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Abstract. In this article, we demonstrate the use of composing ‘experience’ in 
the form of piece location probability values derived from a database of mate-
in-3 chess problems. This approach was compared against a ‘random’ one. 
Comparisons were made using ‘experiences’ derived from three different 
databases, i.e. problems by human composers (HC), computer-generated 
compositions that used the HC experience (CG), and mating ‘combinations’ 
taken from tournament games between humans (TG). Each showed a 
reasonable and statistically significant increase in efficiency compared to the 
random one but not each other. Aesthetically, the HC and CG were better than 
the others. The results suggest that composing efficiency and quality can be 
improved using simple probability information derived from human 
compositions, and unexpectedly even from the computer-generated 
compositions that result. Additionally, these improvements come at a very low 
computational cost. They can be used to further aid and entertain human players 
and composers.  

Keywords: Artificial intelligence, chess, composition, probability, experience, 
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1   Introduction 

A chess problem or ‘composition’ is a type of puzzle typically created by a human 
composer using a chess set. It presents potential solvers with a stipulation, e.g. White 
to play and mate in 3 moves, and is usually composed with aesthetics or beauty in 
mind. Compositions often adhere to certain composition conventions as well, e.g. no 
‘check’ in the key (i.e. first) move. One of the earliest books on chess problems, using 
an early Indian form of the game, is from the 9th century AD [1]. Composition 
tournaments are at present held all over the world and attract competitors from diverse 
backgrounds [2].  

The automatic composition of chess problems – pertaining to Western or 
international chess, in particular – is relatively uninvestigated. Especially in contrast 
to chess playing which was “once seen as a really hard thing humans could do and 
computers couldn’t” [3] but is now losing emphasis in the artificial intelligence (AI)  
community in favor of ‘more complex’ games like go and Arimaa [4-6]. Perhaps a 
better reason than the emphasis on chess playing for much of AI history, automatic 
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chess problem composition may have suffered because ‘creativity’, the essential 
component that is usually mirrored in aesthetics, is not well defined [7]. 

Chess problems actually provide a convenient domain of  investigation for 
creativity or aesthetics – more so than say, music [8] or paintings [9] – since there is a 
clear and distinctly measureable contrast between  problems by human composers and 
otherwise-identical move sequences or ‘combinations’ that typically take place in real 
games between humans [10, 11]. Advances in this area can be of immediate benefit to 
human composers and players in terms of educational and entertainment value since 
there is virtually no limit to the potential output of a machine. 

Section 2 reviews briefly related and relevant previous work. Section 3 details the 
steps involved in the composing approaches tested. Section 4 explains the 
experimental setup and results. Section 5 presents a discussion of the results. Section 
6 summarizes the main points with some thoughts on future work. 

2   Previous Work 

Schlosser presented an effective ‘basic’ method of automatically composing chess 
problems [12, 13]. It consists essentially of: 1) constructing a complete database of 
chess endgames, 2) eliminating positions that do not have a unique and optimal move 
sequence, and 3) selecting the ‘true’ chess problems with the help of a human expert. 
The method is therefore limited to the number of pieces which endgame databases or 
‘tablebases’ support, e.g. presently 6 pieces including kings [14], and also depends on 
human expert intervention. This inherently limits the ‘automatically’ generated 
compositions in terms of scope and output potential. 

Noshita explained how – for Tsume-Shogi (Japanese chess mating problems) – a 
board position can be randomly-generated and then ‘transformed’ by removing or 
adding pieces through certain operations [15]; a principle equally applicable to 
international chess. A game-solving engine can then be used to determine the 
solution, if any. The majority of such positions end up having no solution. Some 
improvements, e.g. generating compositions with more pieces, can be obtained by 
‘reversing’ moves one at a time from a given mate position with the aid of a solving 
engine to test if the problem is ‘complete’, i.e. it has a unique solution [16]. 

