (BLOSUMG62) was used. The sliding window of the sequence-to-
structure classifiers, i.e., the M-SV Ms, is of size 13, and is centered on the residue
of interest. The description (vector of predictors) z; processed by the M-SVMs
to predict the conformational state of the i** residue in the data set is thus
obtained by appending rows of the PSSM associated with the sequence to which
it belongs. The indices of these rows range from i’ — 6 to i’ + 6, where ¢’ is the
index of the residue of interest in its sequence. Since a PSSM has 20 columns, one
per amino acid, this corresponds to 260 predictors. More precisely, X C Z259.
The kernel k is an elliptic Gaussian kernel function applying a weighting on
the predictors as a function of their position in the window. This weighting is
learned by application of the principle of multi-class kernel target alignment [26]
(the training algorithm is a stochastic steepest descent). At last, the programs
implementing the different M-SVMs are those of MSVMpack [27].
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3 Structure-to-Structure Classifiers

In this section, we make the hypothesis that N M-SVMs are available to perform
the sequence-to-structure prediction. The function computed by the j** of these

machines is denoted A\ = (h,(cj )) ched The structure-to-structure classifier
1\ ~

9= (gx), <k<o uses a sliding window with a left context of size 7; and a right
context of size T, (for a total length of T = T; + 1 + T;.). Thus, the vector of
predictors available to estimate the probabilities associated with the i** residue

in the data set is z; = (hfcj) (SUZ'H)) € RNQT  With slight
1SN, ILELQ, - T <t<T>

abuse of notation, we use g (z;) in place of g (z;) to denote the outputs of the
structure-to-structure classifier for this residue. The classifiers we consider to
perform the task are now introduced in order of increasing complexity.

3.1 Polytomous Logistic Regression

The most natural way of deriving class posterior probability estimates from the
outputs of an M-SVM consists in extending Platt’s bi-class solution [28] to the
multi-class case. In the framework of our study (implementation of the cascade
architecture), this corresponds to applying to the predictors the parametric form
of the softmax function such that

em(2ﬁ42£;n%ﬁ%”@Hﬂ+m)

Viel[l,m], g(z;)= ,
SR e (S S g ekl (@) + br)

1<k<Q

The values of the corresponding parameters, the coefficients ay;; and the biases
by, are obtained by maximum likelihood estimation (the training criterion used is
cross-entropy), so that the model specified appears as a simplified variant of the
polytomous (multinomial) logistic regression model [29]. In practice, the training
algorithm that we implemented is a multi-class extension of the one exposed in
[30].

3.2 Linear Ensemble Methods

In [31], we studied the class of linear ensemble methods (LEMs). Their use re-
quires an additional hypothesis regarding the base classifiers, namely that they
take their values in the probability simplex (which is less restrictive than as-
suming that their outputs are probability estimates). For the sake of simplicity,
we present them without taking into account the sliding window. In practice,
its introduction is equivalent to the introduction of N(T — 1) additional classi-
fiers. For all k in [1,Q], let ¢; denote the one of Q coding of category k, i.e.,
ty = (5;6’;)1@@2. With this notation at hand, an LEM is defined as follows.

Definition 4 (Linear ensemble method). Let {EU) = (Eg)) reneg TSISN

be a set of N classifiers taking their values in the probability simplex. Let § =
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(Bi)1<heq: with the vectors By belonging to RN®. For all j in [1,N] and all

(k, 1) in|1, Q]]Q, let Brj1 denote the component of vector By of index (7 —1)Q +1.
Then, a linear ensemble method is a multivariate linear model of the form

N Q )
Ve X, g(x)= ZZﬁkﬂﬁE])(@

j=ti=1 1<k<Q

for which the vector B is obtained by solving a convex programming problem of
the type

Problem 2 (Learning problem of an LEM)

mﬁinz Crem (ty,, g (2:))

1=1
Be]R{fQQ
1%Q2B:Q

where the loss function {1 gy is conver.

