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Abstract. This paper proposes an efficient and secure higher-order
masking algorithm for AES S-box that consumes the most computation
time of the higher-order masked AES. During the past few years, much
of the research has focused on finding higher-order masking schemes for
this AES S-box, but these are still slow for embedded processors use. Our
proposed higher-order masking of AES S-box is constructed based on the
inversion operation over the composite field. We replace the subfield op-
erations over the composite field into the table lookup operation, but
these precomputation tables do not require much ROM space because
these are the operations over GF (24). In the implementation results, we
show that the higher-order masking scheme using our masked S-box is
about 2.54 (second-order masking) and 3.03 (third-order masking) times
faster than the fastest method among the existing higher-order masking
schemes of AES.

Keywords: AES, side channel attack, higher-order masking, higher-
order DPA, differential power analysis.

1 Introduction

Since Kocher introduced the concept of differential power analysis (DPA) [13],
the security of block ciphers has received considerable attention, and it is now
obvious that the unprotected implementations of block ciphers in embedded pro-
cessors can be broken by DPA. During the past few years, much of the research
on DPA attacks has focused on finding secure countermeasures. Among these
countermeasures, a masking method based on algorithmic techniques is known to
be inexpensive and secure against a first-order DPA (FODPA) [3,5,9,11,15,16].

Recently, the important effort has been carried out to find a masking method
that is secure against the higher-order DPA (HODPA) [14,22] as well as FODPA
[22,17,18]. These masking schemes are called the higher-order masking schemes.
Also, the higher-order masking scheme to counteract d-th order DPA [22] is
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called the d-th order masking scheme1. In this d-th order masking scheme, every
intermediate value I of an original cipher is randomly split into (d+1)-tuple (I0,
I1, ..., Id). Here, for any intermediate value I, there exists a group operation ⊥
such that ⊥(I0, I1, ..., Id) equals I. This randomly split (d+1)-tuple can block
that the combination of d or less elements in this tuple is dependent on the
intermediate value I. Thus, security against d-th order DPA can be provided.

In the higher-order masking scheme of standard block cipher AES [1], the most
important part is the S-box operation, which is the only non-linear operation
of AES. Actually, most of the cost for higher-order masked AES is required
by this non-linear part. Thus, to construct the higher-order masking scheme
of AES in all previous works, the most important consideration has been to
mask this S-box operation. To mask this operation, the initial works of [22] and
[17] carry out table re-computation before all S-box operation. However, these
methods require much computation time. M. Rivain and E. Prouff introduced
a higher-order masked S-box operation based on the exponentiation operation
to solve this problem [18]. This method can considerably reduce computation
time compared with the existing methods. However, this scheme is still about
60 (second-order masking) and 130 (third-order masking) times slower than the
straightforward AES.

In this paper, we propose a new higher-order masking of AES S-box based on
the inversion operation over the composite field [20,21]. This method uses the
precomputation tables for subfield operations such as the multiplication, square,
and scalar multiplication over GF (24). These tables can considerably reduce the
time required. Also, because these tables are used for the operations over GF (24),
our method does not require much ROM space. The security of this new algo-
rithm can be easily proved via the proofs in [18]. In the implementation results,
our method is about 2.54 (second-order masking) and 3.03 (third-order mask-
ing) times faster than the method in [18]. Also, to use the higher-order masking
scheme in embedded processors, we show the implementation results that apply
the higher-order masking scheme to the first two and the last two rounds only,
and the first-order masking to the other rounds and key-schedule. This is be-
cause HODPA generally attacks the first and last few rounds. Implementation
results for this reduced masking are just 8.6 (second-order masking) and 13.8
(third-order masking) times slower than the straightforward AES. These numer-
ical values mean that the reduced masking using our higher-order masked AES
S-box can be sufficiently used in embedded processors.

The remainder of this paper is organized as follows. Section 2 describes the
higher-order masking of AES and the inversion operation over the composite
field. In Section 3, we introduce the new higher-order masking of AES S-box.
Section 4 simply demonstrates the security of our method based on the proofs
in [18] and Section 5 shows its efficiency. Finally, in Section 6, we offer the
conclusion.