Several criteria for determining the artistic value of the compositions can be 
automatically tested for but these tend to rely on confirmation by human experts, in 
any case [16]. The reason is likely because these criteria and their automatic 
evaluation techniques may not have been experimentally-validated. ‘Optimization’ or 
the removal of unnecessary pieces can be performed so long as it does not invalidate 
the solution. Pieces may also be added at particular points in the process [17]. Within 
a restricted scope, a ‘reverse’ method without the need for a time-consuming solving 
engine is possible [18], but this typically comes at the cost of more memory. 

Chess problems, e.g. two-movers, can also be ‘improved’ a fair amount using a 
computer. Domain experts are first consulted in order to formalize the knowledge 
required to assess the ‘quality’ of compositions. This results in simple formulas (e.g. 
first move pins a white piece = 3 × piece’s value) or specific weights for certain 
detectable maneuvers and features (e.g. Grimshaw theme = 45). Pieces can then be 
deleted, added or replaced to improve the position [19]. Composing efficiency and 
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quality here can be improved but mainly via somewhat computationally-intensive 
‘search’ enhancements [20, 21]. 

In summary, the two main issues in this area relate to computational efficiency 
(processing power, memory) and quality functions (aesthetics). The first is 
reminiscent of the problem the AI community faced with regard to early chess playing 
programs, but eventually ‘solved’ thanks in large part to powerful hardware that 
became available. Former world chess champion Garry Kasparov’s loss to IBM’s 
supercomputer Deep Blue in 1997 being the prime example. That, in retrospect, is not 
seen as much of an achievement in AI. It is therefore preferable not to fall into the 
same predicament with compositions. The output of automatic composers, relative to 
the time they take, should be increased at minimal computational cost; this can be 
seen as making them ‘cleverer’. 

The second issue is likely due to the lack of experimental validation when it comes 
to quality functions and aesthetics models, and an over-reliance on expert opinion 
which tends to be inconsistent [11, 22, 23]. There is likely no consistent 
‘methodology’ pertaining to how the best human composers compose problems. They 
tend to take their time, abide by a number of ‘accepted’ composition conventions, and 
leave the rest to personal style, experience and creativity [24]. This may be why it is 
difficult for computers to compose original chess problems like they do, and to do so 
on demand or within a stipulated time frame. In any case, aesthetics or quality in 
chess can, in fact, now be assessed computationally to a reasonable degree within the 
scope of three-move mate problems using an experimentally-validated model [10, 11, 
25]. This minimizes or removes altogether the need for human expert intervention for 
chess problems of that type, and makes the process of aesthetic assessment more 
consistent, reliable and affordable; especially for research purposes. That model will 
therefore be used in lieu of chess experts, perhaps for the first time, to assess the 
quality of our automatically generated compositions. More details about it are in 
section 4. The ability to generate more efficiently compositions that ‘work’ is good in 
itself but that they are, on average, of higher quality is even better. 

3   The Composing Methodology 

This research was limited to orthodox mate-in-3 problems (#3) in standard 
international chess. The ‘composing’ feature was incorporated into a computer 
program. Two automatic composing approaches were compared, i.e. ‘experience’ and 
‘random’. The main difference between them is that the first uses an ‘experience 
table’, explained below, after step 4. The process as follows applies to both. 
  

1. Place the two kings on random squares on the board. Accept them so far as 
the resulting position is legal; otherwise, repeat the process. 

2. Alternating between White (first) and then Black, determine whether the 
next selection will be an actual piece or a ‘blank’, i.e. nothing. The 
probability of choosing a blank for White was set to 16.67% (1 in 6 chance, 
given the other five piece types) whereas for Black, it was set to 33.34% 
(twice as likely) to give White a better chance of checkmating ; compositions 
are generally seen from the standpoint of White winning.  

3. If a ‘blank’, return to step 2 with the side in question having lost its ‘turn’.  



 Increasing Efficiency and Quality in the Automatic Composition 189 

4. If an actual piece is to be selected, choose one of the five remaining piece 
types at random (equal odds) and place it on a random square that is 
unoccupied. Keep trying until one is found.  

