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Abstract. Finding robust marker genes is one of the key challenges in
breast cancer research. Significant signatures identified in independent
datasets often show little to no overlap, possibly due to small sample
size, noise in gene expression measurements, and heterogeneity across
patients. To find more robust markers, several studies analyzed the gene
expression data by grouping functionally related genes using pathways
or protein interaction data. Here we pursue a protein similarity measure
based on Pfam protein family information to aid the identification of
robust subnetworks for prediction of metastasis. The proposed protein-
to-protein similarities are derived from a protein-to-family network us-
ing family HMM profiles. The gene expression data is overlaid with the
obtained protein-protein sequence similarity network on six breast can-
cer datasets. The results indicate that the captured protein similarities
represent interesting predictive capacity that aids interpretation of the
resulting signatures and improves robustness.

Keywords: protein-to-family distance matrix, protein-to-protein
sequence similarity, concordant signature, breast cancer markers.

1 Introduction

Delineating gene signatures that predict cancer patient prognosis and survival
is an important and challenging question in cancer research. Over the last few
years, the amount of data from breast cancer patients has increased [1] and
various methods for inferring prognostic gene sets from these data have been
proposed [2], [3]. A major problem in this, which has been identified in several
studies already, is that the prognostic signatures have relatively low concordance
between different studies [4]. This is apparent from the fact that prediction per-
formance decreases dramatically when prognostic signatures obtained from one
dataset are applied to another one [5]. This reveals that a lack of a unified mech-
anism through which clinical outcome can be explained from gene expression
profiles is still a major hurdle in clinical cancer biology.
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Several studies connect the lack of overlap in the gene expression to insuf-
ficient patient sample size [6], the inherent measurement noise in microarray
experiments or heterogeneity in samples [5], [7]. A possible remedy is to pool
breast cancer datasets in order to capture the information of as many samples
as possible in the predictor [4], [8]. More recent efforts address this problem
by exploiting knowledge on relations between genes and infer signatures not as
individual genes but related groups of genes [9]. Of particular interest is the pio-
neering work of Chuang et al. [10], in which a greedy algorithm is used to detect
discriminative subnetworks from protein-protein interaction (PPI) networks.

In order to overcome the drawbacks of a greedy routine to select candidate
cancer networks, van den Akker et al. [11] proposed a non-greedy method that
overlays the PPI network with gene-expression correlation to more accurately
determine concordant breast cancer signatures across six independent expression
datasets. These studies demonstrate that using additional information results in
signatures with a more robust performance across dataset. Additionally, these
signatures also turn out to have meaningful biological interpretations, thus pro-
viding interesting clues for the underlying molecular mechanisms of metastasis.

In this study, we propose a novel method to derive protein networks based
on their functional similarities and use this to extend the van den Akker et
al. method in order to further improve signature concordance and biological
interpretability of breast cancer classification. To this end, we exploit protein
sequence similarity since proteins with significant similar sequence are likely to
have similar function [12].

Protein sequence similarity is determined using profile hidden Markov models
(profile HMM) of protein families released in Pfam database [13]. More specif-
ically, using the HMMER sequence alignment tool [14], we measure a distance
(in term of an E-value) between a protein sequence and the HHM profiles con-
structed from the known families (Fig. 1). Proteins with common ancestors are
in close proximity in the family space, sharing one or more protein domains since
they are close to the same family profiles. Dimensionality reduction methods are
applied to transform the high-dimensional protein-to-family matrix into a more
meaningful low-dimensional representation in which only relevant dimensions are
retained. The protein-to-protein similarity matrix (PPS) is derived by taking the
Euclidean distance between pairs of proteins in the family space. We hypothe-
size that the captured protein similarity networks express predictive power that
can be exploited in a cancer classification task. We evaluated these networks to
identify predictive subnetworks in breast cancer metastasis.