1 Since the method of [22] has been known insecure for d ≥ 3 [7], the method of [18]
is currently the only higher-order masking scheme for d ≥ 3.
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2 Preliminaries

2.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as Rijndael, is a block
cipher adopted as an encryption standard by the US government [1]. This block
cipher is composed of an SPN structure [4,6]. For an N -bit SPN-type block
cipher of r rounds, each round consists of three layers. These layers are the
key mixing layer, substitution layer, and linear transformation layer. In the key
mixing layer, the round input is bitwise exclusive-ORed with the subkey for each
round. In the substitution layer, the value resulting from the key mixing layer
is partitioned into N/n blocks of n bits and each block of n bits then outputs
other n bits through a non-linear bijective mapping π : F2n → F2n . In the case of
AES, an S-box fulfills the role of this bijective mapping π. AES S-box is defined
by a multiplicative inverse b = a−1 in GF (28) (except if a = 0 then b = 0) and
an affine transformation as in the following equations:

S : GF (28) → GF (28)
x → Mx254 ⊕ v

where the value of x254 is regarded as a GF (2)-vector of dimension 8, M is an
8×8 GF (2)-matrix, and v is an 8×1 GF (2)-vector. The resulting value of the
substitution layer becomes the N bit input (i0, i1, , iN−1) of the linear transfor-
mation layer. The linear transformation layer consists of multiplication by the
N×N matrix. That is, the resulting value of this layer is O = LI, where L is an
N×N matrix and I is (i0, i1, , iN−1)T . In AES, ShiftRows and MixColumns play
this role. The linear transformation layer is omitted from the last round since it
is easily shown that its inclusion adds no cryptographic strength.

2.2 Higher-Order Masking of AES

A d-th order masking method e′ for an encryption algorithm c← e(m, k) is de-
fined as follows, where m, k and c are plaintext, key and ciphertext, respectively
[18]:

(c0, c1, ..., cd)← e′((m0, m1, ..., md), (k0, k1, ..., kd))

In the equation above, d-th order masking method e′ must satisfy the equations
of c = ⊥d

i=0ci, m = ⊥d
i=0mi and k = ⊥d

i=0ki, where ⊥ is the specific group
operation. In this paper, we consider that this group operation is the exclusive-
or (XOR, ⊕).

To guarantee security against d-th order DPA which exploits the leakages
related to d intermediate values [22], the intermediate value I of the encryption
algorithm e must also be replaced into (I0, I1, ..., Id). Here, the sum of d or
less intermediate values

⊕
i∈S Ii is independent of the sensitive data value (the

intermediate value of the original cipher) I where S is a subset of {0, 1, ..., d}
and 1 ≤ size(S) ≤ d.
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M. Rivain and E. Prouff introduced the d-th order masking scheme for AES
satisfying the conditions above. In this scheme, the higher-order masking method
can be easily applied to every operation, except S-box, because these operations
are linear operations. Namely, the linear operation O ← L(I) can be replaced
into (O0, O1, ..., Od) ← L′((I0, I1, ..., Id)) where Oi = L(Ii), because the
operation L′ satisfies the equation of

⊕d
i=0 Oi = L(

⊕d
i=0 Ii).

However, it is not easy to apply the higher-order masking to the S-box op-
eration. Actually, the higher-order masking scheme spends most of the time for
computing this non-linear operation. In the initial works on the higher-order
masking method [22,17], it is general to carry out table re-computation before
S-box operation, but this operation consumes a lot of time.

To reduce the time required, M. Rivain and E. Prouff introduced the d-th order
secure SecSbox operation based on the exponentiation operation [18]. They
found the following addition chain that can minimize not the number of squares
but the number of multiplications because the square is a linear operation.

x
S−→ x2 M−→ x3 2S−→ x12 M−→ x15 4S−→ x240 M−→ x252 M−→ x254

In the chain above, S, M , 2S and 4S mean the square, multiplication, two
squares and four squares, respectively. Here, the square, two squares and four
squares are the linear operations. Thus, these operations are easily implemented
using the look-up tables (LUTs). However, the other four multiplications must
be carefully constructed because these are non-linear operations. They designed
the d-th order secure multiplication algorithm SecMult using the Ishai-Sahai-
Wagner (ISW) scheme [10]. This algorithm is described in Algorithm 1.