 

This is where the two approaches diverge. In the random approach, no position 
transformation occurs and we skip to just after step 7. In the experience approach, the 
experience table is used for that purpose. The table is created (beforehand) based on 
the rapid, automatic analysis of a chess problem database. Three databases (see 
section 4 for details) were used in experimentation to derive three different experience 
tables. Fig. 1 shows, in two columns, how the probability information may be stored 
in a text file. 

 
Sq: 36 
 0: 65.33 
 1: 4.8 
 2: 4.33 

 3: 1.78 
 4: 1.72 
 5: 0.66 
 6: 0.52… 

Fig. 1. Contents of an ‘experience table’ 

The first line indicates the square (0-63) – upper left to lower right of the board –  
followed by the piece types (0-12) and their associated probabilities (% occurrence) 
as follows: blank, (white) pawn, knight, bishop, rook, queen, king, (black) pawn, 
knight etc. For instance, in this example it was determined that, in the initial positions, 
a white bishop occupied one of the central squares (e4, in the algebraic chess 
notation) only 1.78% of the time.  
  

5. Based on the probability information, examine the squares immediately 
around the one chosen in step 4 for potentially better placement.  

6. If there is a king on one of those squares, skip it. If a square is blank but has 
a higher associated probability value for the random piece selected in step 4, 
shift the random piece there. 

7. If there is a piece in a surrounding square but that square has a higher 
associated probability value for the random piece than the one currently on 
it, replace it with the random one. In order to increase the likelihood of 
White being able to force mate, black pieces cannot replace white ones. 
  

At this point, the two approaches converge. The ‘final’ generated position was set to 
have at least two black pieces to avoid ‘lone king’ mates, a minimum total of four 
pieces and a maximum total of sixteen pieces.  
 

8. If a minimum piece requirement is not satisfied, return to step 2. 
9. If the maximum piece limit is exceeded, discard the position thus far and 

return to step 1.  
 

The following are some possible ‘violations’ in the composing process. 
  

a. Exceeding the original piece set, e.g. having three rooks of the same color. 
b. Having two bishops in an army occupying squares of the same color.  
c. Having a pawn occupying the eighth rank.  
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The first two are not actually illegal but they are somewhat unconventional in 
compositions. In such cases, the ‘offending’ piece is removed and the process returns 
to step 4; this therefore does not count as a further transformation of the position but 
simply a ‘mistake’ to be corrected. The possibility of castling was given a ‘neutral’ 
50% random probability of being legal, assuming a king and one of its rooks happen 
to be on the right squares. Determination of legality based on retrograde analysis was 
considered unnecessary for the purposes of this research [26, 27]. En passant captures, 
if plausible, default to illegal. ‘Officially’, in compositions, castling in the key move 
is legal unless it can be proved otherwise whereas en passant is legal only if it can be 
proved the last move by the opponent permitted it [28].  
 

10. If an illegal position results, remove the random piece from its square and 
return to step 2. 

11. A mate-solver is used to determine if the tentatively acceptable position 
generated has a forced mate-in-3 solution to it. If not, do not remove the 
random piece, and return to step 2. 

12. If there is such a solution, the position is optimized as shown in the code 
below. This makes the composition more economical in form [29].  

 
FOR every square  
   IF not occupied by a king and not empty THEN  
      Remove piece  
      IF forced mate-in-3 can still be found THEN  
         Proceed  
      ELSE  
         Return piece to its original location  
      END IF  
   END IF  
NEXT 

 

To be thorough, optimization is performed three times, starting from the upper left to 
the lower right of the board; white pieces first, then black, and then white again. 
Fewer passes proved to be insufficient in certain positions. Optimization generally 
increases the aesthetic quality of a composition by removing unnecessary or passive 
pieces and should apply equally to both the random and experience approaches to 
make the comparisons more meaningful.  
 