2 Material and Methods

2.1 Data Description

In this study, six microarray datasets of breast cancer samples (Table 1) are uti-
lized. The samples are measured on the HG U133 platform, and normalized fol-
lowing van den Akker et al. [11]. Briefly, all microarray data is normalized, log2
transformed and summarized per probe set. Duplicated samples are removed.
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Fig. 1. The PPS is constructed based on profile HMM of protein families. These profiles
are applied to scan each of the protein queries to obtain their sequence similarity in
terms of an E-value.

The probe sets are mapped to protein-protein interaction networks (PPI) ob-
tained from STRING [15]. Probe sets that do not map to known transcripts
or proteins are discarded, resulting in a total of N = 9236 probe sets for 1107
samples. The samples are classified into a Poor or Good class according to the
prognosis labels (distant metastasis and free survival events, respectively) [11].

Table 1. Summary of collected datasets

Dataset Accession
Code

Poor
Sample

Good
Sample

Desmedt GSE7390 31 119
Miller GSE3494 37 158
Loi GSE6532 32 107
Pawitan GSE1456 35 115
Wang GSE2034 95 180
Schmidt GSE11121 27 153

2.2 Protein-Protein Sequence Similarity

The protein-to-protein similarities are based on Pfam gene family information.
These similarities are calculated as follows (summarized in Fig. 2):

Step 1. Profile hidden Markov models (HMM) for the families in Pfam24
dataset (2009 release, containing 11912 protein families) are constructed using
the HMMER sequence alignment tool [14]. Families with less than 10 or more
than 100 protein members are removed (M = 6612).

Step 2. These profile HMMs are used to scan N protein queries to obtain
their sequence similarity to the M = 6612 families in terms of an E-value. The
N = 9236 protein sequences associated with probe sets are taken from the human
genes in the Ensemble database [16] (Fig. 1).
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Step 3. We next estimate the intrinsic dimensionality of the protein-to-family
distance matrix to capture the meaningful structure. Various dimension reduc-
tion methods are examined. In particular, classical multi dimensional scaling
(MDS) and t-distributed stochastic neighbor embedding (t-SNE) methods are
employed to capture a low-dimensional manifold that embeds the proteins in a
low family dimensional space [17], i.e. the M×N matrix containing the distances
between the N protein sequences and M protein families is mapped to a k × N
(k � M) dimensional space.

Step 4. The N×N protein-to-protein similarity matrix (PPS) is extracted from
the mapped protein-to-family distance matrix by taking the Euclidean distance
between pairs of proteins in the mapped space. Depending on the employed
dimension reduction approach, the PPS is referred to as PPSSNE or PPSMDS .
PPSORG refres to the protein distance matrix extracted from the non-mapped
M × N matrix as well (i.e. without dimension reduction step).

Protein Family 
Information (Pfam)

Protein Sequence
Information (Ensembl)

Construct 
Profile HMM

Scan 
Profile HMM

Protein-Family
Distance 

Matrix

Dimension 
Reduction

Protein-Protein
Similarity 

Matrix

Fig. 2. Flow diagram of capturing the protein-to-protein similarity matrix (PPS)
framework. Three types of PPS are extracted: PPSSNE, PPSMDS and PPSORG.
For the latter the dimension reduction step is skipped.

2.3 Subnetworks Construction

To construct subnetworks we mostly follow van den Akker et al. [11]. Briefly,
we utilize different types of evidence to create the initial subnetworks including
expression correlations, physical protein interactions or protein functional simi-
larities. The N × N matrix indicating relations between genes is computed by:
S = CB ◦G ◦PB

where “◦” indicates Hadamard product and CB is an N × N binary matrix
in which each element in the correlation matrix C is set to zero in case it does
not exceed threshold (TCOR). Grouping matrix G (N ×N) refers to the expres-
sion clustering matrix computed by hierarchically clustering genes using average
linkage and a cluster cut-off value equal to 1−TCOR. Nonzero values in this ma-
trix indicate the co-membership of a gene pair in a cluster. The binary protein
association matrix PB (N × N) captures the functional relationship between
proteins. This matrix is constructed based on the PPS matrix or the PPI ma-
trix. In case of the latter, the STRING based interaction confidences, ranging
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from 1 to 999, are thresholded using threshold TPPI such that a nonzero value
indicates an interaction between the corresponding protein pair. Alternatively,
PB can be constructed from the PPS matrix, by thresholding it with threshold
TPPS . A nonzero value in PB indicates the high similarity of a protein pair.