Note that a special case of LEM is the standard convex combination obtained
by adding the following constraint:

V(j,k‘,l) 6[[17N]]X|117Q]]X[[17Q]]7 k#lﬁﬁkﬂ =0.

The constraints of Problem 2] are sufficient to ensure that g takes its values in
the probability simplex. Furthermore, if ¢1,zy is the quadratic loss (Brier score)
or the cross-entropy loss, then the outputs are actually estimates of the class
posterior probabilities (see [31] for the proof). In order to make comparison with
the polytomous logistic regression straightforward, we selected the second option
for our experiments. Since the M-SVMs do not take their values in the probability
simplex, their outputs must be post-processed prior to being combined by an
LEM. This can be done by means of the polytomous logistic regression model.
In that case, the flowchart of the cascade architecture is the one depicted in
Figure [ (right).

3.3 Multi-layer Perceptron

As pointed out in the introduction, the MLP is the standard structure-to-
structure classifier. In our experiments, we implemented it with the softmax
activation function for the output units (a sigmoid for the hidden units) and
the cross-entropy loss function. In that way, it could be seen as a complexified
extension of the polytomous logistic regression model described in Section B
making once more the comparison of performance straightforward.
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g(xi) structure-to-structure prediction g ()
Logistic reg. LEM
seguence-to-structure predictions (iz(l) (.L',H)) 70) (a‘,+,)) B (IH,,))
—H<I<T, -hi<t<Ty —N<t<Ty
Logistic reg. 1 | ... | Logistic reg. j | ... | Logistic reg. N
(hm (TLH)) T <t<T, (h(]j (‘T?*f )—vlgrg'r, (h(m "f*')):ngtg’r, (}1(1) (‘T"H ):1'1@@', (]7(1) (TLH )—119@; (hw) (1'1*))7119@',
M-SVM 1 M-SVM j M-SVM N M-SVM 1 M-SVM j M-SVM N

(-L'v+r)711gzg'17. T consecutive z (1"7,+t)71‘,gg1;

Fig. 1. Flowchart of the computation of the class posterior probabilities using a poly-
tomous logistic regression model (left) and an LEM (right) as structure-to-structure
classifier

4 Experimental Results

To assess the different structure-to-structure classifiers described in Section Bl we
used the CB513 data set [32]. The 513 sequences of this set are made up of 84119
residues. The derivation of the descriptions z; of these residues (inputs of the
sequence-to-structure classifiers) has been detailed in Section As for their
labels y;, the initial secondary structure assignment was performed by the DSSP
program [33], with the reduction from 8 to 3 conformational states following the
CASP method, i.e., H+G — H (a-helix), E+B — E (8-strand), and all the other
states in C (coil). In all cases, the two sliding windows used were centered on
the residue of interest, and their respective sizes were 13 (sequence-to-structure)
and 15 (structure-to-structure, T; = T, = 7). The performance of reference was
provided by a cascade architecture involving two MLPs. The respective sizes of
their hidden layers are 16 (sequence-to-structure) and 6 (structure-to-structure).
The structure-to-structure network is precisely the one described in Section [3.3l

A secondary structure prediction method must fulfill different requirements
in order to be useful for the biologist. Thus, several standard measures giving
complementary indications must be used to assess the prediction accuracy [34].
We computed the three most popular ones: the recognition rate )3, Pearson-
Matthews correlation coefficients Cy/5/coi1, and the segment overlap measure
(Sov) in its most recent version (Sov’99). The quality of the probability esti-
mates was measured by means of the (averaged) cross-entropy (CE). To train
the two levels of the cascade and assess performance, a seven-fold cross-validation
procedure was implemented. At each step, two thirds of the training set were
used to train the sequence-to-structure classifiers, and one third to train the

structure-to-structure classifier. The experimental results obtained are gathered
in Table 2
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Table 2. Prediction accuracy and quality of the probability estimates for the different
implementations of the cascade architecture considered