13. If the position can be optimized, test it as in step 8. Satisfying that, consider 
the composing attempt successful. 
  

The number of transformations or iterations per composing attempt was limited to 21, 
after which a new composing attempt begins regardless (step 1). Scant positions 
would result given too few iterations, and the opposite given too many. There was no 
implementation of particular composition conventions, e.g. no captures in the key 
move, no ‘duals’ (see section 5 for more on this). The process as described in this 
section may seem more complicated than necessary. For instance, why not just draw 
the pieces from a fixed set and place them on the squares based on their associated 
probabilities in the experience table? The reason is that doing so results in less 
creative variation and very similar-looking, if not identical, generated compositions. 
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4   The Experimental Setup 

For every comparison made, automatic composition was attempted 100 times for 40 
‘cycles’. The composing efficiency (i.e. successes/attempts) for each cycle was 
calculated, and the mean used as a basis of comparison. For comparisons within the 
experience approach, i.e. between different experience tables, the databases included: 
29,453 (mostly published) problems by human composers1 (HC), 1,500 computer-
generated compositions that used the experience table derived from the HC (CG), and 
3,688 forced mate-in-3 combinations taken from tournament games between at least 
club-level human players, i.e. rated at least 1600 Elo points (TG). From this point, 
mention of any of these databases in the context of composing efficiency will refer to 
the experience table that was derived from it. For statistical purposes, usage of the 
two sample t-test assuming equal (TTEV) or unequal (TTUV) variances – to establish 
if a difference in means was significant – was determined by first running a two 
sample F-test for variances on the samples (which were assumed to have a normal 
distribution). T-tests were all two-tailed, and at a significance level of 5%. Table 1 
shows the results. The standard deviation is given in brackets.  

Table 1.  Mean composing efficiency. 

Random 
Experience 

HC CG TG 
23.70% 
(3.69) 

28.03% 
(4.45) 

28.38% 
(4.49) 

27.25% 
(3.94) 

 
The differences in mean efficiency were not statistically significant between any of 
the experience approaches. However, they were all different to a statistically 
significant degree when compared to the random approach as follows. 
 

HC vs. Random: TTEV; t(78) = 4.735, P<0.01 
CG vs. Random: TTEV; t(78) = 5.087, P<0.01 
TG vs. Random: TTEV; t(78) = 4.160, P<0.01 

 

Even though the improvements may not look very large in terms of raw percentage, 
they actually translate to quite a few more successful compositions than the random 
approach. For instance, after 10,000 composing attempts, the CG approach would 
have 433 more compositions than the random one. This is enough to fill two small 
books on chess problems.   

Every automatically generated composition was assessed using the chess aesthetics 
program, CHESTHETICA that incorporates Iqbal’s mate-in-3 chess aesthetics model 
[10, 11, 25]. The model is too complex to be sufficiently explained here but all the 
necessary information pertaining to its workings are available in the resources just 
cited. We are not attempting to further debate or justify its merits here but simply 
consider it validated and are applying it to this research. In principle, the model uses 

                                                           
1  Sourced from Meson Chess Problem Database (http://www.bstephen.me.uk/); courtesy of 

Brian Stephenson. 
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17 aesthetic features (e.g. pin, skewer, fork, economy, sparsity, material sacrifice) 
common to real games and compositions, and can discriminate effectively between 
these domains but not within them. To give the reader some idea how the features are 
evaluated, one of the evaluation functions is shown in equation 1 where T1 represents 
the aesthetic value of the fork theme, if detected, after a piece moves; v() denotes the 
standard Shannon value of the piece, d() the Chebyshev distance between two pieces 
and r() the ‘power’ of the piece. These concepts are fully explained in [10, 11, 25]. 