To assess the association between the gene expression data and breast cancer
outcome per captured subnetworks the global test [18] is applied as a summary
statistic. Only subnetworks with a global p-value less than TS are considered
as the significant networks. Thereafter, genes within union of significant sub-
networks are included in the classifier and used to find out similarity in gene
selection between different datasets.

2.4 Signature Concordance

In order to quantify the degree of concordance between signatures derived from
different datasets two statistics, the Jaccard index [19] and odds ratio [20], are
used. We specified four combinations of attributes for given subnetworks Si and
Sj as the total number of genes that are in i) both Si and Sj (n11), ii) neither
Si and Sj (n00), iii) only Si (n01) and iv) only Sj (n10). The Jaccard coefficient
measures the degree of overlap between two networks by computing the ratio of
the shared attributes between Si and Sj : J = n11

n11+n01+n10
.

The odds ratio describes the strength of association between two subnetworks.
It is the ratio of the odds of an event occurring in Si to the odds of it occurring
in Sj : OR = n11n00

n01n10
. Therefore, a high value of both criteria across two different

datasets indicates the consistency of selected genes between them.

2.5 Classification Procedure

The predictive performances of the significant subnetworks are examined by
training classifiers. More specifically, a nearest mean classifier using cosine cor-
relation as the distance metric is trained on expression values associated with
genes in the significant subnetworks. The classifiers are evaluated using the area
under ROC curve, AUC metric, to capture the performance over the range of
sensitivity and specificity. Two different strategies for training cross-dataset clas-
sifiers are evaluated: geneset passing and classifier passing. In geneset passing,
the gene selection is based on the significant genes in dataset A while the classi-
fier is trained and tested on the expression value associated with these selected
genes in dataset B using 5-fold cross validation. The procedure is repeated 100
times and thus, the reported performance is the average of the AUC among all
repeats. The classifier passing routine is carried out based on selecting genes and
training the classifier on dataset A while testing on dataset B.

Finally, the datasets are also integrated to assess the classifier performance
using five datasets for training while testing on the sixth. In an early integra-
tion strategy, five dataset are concatenated and then the statistically significant
subnetworks are identified using the global test. Alternatively, for late integra-
tion, the gene sets are determined by intersecting the significant subnetworks
per dataset.
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3 Results and Discussion

We evaluate the derived protein similarity matrix to find out whether it rep-
resents biologically meaningful relationships among the proteins by means of a
comparison with the Gene Ontology (GO) categorization. The protein-to-family
matrix (k×N) is mapped to low-dimensional space using t-SNE method in which
k = 3 and N is set to ten thousand randomly selected of the all human proteins
in Ensembl database [16]. As shown in Fig. 3, the proteins with a common GO
term are in close proximity in the PPS space. This shows our measure is indeed
capable of capturing function relatedness of proteins and gives confidence that it
can aid the construction of concordant and biologically interpretable signatures.
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Fig. 3. Visualization of proteins colored based on their GO categorization in the
mapped PPSSNE space (k = 3). Proteins with a common GO term are closer in
the mapped space. Yellow dots indicate all proteins in family space.