Algorithm 1. SecMult function [18]

Input: two (d+1)-tuples (a0, a1, ..., ad), (b0, b1, ..., bd) where
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

Output: (d+1)-tuple (c0, c1, ..., cd) satisfying
⊕d

i=0 ci = ab

1. For i = 0 to d do
(a) For j = i + 1 to d do

i. ri,j ← rand(8)
ii. rj,i ← (ri,j ⊕ aibj)⊕ ajbi

2. For i = 0 to d do
(a) ci ← aibi

(b) For j = 0 to d, j �= i do, ci ← ci ⊕ ri,j

2.3 The Inversion Operation over a Composite Field

In order to reduce the cost of AES S-box, inversion methods over a compos-
ite field have been proposed [20,21]. These methods transform an element over
GF (28) into an element over the composite field having low inversion cost by the
isomorphism function δ, and the inversion operation is actually carried out over
this composite field. Then, the inversion operation over GF (28) is completed by
carrying out the inverse mapping δ−1 into the element over GF (28).
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In [21], the composite field is built by repeating degree-2 extensions with the
following irreducible polynomials:

GF (22) : P0(x) = x2 + x + 1, where P0(α) = 0,

GF ((22)2) : P1(x) = x2 + x + α, where P1(β) = 0,

GF (((22)2)2) : P2(x) = x2 + x + λ, where λ = (α + 1)β, P2(γ) = 0.

Two isomorphism functions δ and δ−1 according to the above irreducible poly-
nomials are as follows:

δ : GF (28) → GF (((22)2)2)
δ−1 : GF (((22)2)2) → GF (28)

δ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

δ−1 :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 1 0 0 1
0 1 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The inversion operation of an input value A = ahγ + al ∈ GF (((22)2)2), where
ah and al are elements in GF ((22)2), is performed as follows in this composite
field.

First, A−1 ∈ GF (((22)2)2) is computed by C−1A16 (C = A17 ∈ GF ((22)2)).
This computation method unavoidably requires the operations of A16 and A17,
but A16 can be computed simply with only 4 bitwise XOR operations of ahγ +
(ah +al). Furthermore, A17 is computed simply by λa2

h +(ah +al)al due to γ2 +
γ = λ. After computing the inverse of A17 over GF ((22)2), the computation of
A−1 = C−1A16 can be completed. Figure 1 represents the AES S-box operation
including the inversion operation over the composite field GF (((22)2)2) where Af

is an affine transformation. For additional operations over both fields GF ((22)2)
and GF (22) refer to [21].

Fig. 1. S-box operation of AES
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In Fig. 1, an equation for computing the output value S(x) of x is performed
as follows:

Step 1. ahγ + al = δ(x) where ah and al are elements in GF ((22)2)
Step 2. d = λa2

h + al(ah + al) ∈ GF ((22)2)
Step 3. d′ = d−1 ∈ GF ((22)2)
Step 4. a′

h = d′ah ∈ GF ((22)2)
Step 5. a′

l = d′(ah + al) ∈ GF ((22)2)
Step 6. S(x) = Af (δ−1(a′

hγ + a′
l)) ∈ GF (((22)2)2)

3 A Fast and Provably Secure Higher-Order Masking of
AES S-Box

In this section, we propose a fast and provably secure higher-order masking of
AES S-box. As aforementioned, the higher-order masking scheme of AES spends
the most time computing the masked S-box operation. The main purpose of this
paper is to reduce running time of the higher-order masking algorithm. Thus, our
masked S-box uses the six precomputation tables. Most of the elements of these
tables are the 4-bit data, but we allocate one byte for each element to simplify
accessing the table elements. These precomputation tables are as follows with
the notations defined in Section 2.3:

1. Squaring table T 1 (The requirement for 16 bytes of ROM)
– Input : X ∈ GF (24)
– Output : T 1[X ] = X2 ∈ GF (24)

2. Two squaring table T 2 (The requirement for 16 bytes of ROM)
– Input : X ∈ GF (24)
– Output : T 2[X ] = X4 ∈ GF (24)

3. Squaring-scalar multiplication table T 3 (The requirement for 16 bytes of
ROM)
– Input : X ∈ GF (24)
– Output : T 3[X ] = λX2 ∈ GF (24)

4. Multiplication table T 4 (The requirement for 256 bytes of ROM)
– Input : X, Y ∈ GF (24)
– Output : T 4[X ][Y ] = XY ∈ GF (24)