                  T1 = fc × [(∑v(fpn) + n + (∑d(fk, fpn) × r(fk)
-1)) - k] .                    (1)

fc = fork constant, fp = forked piece, fk  = forking piece, 
k = number of possible ‘check’ moves by fp 

 

The results also correlate well with mean human-player aesthetic ratings and agree 
with the typical selections of experts. It is a more consistent, reliable and cost-
effective alternative to the traditional approach of using one or two human experts. 
This is something that was not possible before due to a lack of experimentally-
validated aesthetic assessment technology. Given the sheer number of compositions to 
be assessed, human experts would not have been a viable option here in any case. A 
higher score implies that the combination is more likely to be considered beautiful by 
the majority of human chess players of reasonable competence in the game. The 
model is used to evaluate beauty in the game, and therefore does not explicitly 
account for some of the composition conventions – that may have little to do with 
beauty or creativity per se – typically adhered to by composers. Table 2 shows the 
mean aesthetic scores. The standard deviation is given in brackets. 

Table 2.  Mean composition aesthetic scores. 

Random 
Experience 

HC CG TG 
2.104 
(0.44) 

2.168 
(0.46) 

2.178 
(0.46) 

2.088 
(0.46) 

 
The differences in means were not statistically significant between the HC and CG 
approaches, and TG and random, but were in all other cases as follows. 

 
HC vs. Random: TTEV; t(2067) = 3.259, P<0.01 
CG vs. Random: TTEV; t(2081) = 3.743, P<0.01 

HC vs. TG: TTEV; t(2209) = 4.121, P<0.01 
CG vs. TG: TTEV; t(2223) = 4.619, P<0.01 

 
Even though the difference between say, the CG and random approaches is small, i.e. 

0.074 – and therefore probably difficult for humans to perceive – it is nevertheless an 
improvement over the random approach, and no worse than it despite the reasonable 
increase in efficiency (see Table 1). An aesthetic difference of approximately 0.5 or more 
would be more obvious to humans [25]. Mate-in-3 compositions by humans average 
approximately 2.1 aesthetically whereas analogous combinations from tournament games 
average about 1.7 [25]. The latter, in their ‘original’ form, are not optimized in any way, 
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e.g. step 12 in section 3. The aesthetic score for a combination from either of these 
domains typically ranges from 0.5 to 5.0; in rare cases slightly lower or higher. Overall, 
these results suggest that the experience approach, using a table of piece-placement 
probability values derived from any of the databases is reasonably better than the random 
approach in terms of composing efficiency, and to a small but significant degree also 
aesthetics (given the HC and CG). 

5   Discussion 

The experimental results show that simple piece-placement probability values derived 
from a database of compositions – when used in the composing process as explained 
in section 3 – improves composing efficiency compared to an approach that does not 
benefit from that information. In two of the three experience approaches (HC and 
CG), a small improvement in terms of aesthetics was also detectable. The CG 
approach was actually included to see if the computer could also ‘learn’ from its own 
composing experience but this does not appear to be the case. The computational cost 
for these improvements is minimal, especially in contrast to any approach that 
involves game-tree searching [30] beyond confirming if a solution exists, i.e. the use 
of a solving engine. 

Previous work in the area (see section 2) may not have explored this idea to 
improve efficiency and aesthetics because sizeable databases of human compositions 
are generally difficult to come by. Without the appropriate sort of piece placement 
and position transformation process (see section 3), the approach may also have 
seemed likely to converge toward a ‘local maximum’, i.e. the high probability of 
certain pieces on certain squares and subsequently similar compositions generated. In 
any case, until the idea is actually tested as was done here, we cannot be sure what the 
results would look like. For instance, without experimentation it would have been 
difficult to predict that ‘experience’ gained from a TG database would improve 
composing efficiency (though not aesthetics), or that compositions generated by a 
computer based on experience derived from human compositions would be just as 
effective as a source of experience.   