Following the outlined procedure, the subnetwork matrix S is created based
on expression correlations (C ) in the six aforementioned datasets independently.
by setting TCOR = 0.6 (following van den Akker et al. [11]). We evaluate four
different subnetwork matrices S by varying the way in which the protein associ-
ation term (PB) is calculated. More specifically, we used: PPSSNE , PPSMDS

and PPSORG as well as PPI directly. For the latter, the threshold TPPI is
set to 500. In case of using the protein similarity measures, TPPS is set to 0.1
quantile of all the values in the corresponding PPS matrix. The global test is

Table 2. Number of significant genes and subnetworks obtained by four different pro-
tein association terms (PB) on the six breast cancer datasets. For each method the
first column indicates number of significant genes and the percentage among all genes
on the array, the second column indicates the number of selected subnetworks and their
average size.

Dataset PPI PPSORG PPSMDS PPSSNE

#Genes(%) #Net(mean) #Genes(%) #Net(mean) #Genes(%) #Net(mean) #Genes(%) #Net(mean)

Desmedt 117(1.2) 37(5.3) 44(0.4) 18(4.4) 84(0.9) 30(4.9) 85(0.9) 34(4.7)
Miller 306(3.3) 56(7.5) 130(1.4) 35(5.8) 207(2.2) 61(5.5) 192(2.1) 54(5.8)
Loi 819(8.8) 113(9.3) 556(6) 119(6.9) 776(8.4) 157(7.2) 751(8.1) 168(6.9)
Pawitan 246(2.6) 52(6.8) 109(1.2) 38(5.2) 206(2.2) 56(5.6) 190(2.1) 56(5.7)
Wang 293(3.1) 72(6.3) 122(1.3) 58(4.4) 226(2.4) 71(5.3) 227(2.4) 70(5.3)
Schmidt 209(2.2) 50(6.2) 99(1.1) 32(5.1) 186(2) 48(6) 190(2.1) 47(6.2)
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performed on the obtained matrices S using TS = 0.05 to identify the significant
subnetworks. As a result, four different subnetwork matrices for six expression
datasets are obtained. The summary of significant genes and subnetworks per
dataset are reported in Table 2.

3.1 Cross Study Prediction Evaluation

We examine the classification performances of the discriminative subnetworks to
compare the prediction capability of consensus genes selected by various protein
association procedures. The expression values of the selected genes are employed
to train and test the classifier. We evaluated two classification protocols, geneset
passing and classifier passing, on the data resulting from early as well as late
integration. The AUC values are given in Fig. 4. From these results we learn
that in terms of classifier performance the genesets obtained with both the PPS
matrices and the PPI matrix are in the same range, with a perhaps slightly
better performance for the PPSORG.
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Fig. 4. Classification performance (AUC) of using four different protein association
terms in determining subnetwork matrix per dataset. a) early and b) late integration
approach. ”circle” refers to the geneset passing and ”diamond” refers to the classifier
passing strategy.

3.2 Functionally Coherent Subnetworks

Table 2 shows that generally, the size of the networks obtained by PPS through
all datasets is smaller than the obtained networks using PPI . This is especially
apparent for the results with PPSORG. The significant subnetworks obtained
with PPSSNE as well as with PPSMDS contain, on average, longer paths and
nodes of lower degree than PPSORG (Fig. 5). However, the overlap with PPI
based subnetworks, in terms of genes, is substantially higher than PPSORG

(32% compared to 47%, Fig. 6). Noteworthy, in all approaches, genes within the
significant subnetworks almost exclusively consist of genes that are either posi-
tively or negatively associated with the prognosis labels of the samples (Fig. 5).
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Fig. 5. The two largest significant subnetworks using the early integration approach
for four different protein association matrices (PB) in S . Genes are colored based on
the p-value of the Welch t-test for their association with the Poor and Good expression
outcome. Red and green indicate higher expressed in Good and Poor, respectively.