5. Isomorphism table T 5 (The requirement for 256 bytes of ROM)
– Input : X ∈ GF (28)
– Output : T 5[X ] = δ(X) ∈ GF (((22)2)2)

6. Inverse isomorphism-Affine transformation table T 6 (The requirement for
256 bytes of ROM)
– Input : X ∈ GF (((22)2)2))
– Output : T 6[X ] = Af (δ−1(X)) ∈ GF (28)
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Fig. 2. The eight steps of the proposed masked S-box

As aforementioned, the d-th order masking scheme must compute every interme-
diate value I of the original encryption algorithm e with the form of (I0, I1, ...,
Id) where

⊕d
i=0 Ii = I. We design a new higher-order masked S-box satisfying

this condition in each step over the composite field. We first classify the S-box
operation of Fig. 1 into the nine steps of Fig. 2.

In Fig. 2, the operations of Step 1(a), 1(b), 7 and 8 are the linear operations
or affine transformation. Here, the linear operation O ← L(I) can be easily re-
placed into (O0, O1, ..., Od) ← L′((I0, I1, ..., Id)), where Oi = L(Ii), because
the operation L′ satisfies the equation of

⊕d
i=0 Oi = L(

⊕d
i=0 Ii). Affine trans-

formation O ← Af (I) can also be replaced into (O0, O1, ..., Od) ← A′
f ((I0, I1,

..., Id)), where O0 = Af (I0) ⊕ (0x63 × (d mod 2)) and Oi = Af (Ii)(i �= 0),
because the operation A′

f satisfies the equation of
⊕d

i=0 Oi = Af (
⊕d

i=0 Ii). We
show hereafter some methods to apply the d-th order masking to the remaining
non-linear operations.

– Masking XOR operation: The masked XOR operation can be easily con-
structed. This operation outputs (x0⊕y0, x1⊕y1, ..., xd⊕yd) from two input
(d+1)-tuples (x0, x1, ..., xd), (y0, y1, ..., yd). Here, two input (d+1)-tuples
must be independent of each other as mentioned in [18].

– Masking GF (24) multiplication: We construct the masked GF (24) multi-
plication using Algorithm 1 of [18]. This algorithm is described in Algorithm
2. The only difference between two algorithms is whether or not the multipli-
cation table is used. Our masked S-box computes the inversion by using the
subfield operation over GF (24). Thus, most operations, including GF (24)
multiplication, can be computed by using the precomputation tables. These
require ROM space, but the size required is very small.

– Masking GF (24) inversion: The masking method for GF (24) inversion
can be designed variously. One way is to use the composite field operation
over GF ((22)2) similarly to the masked operation over GF (((22)2)2). How-
ever, this method requires as many table lookup operations as that over
GF (((22)2)2). Therefore, we use the operation of x14 over GF (24). The
addition chain of x14 to minimize the number of multiplications can be
constructed as follows:
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x
S−→ x2 M−→ x3 2S−→ x12 M−→ x14

The masked inversion algorithm over GF (24) using this addition chain is
shown in Algorithm 3. In Algorithm 3, for RefreshMasks algorithm to
eliminate the dependence between the two input tuples of SecMult4 func-
tion refer to [18].

Algorithm 2. GF (24) SecMult4 function using the multiplication table T 4

Input: two (d+1)-tuples (a0, a1, ..., ad), (b0, b1, ..., bd) where
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

Output: (d+1)-tuple (c0, c1, ..., cd) satisfying
⊕d

i=0 ci = ab ∈ GF (24)

1. For i = 0 to d do
(a) For j = i + 1 to d do

i. ri,j ← rand(4)
ii. rj,i ← (ri,j ⊕ T4[ai][bj ])⊕ T4[aj ][bi]

2. For i = 0 to d do
(a) ci ← T4[ai][bi]
(b) For j = 0 to d, j �= i do, ci ← ci ⊕ ri,j

Algorithm 3. GF (24) SecInv function

Input: (d+1)-tuple (x0, x1, ..., xd) satisfying
⊕d

i=0 xi = x ∈ GF (24)

Output: (d+1)-tuple (y0, y1, ..., yd) satisfying
⊕d

i=0 yi = x−1 = x14 ∈ GF (24)

1. For i = 0 to d do
(a) wi = T1[xi]

2. RefreshMasks((w0, w1, ..., wd))
3. (z0, z1, ..., zd)=SecMult4((w0, w1, ..., wd), (x0, x1, ..., xd))
4. For i = 0 to d do

(a) zi = T2[zi]
5. (y0, y1, ..., yd)=SecMult4((z0, z1, ..., zd), (w0, w1, ..., wd))

Algorithm 4 presents the entire operation of the proposed d-th order mask-
ing for AES S-box. The meaning of the operations carried out in each step is
described in Fig. 2.

