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Abstract. Clutter is the random yet structured placement of objects in a room. 
We describe a procedural clutter generator that achieves believable, varied, and 
controllable object placement using a hierarchical colored Petri net capable of 
expressing any computable set of object placement constraints. 

1   Introduction 

The demand for game content has increased to the point that its creation by artists and 
designers has become one of the more time-consuming and costly parts of game 
development. Procedural content generation is the term used for computer generation 
of game content (see, for example, Roden and Parberry [1] and Nelson and Mateas 
[2]). In addition to taking some of the fiscal and temporal burden from game 
developers, real-time procedural content generation can increase a game’s 
replayability by the incorporation of the generators into the game itself. 

We use the term clutter to refer to non-architectural room contents. There has been 
little previous work on clutter generation. Howard and Broughton [3] offer a method in 
which the major pieces of furniture are added by hand and the miscellaneous objects are 
added by a genetic algorithm. Tutenel et al. [4] offer a more complete solution using a 
constraint solver that requires a set of tagged bounding boxes for each object.  

Doran and Parberry [5] list a set of five criteria important to any procedural content 
generation system: novelty, structure, interest, speed and controllability. We present 
in the paper a procedural clutter generator that we have designed to maximize 
controllability but not at the cost of the other four criteria. We argue that our 
generator produces interesting room clutter, and demonstrate this with an 
implementation of the generator available online for the reader to test for themselves 
[6] using any standard web browser. We also argue that our generator is flexible 
enough that a designer can control the output to produce appropriate clutter for 
different types of rooms. 

2   Anchors, Objects and Collisions 

A cluttered room does not usually contain a completely random jumble of objects. 
There are almost always patterns in the way that things are laid out, for example, 
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certain objects or sets of objects tend to be grouped in specific areas of a room. 
Objects usually appear in either the corners, spaced regularly but not perfectly along 
the edges, in a rough grid in the center of the room, or in a specific but logical relation 
to other objects in the room. 

We capture this intuition with the concept of an anchor point, which marks a place 
at which an object can be (approximately) located. Throughout the rest of this paper 
our examples will be in 2D for ease of discussion, but the principles are the same in 
3D. In 2D the anchors, as mentioned above, would be placed in the corners, spaced 
along the edges, and spread out in a grid in the center of the room. The spacing along 
the edges and the size of the grid depend on the room type. The placement of these 
initial anchor points may be done procedurally or by the designer. 

Each object placed by our clutter generator also has a set of anchor points for 
further objects. For example, a table may have anchor points for the chairs around it 
and points on top for the place settings, center piece, and other clutter.  

To avoid having all the objects sit in perfect alignment with each other, objects 
being placed have a Gaussian displacement in both position and orientation about the 
normal of the surface the object is on, specified by the standard deviations. 

It is very likely that randomly-placed objects will end up colliding. If an object 
collides with another, we simply generate new random displacements for its position 
and orientation, repeating if necessary up to some small number of attempts. If this 
fails, it is often safe to throw the object away. However, some items that are important 
for gameplay could fail to generate. In this case, we suggest that another random 
room layout be generated, again up to some small number of attempts. If that fails, it 
is likely that the constraints should be redesigned. 

3   Petri Nets 

Petri nets date from 1939 [7] and have since been applied to a wide range of 
applications including distributed computing [8] and manufacturing [9]. There are 
many great resources on the basics of Petri nets, so we will avoid repeating that 
information here. The Petri nets we use are a variation on colored, hierarchical Petri 
nets with inhibitor edges. The inclusion of inhibitor edges is needed to make the Petri 
net Turing-complete (see Peterson [10]). 

Tokens in standard Petri nets are indistinguishable. Conversely, in colored Petri nets 
the tokens carry extra information. We use this to store the information needed to place 
objects in the room. While it may seem natural for tokens to represent objects, this 
approach quickly runs into problems. Instead, each token will carry either zero or one 
anchor points. Generic tokens, with no anchor point, can be added manually to the initial 
net or be created at run time. Tokens with anchor points can only be created at run time. 

Colored Petri nets also add extra semantics to the transitions to handle this extra 
information. In our implementation, this leads to three significant differences over 
standard Petri nets.  

First, the relation between the incoming and outgoing edges of transitions must be 
made explicit. For each incoming edge, the user must specify which outgoing edge 
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will get the token or that the token is to be discarded. Similarly, for each outgoing 
edge, there is the possibility of making a new generic token, or taking whatever is 
coming from one of the incoming edges. 

Second, for each incoming edge the user can specify which types of tokens to 
allow on that edge. This is handled by attaching a non-unique name to each anchor 
point and then checking those names when deciding if the transition is ready to fire. 

Third and finally, each incoming edge can create an object at the anchor point 
represented by the token it is working with. That token is then replaced by a set of 
new tokens representing the anchor points on the new object. 

While running, one live transition is picked randomly to fire. To control how often 
things happen more precisely, a probability is attached to each transition representing 
how likely it is to fire if picked. This defaults to 1 which means it will fire if picked. 

The pages of hierarchical Petri nets make running the net somewhat difficult. To 
avoid that, we instead unroll the net into a single page. To provide the widest range of 
possibilities, each place and transition is assigned a scope. A local scope means that 
places and transitions with the same name on different pages are considered different, 
while a global scope would mean they are the same and should be combined when the 
net is unrolled. To make sure that the unrolling works we also introduce links, a 
subtype of places. Links are treated like any other place but they cannot have generic 
tokens and can only be locally scoped. All page calls connect places in the current 
page to links in the called page, which are merged when that page call is unrolled. 

4   Implementation 

We implemented a prototype of our system in 2D in Java. The room and the initial 
anchor points were prepared by hand, but the system is designed to be used alongside 
a room generator. Figure 1 shows some of the generated rooms. (The reader is invited 
to visit Taylor and Parberry [6] for higher resolution images or to try the generator for 
themselves.) 

The list of objects and the Petri net are stored in XML files. The system takes these 
inputs plus the room with the initial anchor points. It then unrolls the Petri net, creates 
a token for each anchor point, and feeds those into the starting place in the net. 
Execution consists of making a list of live transitions and firing one randomly. This 
continues until there are no live transitions. 

Judging our approach by the criteria mentioned in the Introduction, we claim that 
our content is novel in that the room contents are unpredictable, yet there is structure 
in the way the contents are laid out. As evidence, we provide the pictures in Figure 1. 
Our approach is comparable in speed to that of Tutenel et al. [4], and the Turing-
completeness of Petri nets offers better controllability. The approach used by Howard 
and Broughton [3] is designed for a specific subset of clutter generation and so suffers 
in both categories.  
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Fig. 1. Ten rooms generated with our system using the same Petri net and object set 

5   Conclusions and Further Work 

This paper introduces a procedural clutter generator based on hierarchical, colored 
Petri nets that can express any arbitrary computable set of constraints between 
objects. It remains to construct a graphical user interface for the designer. This 
interface should ideally output XML scripts that can be read by our generator. 
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