To find out whether the function of discriminative genes are enriched for
cancer-related functional categories, the DAVID tool is applied [21]. This en-
richment analysis reveals that for all four protein association matrices PB en-
richment for hallmark cancer categories is observed. However, this enrichment is
substantially stronger for the PPSSNE and PPSMDS methods as indicated in
Table 3. Comparing the genes in the subnetworks resulting from the PPSSNE ,
and PPI matrices reveals that genes within the large subnetworks of PPS
strongly overlap with PPI (Fig. 7). To find out if one of the two methods is
better able to capture biological relevant genes (i.e. genes with a relation to can-
cer), we performed a functional comparison and found that, the common core of

 

174 436 328

PPIPPSSNE

(47%)

161 439 325

PPSMD S PPI

(47%)

139 296 468

PPIPPSORG

(32%)

Fig. 6. Venn diagrams representing overlaps in number of the selected genes in signif-
icant subnetworks obtained by PPI and PPSs using early integration approach. The
mapped PPS share more genes with PPI .
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Fig. 7. Significant subnetworks (TS < 0.05) with minimal size of three genes using early
integration approach by a) PPSSNE, b) PPI . ”Circle” nodes indicate the overlapping
genes between two methods (PPSSNE and PPI ) and ”Triangular” nodes refer to gene
that are exclusive for one of the methods. Genes are colored based on the p-value of
the Welch t-test for their association with the Poor and Good expression outcome. Red
and green indicate higher expressed in Good and Poor, respectively.
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the genes in these subnetworks are significantly enriched for the hallmark process
of breast cancer (Table 4) e.g., mitotic cell cycle (GO:0000278, p-value: 6.4e-18)
nuclear division (GO:0000280, p-value:2.3e-16), mitosis (GO:0007067, p-value:
2.2e-16).

Most striking is the most significant GO category found for the gene set exclu-
sive for PPSSNE (GO:0070013, intracellular organelle lumen) which contains
the highly relevant breast cancer associated BRCA1 and BRCA2 genes. This
demonstrates the efficacy of the PPSSNE to detect genes that have direct causal
implications in breast cancer. In addition, the significant gene sets are analyzed
using IPA (Ingenuity Systems) [22] to explore the genes strongly associated with
cancer. The functional analysis identifies putative biomarkers of breast cancer
process selected exclusively by PPSSNE such as FAM198B (Entrez gene ID:
51313) [23], KIF22 (Entrez gene ID: 3835) [24], [25] and FLRT2 (Entrez gene
ID: 23768) [26].

Table 3. Gene ontology enrichment and their approximated log(p− value) associated
with the significant subnetworks in early integration method

GO Terms PPI PPSORG PPSMDS PPSSNE

GO:0000278
mitotic cell cycle 20 8 18 20
GO:0048285
organelle fission 13 4 16 18
GO:0000280
nuclear division 14 4 17 18
GO:0007067
mitosis 14 4 17 18
GO:0000087
M phase of mitotic cell cycle 14 4 16 18
GO:0000279
M phase 14 5 15 16
GO:0022403
cell cycle phase 13 4 14 15
GO:0007049
cell cycle 19 7 14 13
GO:0022402
cell cycle process 18 6 15 14
GO:0051301
cell division 9 5 11 13
GO:0007059
Chromosome segregation 6 - 9 10
GO:0005819
spindle 10 2 8 9

3.3 Consistent Consensus Genes across the Datasets

To investigate the consistency in gene selection across the six different expression
datasets, we analyze the similarities and diversities of the significant subnetworks
derived by the four alternatives of the PB matrix in S . Pairwise similarities are
computed by applying two criteria, Jaccard index and odds ratio. The Jaccard
index obtained by employing mapped PPS (on average 20%) surpasses the other
methods. This means that, when PPSSNE or PPSMDS is used to detect signif-
icant subnetworks, the signatures are more concordant across datasets (Table 5).
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Table 4. Top five enriched GO FAT terms for selected genes within significant sub-
networks with minimal size of three genes i) exclusively by PPSSNE (dark green in
Fig. 6), ii) shared by PPI and PPSSNE (yellow in Fig. 6) iii)exclusively by PPI (light
green in Fig. 6)