4 Security Analysis

The security of the proposed algorithm can be easily proved by the proofs in
[18]. It is straightforward to prove the security for all operations, except the
SecMult4 algorithm because each element of the input tuple is independently
operated in these operations. Also, the security of SecMult4 algorithm can be
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proved by Theorem 1 of [18]. The remaining consideration is the independence
between two input (d+1)-tuples of the SecMult4 algorithm. In Algorithm 4, two
input tuples of SecMult4 algorithm are independent of each other. However,
in Step 3 of Algorithm 3, the input tuples of SecMult4 function (x, x2) have
the dependency. However, RefreshMasks in Step 2 can eliminate this depen-
dency as mentioned in Section 3. Thus, the proposed algorithm provides security
against the d-th order DPA, that is, it can guarantee that every combination of
d or less intermediate values is independent of any sensitive data value.

Algorithm 4. d-th order masking of AES S-box
Input: (d+1)-tuple (x0, x1, ..., xd) satisfying

⊕d
i=0 xi = x ∈ GF (28)

Output: (d+1)-tuple (y0, y1, ..., yd) satisfying
⊕d

i=0 yi = Sbox(x) ∈ GF (28)

1. For i = 0 to d do
(a) (Hi||Li) = T5[xi] /*Hi, Li ∈ GF (24)*/
(b) wi = T3[Hi]
(c) ti = Hi ⊕ Li

2. (L0, L1, ..., Ld)=SecMult4((t0, t1, ..., td), (L0, L1, ..., Ld))
3. For i = 0 to d do

(a) wi = wi ⊕ Li

4. (w0, w1, ..., wd)=SecInv((w0, w1, ..., wd))
5. (H0, H1, ..., Hd)=SecMult4((w0, w1, ..., wd), (H0, H1, ..., Hd))
6. (L0, L1, ..., Ld)=SecMult4((w0, w1, ..., wd), (t0, t1, ..., td))
7. For i = 0 to d do

(a) yi = T6[Hi||Li]
8. If d is odd, y0 = y0 ⊕ 0x63
9. Return (y0, y1, ..., yd).

5 Performance Analysis and Implementation Results

In our d-th order masked S-box, SecMult4 function requires (d + 1)2 table
lookup operations, 2d(d + 1) XOR operations, and the generation of 2d(d + 1)
random bits. Considering 5 SecMult4 function calls and other minor opera-
tions (RefreshMasks, table lookup operations, and 4-bit shift operations2),
our masked S-box requires totally (5d2 + 13d + 8) table lookup operations,
(10d2 + 16d + 5) XOR operations, (10d2+14d

8 + 2(d + 1)) 4-bit shift operations,
(10d2+14d

8 +2(d+1)) bitwise AND operations and the generation of (10d2 +14d)
random bits3.
2 4-bit shift operation may require 4 instruction calls unless the single instruction

carrying out 4-bit shift is supported. However, some microcontrollers like 8051 and
AVR family support a single SWAP operation, which swaps high and low nibbles in
a register.

3 To get the random nibbles from (10d2 + 14d) random bits, we split 1 random byte
into two nibbles. This method requires one 4-bit shift operation and one bitwise AND

operation. Therefore, the generation of (10d2 +14d) random bits involves ( 10d2+14d
8

)
4-bit shift and bitwise AND operations.
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Table 1. Comparison of two d-th order masked S-box schemes in terms of the total
number of operations

Ours [18]