Cascade architecture Q3 (%) Coa Cs Coon Sov’99 (%) CE

MLP + MLP 74.6 0.69 0.59 0.54 71.1 0.615
M-SV Ms + logistic reg. 76.5 0.71 0.62 0.57 73.0 0.576
M-SVMs + logistic reg. + LEM 76.5 0.71 0.63 0.57 73.1 0.576
M-SVMs + MLP 76.7 0.72 0.63 0.57 71.9 0.572

Using the two sample proportion test (the one for large samples), the gain
in prediction accuracy resulting from using dedicated M-SVMs in place of an
MLP for the sequence-to-structure prediction of the cascade architecture ap-
pears always (i.e., irrespective of the choice of the structure-to-structure clas-
sifier) statistically significant with confidence exceeding 0.95. The value of the
cross-entropy confirms this superiority. If we restrict to the architecture we ad-
vocate, then the recognition rates of the three structure-to-structure classifiers
are almost identical. The value of the cross-entropy does not really help to break
the tie. However, this goal can be achieved by resorting to the Sov. In that case,
the logistic regression and the LEM appear almost equivalent, and significantly
superior to the MLP. The reason for this asymmetry is still to be highlighted.

Thus, the main conclusion that can be drawn regarding the choice of the
structure-to-structure classifier is that the prediction accuracy does not benefit
significantly from an increase in the complexity. From this point of view, the
small size of the hidden layer of the MLP used for this task is telling. This phe-
nomenon can be explained by a well-known fact in secondary structure predic-
tion: the main limiting factor when applying a cascade architecture is overfitting
(see for instance [35]). On the one hand, the sequence-to-structure classifiers
must be complex enough to cope with the complexity of the task, but on the
other hand, the classifier at the second level must be of far lower capacity, oth-
erwise its recognition rate in test will be disconnected with its recognition rate
on the training set. With this restriction in mind, the behavior of the LEM ap-
pears promising, since its accuracy with respect to both major criteria (Qs and
cross-entropy) is similar to the one of the other combiners although it requires
an additional level of training, resulting from the need for a post-processing of
the outputs of the M-SVMs prior to their combination (see Figure[l]). Given the
experimental protocol described above, we used the same training set to train
both the M-SVMs and their post-processing, a strategy which is prone to overfit-
ting. As a consequence, we conjecture that the prediction accuracy of the LEM
is the one which should benefit most from the availability of additional training
data.

To sum up, these experiments back our thesis that M-SVMs endowed with a
dedicated kernel should be used as sequence-to-structure classifiers in a cascade
architecture, even in the case when the final outputs must be class posterior
probability estimates. In that case, several options are available for the structure-
to-structure classifier. So far, it appears that the difference between them is not
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significant. The levelling of performance primarily highlights the problem of
overfitting.

5 Conclusions and Ongoing Research

This article has addressed the problem of optimizing the cascade architecture
commonly used for protein secondary structure prediction with respect to two
criteria: prediction accuracy and quality of the class posterior probability esti-
mates. The main result is that using dedicated M-SVMs as sequence-to-structure
classifiers, it is possible to outperform the standard solution, consisting in us-
ing two MLPs in sequence, according to both criteria. Making the best of the
new approach should require a precise choice for the structure-to-structure clas-
sifier. From that point of view, capacity control appears to play a major part,
since overfitting is a strong limiting factor. Obviously, a touchstone for the archi-
tecture we advocate is a comparison with solutions based on pairwise coupling
(Bradley-Terry model) [36]. To that end, we are currently conducting additional
comparative experiments with architectures differing from ours at the sequence-
to-structure level: the M-SV Ms are replaced with decomposition schemes involv-
ing bi-class machines.

This contribution paves the way for the specification of new hybrid prediction
methods combining discriminant models and HMMs. By the way, the princi-
ple of these methods could be extended to many other fields of bioinformatics,
including alternative splicing prediction.
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