PPSSNE Common PPI
GO:0070013
intracellular organelle lumen

GO:0000278
mitotic cell cycle

GO:0010033
response to organic substance

GO:0043233
organelle lumen

GO:0000280
nuclear division

GO:0009725
response to hormone stimulus

GO:0031974
membrane-enclosed

GO:0007067
mitosis

GO:0009719
response to endogenous stimulus

GO:0044420
extracellular matrix

GO:0000087
M phase of mitotic cell cycle

GO:0048545
response to steroid stimulus

GO:0031981
nuclear lumen

GO:0048285
organelle fission

GO:0032570
response to progesterone stimulus

Table 5. Pairwise comparison of the significant networks obtained using four protein
association matrices on six datasets, the mean of the Jaccard index and odds ratio

PPI PPSORG PPSMDS PPSSNE

Jaccard Index 0.16 0.13 0.2 0.2
Odds Ratio 20.5 29.1 30.2 28.6

The odds ratio confirms this conclusion. The significant subnetworks selected by
PPSMDS (30.2%) and PPSSNE (28.6%) demonstrate the ability of selecting
consistent predictive genes across the different expression datasets.

4 Conclusion

We provide a novel protein similarity measure based on the protein family infor-
mation contained in Pfam and use this to select discriminative markers on six
breast cancer gene expression datasets. This protein similarity matrix captures
functional information by focusing on shared and evolutionary conserved protein
domains and other sequence similarities. We have demonstrated that the obtained
significant genes exhibit more concordance across the six expression datasets. In
particular, using the SNE approach to reduce dimensionality of the similarity ma-
trix results in a promising coherence in the selected signature genes across the
different datasets. The GO enrichment analysis indicates that the genes that are
found for both PPI as well as PPS methods have strong links with cancer. Most
importantly, however, for the genes found exclusively using the PPS information
substantial evidence is available to link them to breast cancer.

The proposed method to infer protein similarities results in a promising data
source to take into account while searching for marker genes and networks asso-
ciated with metastasis. Since it only relies on protein sequence and Pfam infor-
mation a much larger part of the protein space can be included in the marker
discovery process. Therefore it is envisioned that these results will also be useful
in other molecular classification problems.
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et des Jura, Bulletin de la Société Vaudoise de Sciences. Naturelles 37, 547–579
(1901)

20. Edwards, A.W.F.: The measure of association in a 2×2 table. JSTOR 126(1), 1–28
(1968)

 http://www.biomart.org/biomart/martviewrt


Integrating Protein Similarities with Gene Expression 259

21. Huang, D.W., et al.: Systematic and integrative analysis of large gene lists using
DAVID Bioinformatics Resources. Nature Protoc. 4(1), 44–57 (2009)

22. Ingenuity Pathways Analysis software, http://www.ingenuity.com
23. Deblois, G., et al.: Genome-wide identification of direct target genes implicates

estrogen-related receptor alpha as a determinant of breast cancer heterogeneity.
Cancer Res. 69(15), 6149–6157 (2009)

24. Yumei, F.: KNSL4 is a novel molecular marker for diagnosis and prognosis of breast
cancer. American Assoc. for Cancer Res. (AACR) Meeting Abstracts, 1809 (2008)

25. Diarra-Mehrpour, M., et al.: Prion protein prevents human breast carcinoma cell
line from tumor necrosis factor alpha-induced cell death. Cancer Res. 64(2), 719–
727 (2004)

26. Tripathi, A., et al.: Gene expression abnormalities in histologically normal breast
epithelium of breast cancer patients. Int. J. Cancer 122(7), 1557–1566 (2008)

http://www.ingenuity.com

	Integrating Protein Family Sequence Similarities 
with Gene Expression to Find Signature Gene Networks in Breast Cancer Metastasis
	Introduction
	Material and Methods
	Data Description
	Protein-Protein Sequence Similarity
	Subnetworks Construction
	Signature Concordance
	Classification Procedure

	Results and Discussion
	Cross Study Prediction Evaluation
	Functionally Coherent Subnetworks
	Consistent Consensus Genes across the Datasets

	Conclusion
	References