Table Lookup 5d2 + 13d + 8 12d2 + 31d + 19

XOR 10d2 + 16d + 5 8d2 + 12d

Random Bits 10d2 + 14d 16d2 + 32d

etc 4-bit logical shift : 5
4
d2 + 15

4
d + 2, 8-bit Addition : 8(d + 1)2,

8-bit bitwise AND : 5
4
d2 + 15

4
d + 2 8-bit logical AND : 4(d + 1)2

On the other hand, the d-th order masked S-box in [18] involves 4 SecMult
function calls, i.e., 4(d + 1)2 multiplications over GF (28). The multiplications
over GF (28) can be efficiently implemented with log/alog tables (see Appendix
A). Here, we remove the conditional branching operation because this operation
leaks some information that can be exploited by simple power analysis (SPA)
[13]. Also, we remove the reduction operation modulo 255 to improve the com-
putation speed. 4 SecMult function calls require 12(d+1)2 table lookup opera-
tions because one multiplication over GF (28) involves 3 table lookup operations.
Table 1 compares two d-th order masked S-box schemes in terms of the total
number of operations.

To compare the performance of our masked S-box with the existing counter-
measures in embedded processors, we use Algorithms 6 and 7 in [19]. Here, we
replace the masked S-box operation of these algorithms into our algorithm.

We implement AES-128 in C-language for ATmega128 8-bit architecture [2].
First, the straightforward AES requires 11,170 clock cycles. We implement the
first-order masking of AES using the method in [9], but we do not apply the
dummy operation and the shuffling method, which provide partial security against
the second-order DPA. This requires 19,525 clock cycles.

In the implementation of the second-order masking methods, we compare our
method with the methods in [17] and [18]; [18] is the most recent work on the
higher-order masking of AES. Our method requires slightly more ROM size than
the method in [18], but is 2.54 times faster and also 4.51 times faster than the
method in [17].

However, our method is still 23 times slower than the straightforward AES.
Thus, we consider the additional case for applying the second-order masking
to only the first two and the last two rounds. This is because the second-order
DPA generally attacks the first and last few rounds. Also, we apply the first-
order masking to the key-schedule and the rest of the rounds (3∼8 rounds).
After finishing the key-schedule operation, we change the first two and the last
two round keys into the form of (d+1)-tuple by using d random numbers. To
provide security against the analysis such as [8] and [12], we apply the first-order
masking to 3∼8 rounds. The implementation result is just 8.6 times slower than
the straightforward AES. These numerical values mean that this algorithm can
be used practically in the embedded processors.
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We also implement the third-order masking, and compare it with the method
of [18]. Here, our method is 3.03 times faster than the existing countermeasure
and 41.03 times slower than the straightforward AES. Also, the reduced masking
is just 13.8 times slower than the straightforward AES.

6 Conclusion

In this paper, we proposed a new higher-order masking method for AES S-box.
Our method could considerably reduce the computation time of the higher-order
masked AES. Our method was 2.54 times faster than the most recent method
of the second-order masking, and it was 3.03 times faster than that of the third-
order masking. Also, in order to use the second-order masking algorithm in
embedded processors, we only applied the second (third) order masking to the
first two and the last two rounds in the encryption of AES. The results for these
implementations were just 8.6 (second) and 13.8 (third) times slower than the
straightforward AES. These numerical values mean that our higher-order masked
S-box can achieve practical use of the higher-order masked AES in embedded
processors.
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A Multiplication in GF(28) without SPA Leakage

In [18], the higher-order masked S-box computes AES multiplications over
GF (28). The most efficient way for this operation is to use log and alog ta-
bles where log[αi] = i and alog[i] = αi for a generator α of GF (256)∗ and
0 � i < 255. Multiplication using these two tables is computed according to the
following equation:

ab =

{
alog[(log[a] + log[b]) mod 255] if both a and b are not zero
0 otherwise

However, the reduction modulo 255 requires heavy computational cost and the
conditional branching operation has to be removed to eliminate the possibility of
SPA. We compute the reduction modulo 255 by using the reduction modulo 256
and remove the conditional branching operation. This algorithm is described in
Algorithm 5. To reduce the number of operations, we also use alog table as in
the following equation, which requires 1 byte more ROM size than alog table.

alog[x] =

{
alog[x] if 0 � x < 255
alog[0] if x = 255

Algorithm 5. Multiplication in GF (28) without SPA Leakage
Input: a, b ∈ GF (28), f is an irreducible polynomial over GF (28)
Output: ab mod f

1. t = log[a]
2. s = (t + log[b]) mod 28

3. r = alog[(s < t) + s] /* s < t: the carry associated with Step 2 */
4. Return (a&&b)∗r /* &&: the logical AND operation */

http://eprint.iacr.org/
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