Even though the generated compositions benefited from the probability values 
derived from a database of problems by human composers (HC), that database 
henceforth becomes unnecessary given the (smaller but equally effective) computer-
generated one it helped produce (CG). The reason for this may be because there is a 
lot of personal style, taste and convention in human compositions that do not 
necessarily aid the strict process of composing problems that ‘work’ or even relate to 
beauty per se [11]. This ‘information’ may be mostly stripped away in the 
automatically generated compositions that result. It is important to remember that a 
winning composition is not necessarily among the most beautiful. Sometimes, though 
not often, the elegance of a simpler composition or an analogous combination that 
occurs in an actual game can be considered more beautiful by the majority of 
reasonably competent players than a ‘difficult’ composition with hundreds, if not 
thousands, of variations that only the most experienced composers can appreciate. 
Fig. 2 shows an example of this contrast; one is a 1st prize winning composition by a 
human composer (rather complicated) and the other occurred in a game between two 
chess engines in a simulated match (simple and elegant). 
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This can be of value in terms of entertaining players and perhaps even aiding human 
composers (both amateurs and experts) by providing ideas they can further develop 
for their particular needs. Fig. 3 shows two comparable high-scoring examples of the 
automatically generated compositions from the pool of those generated by the HC and 
CG experience approaches; both the HC and CG are considered to be equivalent 
based on the experimental results shown in section 4. The main line is shown in bold 
whereas notable variations are shown in brackets. An experienced FIDE composition 
judge and solver, Michael McDowell, provided a detailed analysis of these two 
compositions – without being told they were composed by a computer or provided 
with the solutions – and was of the opinion that: “In summary, to the experienced 
solver B has better content than A, but both score poorly for beauty and neither is of 
sufficiently high quality to be published in a reputable chess problem magazine.”  

The experience approach – suitably adapted – is also, in principle, applicable to 
other variants of the game like fairy chess and even Shogi. The only caveat is perhaps 
the requirement of a sizeable collection of human compositions of that type to gain 
‘experience’ from; we would assume at least 1,000 combinations. The approach can 
be combined with other methods as described in section 2, possibly with improved 
results. Automatically composing longer problems (e.g. four or five-movers) – 
relatively rare in international chess – would likely be constrained by the strength and 
speed of the solving engine, and would require a suitably adapted aesthetics model. 

6   Conclusion 

Composing high quality chess problems requires considerable experience, knowledge, 
effort and time by human composers. Doing so computationally is therefore a 
challenge. Nevertheless, it is certainly possible to strictly compose problems – in 
principle, for any complex board game like chess – using a particular combination of 
techniques and technologies. Even so, many of them are computationally-intensive 
and therefore limit performance. 

In this article, we have shown through experimentation that a simple ‘experience 
table’ can – at a very low computational cost – improve the automatic composition of 
chess problems in terms of efficiency and in some cases to a small degree, aesthetics 
as well. In order to do so, one first needs a sizeable database of compositions by 
humans in order to derive the piece-placement probability values; but beyond that, the 
compositions generated by the computer are sufficient as a source of ‘experience’. A 
proper piece placement and position transformation strategy is also necessary to avoid 
convergence upon very similar-looking compositions. This idea, to the best of our 
knowledge, has never been tested before in the automatic composition of chess 
problems, but has now been shown to be a viable option. The output and 
entertainment potential of this technology can be considered reasonably significant. 

Future work in this area would include, 1) looking at the effects of combining the 
various approaches of composing as described in section 2 and in this research to find 
the ‘perfect mix’ that provides the best compromise between efficiency and quality, 2) 
finding a way to apply the aesthetics model used at the ‘knowledge level’ so the 
automatic composer places pieces on the board with aesthetics in mind instead of just 
focusing on compositions that ‘work’, and 3) factoring in various composition 



196 A. Iqbal 

conventions, in such a way that does not significantly compromise composing 
efficiency or beauty, in order to be able to compete with the best human composers. 
Ultimately, the idea of a continuous feedback loop of ‘experience’ should be explored 
to see if a computer can learn and grow from its own composing experience. 
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